Comprehensive Degradation Analysis of NCA Li-Ion Batteries via Methods of Electrochemical Characterisation for Various Stress-Inducing Scenarios
Abstract
:1. Introduction
2. Degradation of NCA Cathode Material
3. Experimental
4. Results and Discussion
4.1. Cyclic Degradation
4.2. Electrochemical Impedance Spectroscopy (EIS)
4.3. Resulting Nyquist Plots
4.4. Equivalent Electric Circuit Fitting
4.5. Galvanostatic Intermittent Titration Technique (GITT)
4.6. Results of Li+ Diffusion Analysis via GITT
4.7. Results of Internal Resistance Analysis via GITT
4.8. Incremental Capacity Analysis (ICA)
4.9. ICA Analysis—Results
5. Comparative Degradation Analysis of Individual Scenarios
5.1. The Reference Scenario
5.2. The Under-Charge Scenario
5.3. The Over-Charge Scenario
5.4. The High-Current Charging Scenario
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Li, M.; Chu, L.; Jiang, B.; Lin, R.; Zhu, X.; Cao, G. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog. Mater. Sci. 2020, 111, 100655. [Google Scholar] [CrossRef]
- Theiler, M.; Endisch, C.; Lewerenz, M. Float current analysis for fast calendar aging assessment of 18650 Li (NiCoAl) O2/graphite cells. Batteries 2021, 7, 22. [Google Scholar] [CrossRef]
- Tran, M.-K.; DaCosta, A.; Mevawalla, A.; Panchal, S.; Fowler, M. Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA. Batteries 2021, 7, 51. [Google Scholar] [CrossRef]
- Nie, X.; Hou, G.; Xu, Z.; Li, J.; Li, Y.; Sun, Q.; Qiao, Y.; Li, D.; Ci, L. Lewis Acidity Organoboron-Modified Li-Rich Cathode Materials for High-Performance Lithium-Ion Batteries. Adv. Mater. Interfaces 2021, 8, 2002113. [Google Scholar] [CrossRef]
- European Commission. Report: On the Implementation of the Strategic Action Plan on Batteries: Building a Strategic Battery Value Chain in Europe. COM(2019) 176 Final, Brussels, 09. 04. 2019. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A52019DC0176 (accessed on 5 November 2022).
- Yang, X.; Chen, J.; Zheng, Q.; Tu, W.; Xing, L.; Liao, Y.; Xu, M.; Huang, Q.; Cao, G.; Li, W. Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode. J. Mater. Chem. A 2018, 6, 16149–16163. [Google Scholar] [CrossRef]
- Benavente-Araoz, F.; Varini, M.; Lundblad, A.; Cabrera, S.; Lindbergh, G. Effect of Partial Cycling of NCA/Graphite Cylindrical Cells in Different SOC Intervals. J. Electrochem. Soc. 2020, 167, 040529. [Google Scholar] [CrossRef]
- Jung, K.; Yim, T. Calcium- and sulfate-functionalized artificial cathode–electrolyte interphases of Ni-rich cathode materials. Rare Met. 2021, 40, 2793–2801. [Google Scholar] [CrossRef]
- Noerochim, L.; Suwarno, S.; Idris, N.H.; Dipojono, H.K. Recent Development of Nickel-Rich and Cobalt-Free Cathode Materials for Lithium-Ion Batteries. Batteries 2021, 7, 84. [Google Scholar] [CrossRef]
- Pelegov, D.V.; Pontes, J. Main drivers of battery industry changes: Electric vehicles—A market overview. Batteries 2018, 4, 65. [Google Scholar] [CrossRef] [Green Version]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164, A5019–A5025. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. J. Power Source 2018, 405, 18–29. [Google Scholar] [CrossRef]
- Berecibar, M.; Gandiaga, I.; Villarreal, I.; Omar, N.; Van Mierlo, J.; van den Bossche, P. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev. 2016, 56, 572–587. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery Lifetime Prognostics. Joule 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, J.; Lu, D.D.-C.; Wang, G.; He, T. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. Energy 2018, 150, 759–769. [Google Scholar] [CrossRef]
- Ng, B.; Coman, P.T.; Mustain, W.E.; White, R.E. Non-destructive parameter extraction for a reduced order lumped electrochemical-thermal model for simulating Li-ion full-cells. J. Power Source 2019, 445, 227296. [Google Scholar] [CrossRef]
- Damay, N.; Mbeya, K.M.; Friedrich, G.; Forgez, C. Separation of the charge transfers and solid electrolyte interphase contributions to a battery voltage by modeling their non-linearities regarding current and temperature. J. Power Source 2021, 516, 230617. [Google Scholar] [CrossRef]
- Babaeiyazdi, I.; Rezaei-Zare, A.; Shokrzadeh, S. State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach. Energy 2021, 223, 120116. [Google Scholar] [CrossRef]
- Pastor-Fernandez, C.; Widanage, W.D.; Marco, J.; Gama-Valdez, M.-A.; Chouchelamane, G.H. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique. In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo (ITEC), IEEE, Dearborn, MI, USA, 27–29 June 2016; pp. 1–6. [Google Scholar]
- Lai, X.; Chen, Q.; Tang, X.; Zhou, Y.; Gao, F.; Guo, Y.; Bhagat, R.; Zheng, Y. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. eTransportation 2022, 12, 100169. [Google Scholar] [CrossRef]
- Cabañero, M.A.; Boaretto, N.; Röder, M.; Müller, J.; Kallo, J.; Latz, A. Direct Determination of Diffusion Coefficients in Commercial Li-Ion Batteries. J. Electrochem. Soc. 2018, 165, A847–A855. [Google Scholar] [CrossRef]
- Su, L.; Wu, M.; Li, Z.; Zhang, J. Cycle life prediction of lithium-ion batteries based on data-driven methods. eTransportation 2021, 10, 100137. [Google Scholar] [CrossRef]
- Sebastian, S.S.; Dong, B.; Zerrin, T.; Pena, P.A.; Akhavi, A.S.; Li, Y.; Ozkan, C.S.; Ozkan, M. Adaptive fast charging methodology for commercial Li-ion batteries based on the internal resistance spectrum. Energy Storage 2020, 2, e141. [Google Scholar] [CrossRef]
- Devie, A.; Dubarry, M. Durability and Reliability of Electric Vehicle Batteries under Electric Utility Grid Operations. Part 1: Cell-to-Cell Variations and Preliminary Testing. Batteries 2016, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.S. Identifying rate limitation and a guide to design of fast-charging Li-ion battery. InfoMat 2020, 2, 942–949. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Wen, R.; Ping, P.; Peng, R.; Zhang, J.; Chen, G. Study on degradation behavior of commercial 18650 LiAlNiCoO2 cells in over-charge conditions. Int. J. Energy Res. 2019, 43, 552–567. [Google Scholar] [CrossRef] [Green Version]
- Togasaki, N.; Yokoshima, T.; Oguma, Y.; Osaka, T. Prediction of overcharge-induced serious capacity fading in nickel cobalt aluminum oxide lithium-ion batteries using electrochemical impedance spectroscopy. J. Power Source 2020, 461, 228168. [Google Scholar] [CrossRef]
- LI, Y.; Dong, B.; Zerrin, T.; Jauregui, E.; Wang, X.; Hau, X.; Ravichandran, D.; Shang, R.; Xie, J.; Ozkan, M.; et al. State-of-health prediction for lithium-ion batteries via electrochemical impedance spectroscopy and artificial neural networks. Energy Storage 2020, 2, 186. [Google Scholar] [CrossRef]
- Preger, Y.; Barkholtz, H.M.; Fresquez, A.; Campbell, D.L.; Juba, B.W.; Romàn-Kustas, J.; Ferreira, S.R.; Chalamala, B.R. Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions. J. Electrochem. Soc. 2020, 167, 120532. [Google Scholar] [CrossRef]
- Watanabe, S.; Kinoshita, M.; Hosokawa, T.; Morigaki, K.; Nakura, K. Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). J. Power Source 2014, 258, 210–217. [Google Scholar] [CrossRef]
- Pastor-Fernández, C.; Uddin, K.; Chouchelamane, G.H.; Widanage, W.D.; Marco, J. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems. J. Power Source 2017, 360, 301–318. [Google Scholar] [CrossRef]
- Wildfeuer, L.; Gieler, P.; Karger, A. Combining the Distribution of Relaxation Times from EIS and Time-Domain Data for Parameterizing Equivalent Circuit Models of Lithium-Ion Batteries. Batteries 2021, 7, 52. [Google Scholar] [CrossRef]
- Liu, W.; Delacourt, C.; Forgez, C.; Pelissier, S. Study of graphite/NCA Li-ion cell degradation during accelerated aging tests Data analysis of the SIMSTOCK project. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, IEEE, Chicago, IL, USA, 6–9 September 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Shi, E.; Xia, F.; Peng, D.; Li, L.; Wang, X.; Yu, B. State-of-health estimation for lithium battery in electric vehicles based on improved unscented particle filter. J. Renew. Sustain. Energy 2019, 11, 024101. [Google Scholar] [CrossRef]
- Makimura, Y.; Sasaki, T.; Nonaka, T.; Nishimura, Y.F.; Uyama, T.; Okuda, C.; Itou, Y.; Takeuchi, Y. Factors affecting cycling life of LiNi0.8 Co0.15 Al0.05 O2 for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 8350–8358. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wei, X.; Chen, S.; Zhu, J.; Han, G.; Tang, X.; Hua, W.; Dai, H.; Ye, J. Comprehensive Investigation of a Slight Overcharge on Degradation and Thermal Runaway Behavior of Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 35054–35068. [Google Scholar] [CrossRef]
- Fly, A.; Chen, R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries. J. Energy Storage 2020, 29, 101329. [Google Scholar] [CrossRef]
- Teichert, P.; Eshetu, G.G.; Jahnke, H.; Figgemeier, E. Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries. Batteries 2020, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Fang, R.; Miao, C.; Nie, Y.; Wang, D. Degradation mechanism and performance enhancement strategies of LiNixCoyAl1−x−yO2 (x ≥ 0.8) cathodes for rechargeable lithium-ion batteries: A review. Ionics 2020, 26, 3199–3214. [Google Scholar] [CrossRef]
- Kim, N.Y.; Yim, T.; Song, J.H.; Yu, J.-S.; Lee, Z. Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy. J. Power Source 2016, 307, 641–648. [Google Scholar] [CrossRef]
- Dixit, M.; Markovsky, B.; Schipper, F.; Aurbach, D.; Major, D.T. Origin of Structural Degradation During Cycling and Low Thermal Stability of Ni-Rich Layered Transition Metal-Based Electrode Materials. J. Phys. Chem. 2017, 121, 22628–22636. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kuzuo, R.; Yamanaka, A. Effects of CO2 in air on Li deintercalation from LiNi1−x−yCoxAlyO. J. Power Source 1999, 81, 558–561. [Google Scholar] [CrossRef]
- Bianchini, M.; Roca-Ayats, M.; Hartmann, P.; Brezesinski, T.; Janek, J. There and back again—The journey of LiNiO2 as a cathode active material. Angew. Chem. Int. Ed. 2019, 58, 10434–10458. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.-H.; Park, K.-J.; Yoon, C.S.; Sun, Y.-K. Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? Chem. Mater. 2018, 30, 1155–1163. [Google Scholar] [CrossRef]
- Xie, J.; Ma, J.; Bai, K. Enhanced coulomb counting method for state-of-charge estimation of lithium-ion batteries based on peukert’s law and coulombic efficiency. J. Power Electron. 2018, 18, 910–922. [Google Scholar]
- Wang, X.; Wei, X.; Zhu, J.; Dai, H.; Zheng, Y.; Xu, X.; Chen, Q. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management. eTransportation 2020, 7, 100093. [Google Scholar] [CrossRef]
- Choi, W.; Shin, H.-C.; Kim, J.M.; Choi, J.-Y.; Yoon, W.-S. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. J. Electrochem. Sci. Technol. 2020, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Deleebeeck, L.; Veltzé, S. Electrochemical impedance spectroscopy study of commercial Li-ion phosphate batteries: A metrology perspective. Int. J. Energy Res. 2020, 44, 7158–7182. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Shkrob, I.A.; Abraham, D.P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. J. Electrochem. Soc. 2017, 164, A389. [Google Scholar] [CrossRef]
- Capron, O.; Gopalakrishnan, R.; Jaguemont, J.; Omar, N.; Bossche, P.V.D.; Van Mierlo, J. On the Ageing of High Energy Lithium-Ion Batteries—Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes. Materials 2018, 11, 176. [Google Scholar] [CrossRef]
- Bernardi, D.M.; GO, J.-Y. Analysis of pulse and relaxation behavior in lithium-ion batteries. J. Power Source 2011, 196, 412–427. [Google Scholar] [CrossRef]
- Allart, D.; Montaru, M.; Gualous, H. Model of Lithium Intercalation into Graphite by Potentiometric Analysis with Equilibrium and Entropy Change Curves of Graphite Electrode. J. Electrochem. Soc. 2018, 165, A380–A387. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Yoon, H.; Cho, Y.; Yoo, C.-Y. Investigation of Lithium Ion Diffusion of Graphite Anode by the Galvanostatic Intermittent Titration Technique. Materials 2021, 14, 4683. [Google Scholar] [CrossRef]
- Mendoza, I.O.S.; Vázquez-Arenas, J.; González, I.; Ramos-Sánchez, G.; Castillo-Araiza, C.O. Revisiting Electrochemical Techniques to Characterize the Solid-State Diffusion Mechanism in Lithium-Ion Batteries. Int. J. Chem. React. Eng. 2018, 17, 20180095. [Google Scholar] [CrossRef]
- Verma, A.; Smith, K.; Santhanagopalan, S.; Abraham, D.; Yao, K.P.; Mukherjee, P.P. Galvanostatic intermittent titration and performance based analysis of LiNi0.5Co0.2Mn0.3O2 cathode. J. Electrochem. Soc. 2017, 164, A3380. [Google Scholar] [CrossRef]
- Fang, W.; Kwon, O.J.; Wang, C.-Y. Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell. Int. J. Energy Res. 2009, 34, 107–115. [Google Scholar] [CrossRef]
- Namor, E.; Torregrossa, D.; Cherkaoui, R.; Paolone, M. Parameter identification of a lithium-ion cell single-particle model through non-invasive testing. J. Energy Storage 2017, 12, 138–148. [Google Scholar] [CrossRef]
- Sethuraman, V.; Hardwick, L.; Srinivasan, V.; Kostecki, R. Surface structural disordering in graphite upon lithium intercalation/deintercalation. J. Power Source 2010, 195, 3655–3660. [Google Scholar] [CrossRef] [Green Version]
- Ohzuku, T.; Iwakoshi, Y.; Sawai, K. Formation of Lithium-Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. J. Electrochem. Soc. 1993, 140, 2490–2498. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Li, X.; Wang, Z. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression. Energy 2019, 190, 116467. [Google Scholar] [CrossRef]
- Ansean, D.; Garcia, V.M.; Gonzalez, M.; Blanco-Viejo, C.; Viera, J.C.; Pulido, Y.F.; Sanchez, L. Lithium-Ion Battery Degradation Indicators Via Incremental Capacity Analysis. IEEE Trans. Ind. Appl. 2019, 55, 2992–3002. [Google Scholar] [CrossRef]
- Weng, C.; Sun, J.; Peng, H. An Open-Circuit-Voltage Model of Lithium-Ion Batteries for Effective Incremental Capacity Analysis. In Proceedings of the Dynamic Systems and Control Conference, American Society of Mechanical Engineers 2013, Palo Alto, CA, USA, 21–23 October 2013; p. V001T05A002. [Google Scholar] [CrossRef] [Green Version]
- Dubarry, M.; Svoboda, V.; Hwu, R.; Liaw, B.Y. Incremental Capacity Analysis and Close-to-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries. Electrochem. Solid-State Lett. 2006, 9, A454–A457. [Google Scholar] [CrossRef]
- Dubarry, M.; Liaw, B.Y. Identify capacity fading mechanism in a commercial LiFePO4 cell. J. Power Source 2009, 194, 541–549. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs. J. Power Source 2014, 258, 408–419. [Google Scholar] [CrossRef]
Nominal Capacity | 3350 mAh |
Nominal Voltage | 3.6 V |
Charging | CC-CV, Std. 1.625 A, 4.2 V, 4.0 h |
Discharging | CC, Max. 6.8 A, 2.5 V |
Procedure | Reference Scenario | High-Current Charging Scenario | Under-Charge Scenario | Over-Charge Scenario | |
---|---|---|---|---|---|
Loop of 7 cycles (degradation) | Charge (CC-CV) | Vmax = 4.2 V ICH = 2.345 A ICV stop = 0.335 A | Vmax = 4.2 V ICH = 3.35 A ICV stop = 0.335 A | Vmax = 4.2 V ICH = 2.345 A ICV stop = 0.335 A | Vmax = 4.3 V ICH = 2.345 A ICV stop = 0.335 A |
Relaxation | trelax = 10 min | ||||
Discharge (CC) | Vmin = 2.5 V IDCH = 3.35 A | Vmin = 2.5 V IDCH = 3.35 A | Vmin = 2.3 V IDCH = 3.35 A | Vmin = 2.5 V IDCH = 3.35 A | |
Relaxation | trelax = 10 min | ||||
Testing procedures (stabilisation, EIS, GITT) | Charge (CC-CV) | Vmax = 4.2 V Icharge = 2.345 A ICV stop = 0.335 A | |||
Relaxation | trelax = 60 min | ||||
EIS | fEIS = 20 kHz–20 mHz | ||||
Relaxation | trelax = 10 min | ||||
GITT Discharging * | Ipulse = 0.335 A ton = 10 min trest = 10 min Vmin = 2.5 V | ||||
Relaxation | trelax = 10 min |
x = 0.00 | C | Stage V (Graphite) |
x < 0.08 | low concentration of intercalated Li+ randomly arranged | |
x = 0.08 | LiC72 | Stage IV |
0.08 ≤ x ≤ 0.17 | LiC72 → LiC36 | Plateau ~ 0.22 V |
0.15 ≤ x ≤ 0.17 | LiC36 | Stage III |
0.17 ≤ x ≤ 0.25 | LiC36 → LiC24 | Phase transition |
0.22 ≤ x ≤ 0.25 | LiC24 | Stage III/II (mixed) |
0.25 ≤ x ≤ 0.50 | LiC24 → LiC12 | Plateau ~ 0.12 V |
0.33 ≤ x ≤ 0.50 | coexisting LiC18 proposed by Ohzuku et al. [62] | |
0.50 ≤ x ≤ 0.55 | LiC12 | Stage II |
0.55 ≤ x ≤ 0.85 | LiC12 → LiC6 | Plateau ~ 0.08 V |
0.85 ≤ x | LiC6 | Stage I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemeny, M.; Ondrejka, P.; Mikolasek, M. Comprehensive Degradation Analysis of NCA Li-Ion Batteries via Methods of Electrochemical Characterisation for Various Stress-Inducing Scenarios. Batteries 2023, 9, 33. https://doi.org/10.3390/batteries9010033
Kemeny M, Ondrejka P, Mikolasek M. Comprehensive Degradation Analysis of NCA Li-Ion Batteries via Methods of Electrochemical Characterisation for Various Stress-Inducing Scenarios. Batteries. 2023; 9(1):33. https://doi.org/10.3390/batteries9010033
Chicago/Turabian StyleKemeny, Martin, Peter Ondrejka, and Miroslav Mikolasek. 2023. "Comprehensive Degradation Analysis of NCA Li-Ion Batteries via Methods of Electrochemical Characterisation for Various Stress-Inducing Scenarios" Batteries 9, no. 1: 33. https://doi.org/10.3390/batteries9010033
APA StyleKemeny, M., Ondrejka, P., & Mikolasek, M. (2023). Comprehensive Degradation Analysis of NCA Li-Ion Batteries via Methods of Electrochemical Characterisation for Various Stress-Inducing Scenarios. Batteries, 9(1), 33. https://doi.org/10.3390/batteries9010033