Parametric Evaluation of Thermal Behavior for Different Li-Ion Battery Chemistries
Abstract
:1. Introduction
2. Materials and Methods
Experimental Procedure
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- New Registrations of Electric Cars, EU-27 2022. Available online: https://www.eea.europa.eu/data-and-maps/daviz/new-electric-vehicles-in-eu-2#tab-chart_3 (accessed on 2 December 2022).
- Bukhari, S.M.A.S.; Maqsood, J.; Baig, M.Q.; Ashraf, S.; Khan, T.A. Comparison of Characteristics—Lead Acid, Nickel Based, Lead Crystal and Lithium Based Batteries. In Proceedings of the 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim), Cambridge, UK, 25–27 March 2016; pp. 444–450. [Google Scholar] [CrossRef]
- Spitthoff, L.; Shearing, P.; Burheim, O. Temperature, Ageing and Thermal Management of Lithium-Ion Batteries. Energies 2021, 14, 1248. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Xu, X. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels. J. Energy Storage 2021, 36, 102446. [Google Scholar] [CrossRef]
- Drake, S.; Martin, M.; Wetz, D.; Ostanek, J.; Miller, S.; Heinzel, J.; Jain, A. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements. J. Power Sources 2015, 285, 266–273. [Google Scholar] [CrossRef]
- Liu, P.; Wang, J.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Aging Mechanisms of LiFePO[sub 4] Batteries Deduced by Electrochemical and Structural Analyses. J. Electrochem. Soc. 2010, 157, A499–A507. [Google Scholar] [CrossRef]
- Amine, K.; Liu, J.; Belharouak, I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochem. Commun. 2005, 7, 669–673. [Google Scholar] [CrossRef]
- Ramadass, P.; Haran, B.; White, R.; Popov, B.N. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. J. Power Sources 2002, 112, 606–613. [Google Scholar] [CrossRef] [Green Version]
- Maleki, H.; Deng, G.; Anani, A.; Howard, J. Thermal Stability Studies of Li-Ion Cells and Components. J. Electrochem. Soc. 1999, 146, 3224–3229. [Google Scholar] [CrossRef]
- Drake, S.; Wetz, D.; Ostanek, J.; Miller, S.; Heinzel, J.; Jain, A. Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells. J. Power Sources 2014, 252, 298–304. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, L.; Ge, S.; Wang, C.-Y.; Shaffer, C.E.; Rahn, C.D. In Situ Measurement of Radial Temperature Distributions in Cylindrical Li-Ion Cells. J. Electrochem. Soc. 2014, 161, A1499–A1507. [Google Scholar] [CrossRef]
- Shah, K.; Vishwakarma, V.; Jain, A. Measurement of Multiscale Thermal Transport Phenomena in Li-Ion Cells: A Review. J. Electrochem. Energy Convers. Storage 2016, 13. [Google Scholar] [CrossRef] [Green Version]
- Nazari, A.; Farhad, S. Heat generation in lithium-ion batteries with different nominal capacities and chemistries. Appl. Therm. Eng. 2017, 125, 1501–1517. [Google Scholar] [CrossRef]
- Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef] [Green Version]
- Jindal, P.; Katiyar, R.; Bhattacharya, J. Evaluation of accuracy for Bernardi equation in estimating heat generation rate for continuous and pulse-discharge protocols in LFP and NMC based Li-ion batteries. Appl. Therm. Eng. 2021, 201, 117794. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, S.; Tang, J.; Wu, H.; Yu, J. Experimental and analytical study on heat generation characteristics of a lithium-ion power battery. Int. J. Heat Mass Transf. 2018, 122, 884–894. [Google Scholar] [CrossRef] [Green Version]
- Christen, R.; Martin, B.; Rizzo, G. New Experimental Approach for the Determination of the Heat Generation in a Li-Ion Battery Cell. Energies 2021, 14, 6972. [Google Scholar] [CrossRef]
- Arora, S.; Kapoor, A. Experimental Study of Heat Generation Rate during Discharge of LiFePO4 Pouch Cells of Different Nominal Capacities and Thickness. Batteries 2019, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Lu, Y.; Huang, R.; Chen, J.; Chen, F.; Liu, Z.; Yu, X.; Roskilly, A.P. Study on the thermal interaction and heat dissipation of cylindrical Lithium-Ion Battery cells. Energy Procedia 2017, 142, 4029–4036. [Google Scholar] [CrossRef]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, R1. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, J.; Li, Z.; Wu, B.; Nie, Z.; Sun, Y.; An, F.; Wu, N. Comparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteries. J. Therm. Anal. 2014, 117, 447–461. [Google Scholar] [CrossRef]
- Liu, F.; Lan, F.; Chen, J. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling. J. Power Sources 2016, 321, 57–70. [Google Scholar] [CrossRef]
- Kleiner, J.; Singh, R.; Schmid, M.; Komsiyska, L.; Elger, G.; Endisch, C. Influence of heat pipe assisted terminal cooling on the thermal behavior of a large prismatic lithium-ion cell during fast charging in electric vehicles. Appl. Therm. Eng. 2020, 188, 116328. [Google Scholar] [CrossRef]
- Hosseinzadeh, E.; Marco, J.; Jennings, P. The impact of multi-layered porosity distribution on the performance of a lithium ion battery. Appl. Math. Model. 2018, 61, 107–123. [Google Scholar] [CrossRef]
- Mahfoudi, N.; Boutaous, M.; Xin, S.; Buathier, S. Thermal Analysis of LMO/Graphite Batteries Using Equivalent Circuit Models. Batteries 2021, 7, 58. [Google Scholar] [CrossRef]
- Surya, S.; Marcis, V.; Williamson, S. Core Temperature Estimation for a Lithium Ion 18650 Cell. Energies 2020, 14, 87. [Google Scholar] [CrossRef]
- Thakur, A.K.; Prabakaran, R.; Elkadeem, M.; Sharshir, S.W.; Arıcı, M.; Wang, C.; Zhao, W.; Hwang, J.-Y.; Saidur, R. A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. J. Energy Storage 2020, 32, 101771. [Google Scholar] [CrossRef]
- Lin, C.; Xu, S.; Liu, J. Measurement of heat generation in a 40 Ah LiFePO4 prismatic battery using accelerating rate calorimetry. Int. J. Hydrogen Energy 2018, 43, 8375–8384. [Google Scholar] [CrossRef]
- Hu, Y.; Choe, S.-Y.; Garrick, T.R. Measurement of heat generation rate and heat sources of pouch type Li-ion cells. Appl. Therm. Eng. 2021, 189, 116709. [Google Scholar] [CrossRef]
- Yin, Y.; Zheng, Z.; Choe, S.-Y. Design of a Calorimeter for Measurement of Heat Generation Rate of Lithium Ion Battery Using Thermoelectric Device. SAE Int. J. Altern. Powertrains 2017, 6, 252–260. [Google Scholar] [CrossRef]
- Diaz, L.B.; Hales, A.; Marzook, M.W.; Patel, Y.; Offer, G. Measuring Irreversible Heat Generation in Lithium-Ion Batteries: An Experimental Methodology. J. Electrochem. Soc. 2022, 169, 030523. [Google Scholar] [CrossRef]
- Chen, S.; Wan, C.; Wang, Y. Thermal analysis of lithium-ion batteries. J. Power Sources 2005, 140, 111–124. [Google Scholar] [CrossRef]
- Chen, S.C.; Wang, Y.-Y.; Wan, C.-C. Thermal Analysis of Spirally Wound Lithium Batteries. J. Electrochem. Soc. 2006, 153, A637–A648. [Google Scholar] [CrossRef]
- Buidin, T.; Mariasiu, F. Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies. Energies 2021, 14, 4879. [Google Scholar] [CrossRef]
- Becker, J.A.; Green, C.B.; Pearson, G.L. Properties and Uses of Thermistors—Thermally Sensitive Resistors. Trans. Am. Inst. Electr. Eng. 1946, 65, 711–725. [Google Scholar] [CrossRef]
- Childs, P.R.N.; Greenwood, J.R.; Long, C.A. Review of temperature measurement. Rev. Sci. Instrum. 2000, 71, 2959–2978. [Google Scholar] [CrossRef] [Green Version]
- Raijmakers, L.; Danilov, D.; Eichel, R.-A.; Notten, P. A review on various temperature-indication methods for Li-ion batteries. Appl. Energy 2019, 240, 918–945. [Google Scholar] [CrossRef]
- Duff, M.; Towey, J. Two Ways to Measure Temperature Using Thermocouples Feature Simplicity, Accuracy, and Flexibility. Analog Dialogue 2010, 44, 1–6. [Google Scholar]
- Lv, Y.; Zhou, D.; Yang, X.; Liu, X.; Li, X.; Zhang, G. Experimental investigation on a novel liquid-cooling strategy by coupling with graphene-modified silica gel for the thermal management of cylindrical battery. Appl. Therm. Eng. 2019, 159, 113885. [Google Scholar] [CrossRef]
- Weng, J.; Yang, X.; Zhang, G.; Ouyang, D.; Chen, M.; Wang, J. Optimization of the detailed factors in a phase-change-material module for battery thermal management. Int. J. Heat Mass Transf. 2019, 138, 126–134. [Google Scholar] [CrossRef]
- Yan, J.; Li, K.; Chen, H.; Wang, Q.; Sun, J. Experimental study on the application of phase change material in the dynamic cycling of battery pack system. Energy Convers. Manag. 2016, 128, 12–19. [Google Scholar] [CrossRef]
- Lv, Y.; Situ, W.; Yang, X.; Zhang, G.; Wang, Z. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management. Energy Convers. Manag. 2018, 163, 250–259. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zhang, G.; Wang, Y.; Guo, J.; Wang, Y.; Huang, Q.; Xiao, C.; Zhong, Z. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management. Energy Convers. Manag. 2019, 204, 112319. [Google Scholar] [CrossRef]
- Ling, Z.; Wen, X.; Zhang, Z.; Fang, X.; Gao, X. Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures. Energy 2017, 144, 977–983. [Google Scholar] [CrossRef]
- Zhong, G.; Zhang, G.; Yang, X.; Li, X.; Wang, Z.; Yang, C.; Yang, C.; Gao, G. Researches of composite phase change material cooling/resistance wire preheating coupling system of a designed 18650-type battery module. Appl. Therm. Eng. 2017, 127, 176–183. [Google Scholar] [CrossRef]
- Lyu, Y.; Siddique, A.; Majid, S.; Biglarbegian, M.; Gadsden, S.; Mahmud, S. Electric vehicle battery thermal management system with thermoelectric cooling. Energy Rep. 2019, 5, 822–827. [Google Scholar] [CrossRef]
- Li, X.; Zhong, Z.; Luo, J.; Wang, Z.; Yuan, W.; Zhang, G.; Yang, C.; Yang, C. Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module. Int. J. Photoenergy 2019, 2019, 3725364. [Google Scholar] [CrossRef] [Green Version]
- Behi, H.; Karimi, D.; Behi, M.; Jaguemont, J.; Ghanbarpour, M.; Behnia, M.; Berecibar, M.; Van Mierlo, J. Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. J. Energy Storage 2020, 32, 101893. [Google Scholar] [CrossRef]
- Löbberding, H.; Wessel, S.; Offermanns, C.; Kehrer, M.; Rother, J.; Heimes, H.; Kampker, A. From Cell to Battery System in BEVs: Analysis of System Packing Efficiency and Cell Types. World Electr. Veh. J. 2020, 11, 77. [Google Scholar] [CrossRef]
- Liang, J.; Gan, Y.; Li, Y.; Tan, M.; Wang, J. Thermal and electrochemical performance of a serially connected battery module using a heat pipe-based thermal management system under different coolant temperatures. Energy 2019, 189, 116233. [Google Scholar] [CrossRef]
- Barkholtz, H.M.; Preger, Y.; Ivanov, S.; Langendorf, J.; Torres-Castro, L.; Lamb, J.; Chalamala, B.; Ferreira, S.R. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge. J. Power Sources 2019, 435, 226777. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Y.-C.; Jenkins, D.M.; Chernova, N.A.; Chung, Y.; Radhakrishnan, B.; Chu, I.-H.; Fang, J.; Wang, Q.; Omenya, F.; et al. Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 7013–7021. [Google Scholar] [CrossRef]
- Mevawalla, A.; Panchal, S.; Tran, M.-K.; Fowler, M.; Fraser, R. Mathematical Heat Transfer Modeling and Experimental Validation of Lithium-Ion Battery Considering: Tab and Surface Temperature, Separator, Electrolyte Resistance, Anode-Cathode Irreversible and Reversible Heat. Batteries 2020, 6, 61. [Google Scholar] [CrossRef]
- Houache, M.S.E.; Yim, C.-H.; Karkar, Z.; Abu-Lebdeh, Y. On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries 2022, 8, 70. [Google Scholar] [CrossRef]
- Mirsalehian, M.; Beykirch, R. Thermal Investigation and Physical Modeling of Lithium-ion Batteries. ATZ Worldw. 2020, 122, 36–41. [Google Scholar] [CrossRef]
Parameters | KeepPower | Panasonic | Samsung |
---|---|---|---|
Chemistry | LCO | NCA | NMC |
Size | 18650 | 18650 | 21700 |
Anode active material | Graphite | Graphite | Graphite |
Cathode active material | LiMn2O4 | LiNi0.8Co0.15Al0.05O2 | Li(NiMnCo)O2 |
Anode electrode thickness | 126 μm | 126 μm | 126 μm |
Cathode electrode thickness | 125 μm | 125 μm | 125 μm |
Anode current collector foil thicknesses (copper) | 10 μm | 10 μm | 10 μm |
Cathode current collector foil thicknesses (aluminum) | 20 μm | 20 μm | 20 μm |
Electrolyte | Lithium Hexafluorophosphate (LiPF6) | ||
Separator (polypropylene (PP)) | 20 μm | 20 μm | 22 μm |
Nominal voltage [V] | 3.7 | 3.6 | 3.6 |
Nominal capacity [Ah] | 2.6 | 3.1 | 4 |
Maximum discharge current [A] | 15 | 10 | 45 |
Discharge Rate | Battery’s Chemistry | Location of Measurement | Polynomial Equations’ Coefficients | R-Square | ||
---|---|---|---|---|---|---|
a | b | c | ||||
1C | NCA | Positive terminal | 1.14 × 10−9 | 5.95 × 10−6 | 1.13 × 10−2 | 0.9714 |
Middle | 1.25 × 10−9 | 6.46 × 10−6 | 1.20 × 10−2 | 0.9828 | ||
Negative terminal | 1.23 × 10−9 | 6.37 × 10−6 | 1.18 × 10−2 | 0.9854 | ||
All data | 1.21 × 10−9 | 6.26 × 10−6 | 1.17 × 10−2 | 0.9774 | ||
NMC | Positive terminal | 4.60 × 10−10 | 2.10 × 10−6 | 4.73 × 10−3 | 0.9626 | |
Middle | 4.68 × 10−10 | 2.11 × 10−6 | 4.84 × 10−3 | 0.9686 | ||
Negative terminal | 4.62 × 10−10 | 2.11 × 10−6 | 4.88 × 10−3 | 0.97 | ||
All data | 4.63 × 10−10 | 2.11 × 10−6 | 4.82 × 10−3 | 0.9644 | ||
LCO | Positive terminal | 4.90 × 10−10 | 2.54 × 10−6 | 5.24 × 10−3 | 0.9763 | |
Middle | 5.37 × 10−10 | 2.75 × 10−6 | 5.61 × 10−3 | 0.9625 | ||
Negative terminal | 5.50 × 10−10 | 2.86 × 10−6 | 5.80 × 10−3 | 0.959 | ||
All data | 5.26 × 10−10 | 2.72 × 10−6 | 5.55 × 10−3 | 0.9581 | ||
2C | NCA | Positive terminal | 9.86 × 10−9 | 3.19 × 10−5 | 4.26 × 10−2 | 0.9786 |
Middle | 1.10 × 10−8 | 3.42 × 10−5 | 4.42 × 10−2 | 0.9915 | ||
Negative terminal | 1.15 × 10−8 | 3.60 × 10−5 | 4.58 × 10−2 | 0.996 | ||
All data | 1.08 × 10−8 | 3.40 × 10−5 | 4.42 × 10−2 | 0.9863 | ||
NMC | Positive terminal | 3.17 × 10−9 | 9.68 × 10−6 | 1.80 × 10−2 | 0.9901 | |
Middle | 2.68 × 10−9 | 8.44 × 10−6 | 1.79 × 10−2 | 0.9864 | ||
Negative terminal | 3.23 × 10−9 | 9.90 × 10−6 | 1.90 × 10−2 | 0.9926 | ||
All data | 3.02 × 10−9 | 9.33 × 10−6 | 1.83 × 10−2 | 0.9841 | ||
LCO | Positive terminal | 3.68 × 10−9 | 1.23 × 10−5 | 2.02 × 10−2 | 0.934 | |
Middle | 4.08 × 10−9 | 1.35 × 10−5 | 2.22 × 10−2 | 0.98 | ||
Negative terminal | 4.73 × 10−9 | 1.55 × 10−5 | 2.36 × 10−2 | 0.9638 | ||
All data | 3.91 × 10−9 | 1.31 × 10−5 | 2.15 × 10−2 | 0.9481 | ||
3C | NCA | Positive terminal | 3.43 × 10−8 | 8.40 × 10−5 | 9.11 × 10−2 | 0.9838 |
Middle | 3.80 × 10−8 | 9.14 × 10−5 | 9.71 × 10−2 | 0.9977 | ||
Negative terminal | 4.27 × 10−8 | 9.91 × 10−5 | 0.1 | 0.9971 | ||
All data | 3.83 × 10−8 | 9.15 × 10−5 | 9.61 × 10−2 | 0.9887 | ||
NMC | Positive terminal | 6.03 × 10−9 | 2.17 × 10−5 | 4.02 × 10−2 | 0.9885 | |
Middle | 3.68 × 10−9 | 1.66 × 10−5 | 3.98 × 10−2 | 0.9938 | ||
Negative terminal | 8.40 × 10−9 | 2.39 × 10−5 | 4.26 × 10−2 | 0.9948 | ||
All data | 6.04 × 10−9 | 2.07 × 10−5 | 4.08 × 10−2 | 0.9858 | ||
LCO | Positive terminal | 9.28 × 10−9 | 2.80 × 10−5 | 4.51 × 10−2 | 0.9959 | |
Middle | 9.47 × 10−9 | 2.86 × 10−5 | 4.63 × 10−2 | 0.9953 | ||
Negative terminal | 1.46 × 10−8 | 3.91 × ·10−5 | 5.20 × 10−2 | 0.9924 | ||
All data | 1.11 × 10−8 | 3.19 × 10−5 | 4.78 × 10−2 | 0.9911 |
Parameters | Panasonic NCA | Samsung NMC | KeepPower LCO |
---|---|---|---|
B coefficient | 4.697 | 1.26 | 2.786 |
R-square | 0.993 | 0.991 | 0.993 |
RMSE | 1.04 | 0.662 | 0.632 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buidin, T.I.C.; Mariasiu, F. Parametric Evaluation of Thermal Behavior for Different Li-Ion Battery Chemistries. Batteries 2022, 8, 291. https://doi.org/10.3390/batteries8120291
Buidin TIC, Mariasiu F. Parametric Evaluation of Thermal Behavior for Different Li-Ion Battery Chemistries. Batteries. 2022; 8(12):291. https://doi.org/10.3390/batteries8120291
Chicago/Turabian StyleBuidin, Thomas Imre Cyrille, and Florin Mariasiu. 2022. "Parametric Evaluation of Thermal Behavior for Different Li-Ion Battery Chemistries" Batteries 8, no. 12: 291. https://doi.org/10.3390/batteries8120291
APA StyleBuidin, T. I. C., & Mariasiu, F. (2022). Parametric Evaluation of Thermal Behavior for Different Li-Ion Battery Chemistries. Batteries, 8(12), 291. https://doi.org/10.3390/batteries8120291