One-Step Hydrothermal Reaction Induced Nitrogen-Doped MoS2/MXene Composites with Superior Lithium-Ion Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MAX Precursor (Ti3AlC2)
2.2. Preparation of MXene from MAX Precursor (f-Ti3C2Tx)
2.3. Preparation of MoS2/MXene
2.4. Characterization
2.5. Electrochemical Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, T.; Long, M.; Xiao, J.; Liu, H.; Wang, G. Recent research on emerging organic electrode materials for energy storage. Energy Mater. 2021, 1, 09. [Google Scholar] [CrossRef]
- Jun, X.; Xiao, L.; Kaikai, T.; Mengqi, L.; Jun, C.; Dandan, W.; Hong, G.; Hao, L. Enhanced electrochemical performance of Li-rich cathode material for lithium-ion batteries. Surf. Innov. 2022, 10, 119–127. [Google Scholar]
- Lu, J.; Chen, Z.W.; Pan, F.; Cui, Y.; Amine, K. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochem. Energy Rev. 2018, 1, 35–53. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.X.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Pramanik, A.; Chattopadhyay, S.; De, G.; Mahanty, S. Efficient energy storage in mustard husk derived porous spherical carbon nanostructures. Mater. Adv. 2021, 2, 7463–7472. [Google Scholar] [CrossRef]
- Pramanik, A.; Maiti, S.; Sreemany, M.; Mahanty, S. Rock-Salt-Templated Mn3O4 Nanoparticles Encapsulated in a Mesoporous 2D Carbon Matrix: A High Rate 2 V Anode for Lithium-Ion Batteries with Extraordinary Cycling Stability. Chemistryselect 2017, 2, 7854–7864. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 98. [Google Scholar] [CrossRef]
- Enyashin, A.N.; Ivanoyskii, A.L. Structural and Electronic Properties and Stability of MXenes Ti2C and Ti3C2 Functionalized by Methoxy Groups. J. Phys. Chem. C 2013, 117, 13637–13643. [Google Scholar] [CrossRef]
- Han, M.K.; Yin, X.W.; Wu, H.; Hou, Z.X.; Song, C.Q.; Li, X.L.; Zhang, L.T.; Cheng, L.F. Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Appl. Mater. Interfaces 2016, 8, 21011–21019. [Google Scholar] [CrossRef]
- Karlsson, L.H.; Birch, J.; Halim, J.; Barsoum, M.W.; Persson, P.O.A. Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. Nano Lett. 2015, 15, 4955–4960. [Google Scholar] [CrossRef] [Green Version]
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016, 2, 00255. [Google Scholar]
- Guo, X.; Gao, H.; Wang, S.; Yang, G.; Zhang, X.; Zhang, J.; Liu, H.; Wang, G. MXene-Based Aerogel Anchored with Antimony Single Atoms and Quantum Dots for High-Performance Potassium-Ion Batteries. Nano Lett. 2022, 22, 1225–1232. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, T.F.; Zheng, Y.; Zhang, Q.; Liu, Y.Q.; Chen, J.; Liu, H.K.; Guo, Z.P. CoS Quantum Dot Nanoclusters for High-Energy Potassium-Ion Batteries. Adv. Funct. Mater. 2017, 27, 02634. [Google Scholar] [CrossRef]
- Wang, Y.K.; Liu, M.C.; Cao, J.Y.; Zhang, H.J.; Kong, L.B.; Trudgeon, D.P.; Li, X.H.; Walsh, F.C. 3D Hierarchically Structured CoS Nanosheets: Li+ Storage Mechanism and Application of the High-Performance Lithium-Ion Capacitors. ACS Appl. Mater. Interfaces 2020, 12, 3709–3718. [Google Scholar] [CrossRef]
- Zhang, S.L.; Ying, H.J.; Huang, P.F.; Wang, J.L.; Zhang, Z.; Yang, T.T.; Han, W.Q. Rational Design of Pillared SnS/Ti3C2Tx MXene for Superior Lithium-Ion Storage. ACS Nano 2020, 14, 17665–17674. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Shi, H.T.; Liu, L.S.; Min, C.Y.; Liang, S.T.; Xu, Z.W.; Xue, Y.L.; Hong, C.X.; Cai, Z.J. Construction of MoS2/Mxene heterostructure on stress-modulated kapok fiber for high-rate sodium-ion batteries. J. Colloid Interface Sci. 2022, 605, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Lee, S.H.; Sun, Y.K. The Application of Metal Sulfides in Sodium Ion Batteries. Adv. Energy Mater. 2017, 7, 01329. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Sun, J.; Chen, A. A Review on Applications of Layered Phosphorus in Energy Storage. Trans. Tianjin Univ. 2020, 26, 104–126. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Hou, X.C.; Qin, J.Q.; Wu, Z.S. Recent Advances and Challenges of Two-Dimensional Materials for High-Energy and High-Power Lithium-Ion Capacitors. Batteries Supercaps 2020, 3, 10–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.L.; Zhang, Q.F.; Zhu, J.Y.; Duan, X.D.; Xu, Z.; Liu, Y.T.; Yang, H.G.; Lu, B.A. Nature of extra capacity in MoS2 electrodes: Molybdenum atoms accommodate with lithium. Energy Storage Mater. 2019, 16, 37–45. [Google Scholar] [CrossRef]
- Ding, S.J.; Zhang, D.Y.; Chen, J.S.; Lou, X.W. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 2012, 4, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.H.; Wang, Z.Y.; Yu, M.Z.; Xiu, L.Y.; Qiu, J.S. Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability. Adv. Mater. 2017, 29, 07017. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Wang, L.L.; Li, D.D.; Cao, J.M.; Han, W. Carbon-Reinforced Nb2CTx MXene/MoS2 Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano 2021, 15, 7439–7450. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Mu, Z.J.; Yang, C.; Xu, Z.K.; Zhang, S.; Zhang, X.Y.; Li, Y.J.; Lai, J.P.; Sun, Z.H.; Yang, Y.; et al. Rational Design of MXene/1T-2H MoS2-C Nanohybrids for High-Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 07578. [Google Scholar] [CrossRef]
- Chen, Y.L.; Su, F.Y.; Xie, H.Q.; Wang, R.P.; Ding, C.H.; Huang, J.D.; Xu, Y.X.; Ye, L.Q. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 404, 126498. [Google Scholar] [CrossRef]
- Han, J.H.; Zhang, S.C.; Song, Q.G.; Yan, H.Y.; Kang, J.H.; Guo, Y.R.; Liu, Z.F. The synergistic effect with S-vacancies and built-in electric field on a TiO2/MoS2 photoanode for enhanced photoelectrochemical performance. Sustain. Energ. Fuels 2021, 5, 509–517. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Tran, D.T.; Doan, T.L.L.; Kim, D.H.; Kim, N.H.; Lee, J.H. Rational Design of Core@shell Structured CoSx@Cu2MoS4 Hybridized MoS2/N,S-Codoped Graphene as Advanced Electrocatalyst for Water Splitting and Zn-Air Battery. Adv. Energy Mater. 2020, 10, 03289. [Google Scholar] [CrossRef]
- Xie, D.; Xia, X.H.; Wang, Y.D.; Wang, D.H.; Zhong, Y.; Tang, W.J.; Wang, X.L.; Tu, J.P. Nitrogen-Doped Carbon Embedded MoS2 Microspheres as Advanced Anodes for Lithium- and Sodium-Ion Batteries. Chem.-Eur. J. 2016, 22, 11617–11623. [Google Scholar] [CrossRef]
- Chen, C.; Xie, X.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M.; Urbankowski, P.; Miao, L.; Jiang, J.; Gogotsi, Y. MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries. Angew. Chem.-Int. Edit. 2018, 57, 1846–1850. [Google Scholar] [CrossRef]
- Hu, Z.; Kuai, X.; Chen, J.; Sun, P.; Zhang, Q.; Wu, H.-H.; Zhang, L. Strongly Coupled MoS2 Nanocrystal/Ti3C2 Nanosheet Hybrids Enable High-Capacity Lithium-Ion Storage. ChemSusChem 2020, 13, 1485–1490. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, R.S.; Ai, W.; Chen, B.; Du, H.F.; Wu, L.S.; Zhang, H.; Huang, W.; Yu, T. Controllable Design of MoS2 Nanosheets Anchored on Nitrogen-Doped Graphene: Toward Fast Sodium Storage by Tunable Pseudocapacitance. Adv. Mater. 2018, 30, 1800658. [Google Scholar] [CrossRef]
- Li, J.B.; Tang, S.C.; Li, Z.Q.; Wang, C.Y.; Li, J.L.; Li, X.D.; Ding, Z.B.; Pan, L.K. Crosslinking Nanoarchitectonics of Nitrogen-doped Carbon/MoS2 Nanosheets/Ti3C2Tx MXene Hybrids for Highly Reversible Sodium Storage. ChemSusChem 2021, 14, 5293–5303. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, J.; Luo, K.; Li, Y.B.; Chang, K.K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.J.; Huang, Y.H.; He, G.Q. Unique CoS hierarchitectures for high-performance lithium ion batteries. Crystengcomm 2018, 20, 6727–6732. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Li, J.; Yang, Y.; Luo, B.; Zhang, X.; Fong, E.L.E.; Chu, W.; Huang, K.M. Unique 3D flower-on-sheet nanostructure of NiCo LDHs: Controllable microwave-assisted synthesis and its application for advanced supercapacitors. J. Alloy. Compd. 2019, 788, 1029–1036. [Google Scholar] [CrossRef]
- Li, C.R.; Song, H.; Mao, C.M.; Peng, H.R.; Li, G.C. A novel MoS2 nanosheets-decorated Sb@Sb2S3@C tubular composites as anode material for high performance lithium ion battery. J. Alloy. Compd. 2019, 786, 169–176. [Google Scholar] [CrossRef]
- Yu, J.L.; Zeng, M.L.; Zhou, J.; Chen, H.D.; Cong, G.T.; Liu, H.C.; Ji, M.W.; Zhu, C.Z.; Xu, J. A one-pot synthesis of nitrogen doped porous MXene/TiO2 heterogeneous film for high-performance flexible energy storage. Chem. Eng. J. 2021, 426, 130765. [Google Scholar] [CrossRef]
- Luo, J.M.; Zheng, J.H.; Nai, J.W.; Jin, C.B.; Yuan, H.D.; Sheng, O.W.; Liu, Y.J.; Fang, R.Y.; Zhang, W.K.; Huang, H.; et al. Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra-Fast Sodium-Ion Storage by Enhanced Pseudocapacitance. Adv. Funct. Mater. 2019, 29, 08107. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.Y.; Xuan, C.X.; Li, J.J.; Jiang, Y.L.; Xiao, J.R. Photo-synergetic nitrogen-doped MXene/reduced graphene oxide sandwich-like architecture for high-performance lithium-sulfur batteries. Int. J. Energy Res. 2021, 45, 2728–2738. [Google Scholar] [CrossRef]
- Ye, Z.Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R.J. Self-Assembly of 0D-2D Heterostructure Electrocatalyst from MOF and MXene for Boosted Lithium Polysulfide Conversion Reaction. Adv. Mater. 2021, 33, 2101204. [Google Scholar] [CrossRef]
- He, F.Y.; Tang, C.; Liva, Y.D.; Li, H.T.; Du, A.J.; Zhang, H.J. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries. J. Mater. Sci. Technol. 2022, 100, 101–109. [Google Scholar] [CrossRef]
- Bao, W.Z.; Shuck, C.E.; Zhang, W.X.; Guo, X.; Gogotsi, Y.; Wang, G.X. Boosting Performance of Na-S Batteries Using Sulfur-Doped Ti3C2Tx MXene Nanosheets with a Strong Affinity to Sodium Polysulfides. ACS Nano 2019, 13, 11500–11509. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.F.; Zheng, S.H.; Qin, J.Q.; Zhao, X.J.; Shi, H.D.; Wang, X.H.; Chen, J.; Wu, Z.S. All-MXene-Based Integrated Electrode Constructed by Ti3C2 Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries. ACS Nano 2018, 12, 2381–2388. [Google Scholar] [CrossRef] [PubMed]
- Mou, J.R.; Li, Y.J.; Liu, T.; Zhang, W.J.; Li, M.; Xu, Y.T.; Zhong, L.; Pan, W.H.; Yang, C.H.; Huang, J.L.; et al. Metal-Organic Frameworks-Derived Nitrogen-Doped Porous Carbon Nanocubes with Embedded Co Nanoparticles as Efficient Sulfur Immobilizers for Room Temperature Sodium-Sulfur Batteries. Small Methods 2021, 5, 00455. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhao, B.C.; Zhou, J.F.; Si, J.G.; Fang, Z.T.; Li, K.Z.; Ma, H.Y.; Dai, J.M.; Zhu, X.B.; Sun, Y.P. Glucose-Induced Synthesis of 1T-MoS2/C Hybrid for High-Rate Lithium-Ion Batteries. Small 2019, 15, 05420. [Google Scholar] [CrossRef]
- Huang, M.J.; Chen, H.H.; He, J.; An, B.H.; Sun, L.N.; Li, Y.L.; Ren, X.Z.; Deng, L.B.; Zhang, P.X. Ultra small few layer MoS2 embedded into three-dimensional macro-micro-mesoporous carbon as a high performance lithium ion batteries anode with superior lithium storage capacity. Electrochim. Acta 2019, 317, 638–647. [Google Scholar] [CrossRef]
- Lin, J.; Shi, Y.H.; Li, Y.F.; Wu, X.L.; Zhang, J.P.; Xie, H.M.; Sun, H.Z. Confined MoS2 growth in a unique composite matrix for ultra-stable and high-rate lithium/sodium-ion anodes. Chem. Eng. J. 2022, 428, 131103. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, G.; Seo, M.H.; Hassan, F.M.; Hoque, M.A.; Chen, Z.W. Sulfur Atoms Bridging Few-Layered MoS2 with S-Doped Graphene Enable Highly Robust Anode for Lithium-Ion Batteries. Adv. Energy Mater. 2015, 5, 1501106. [Google Scholar] [CrossRef]
- Wu, H.Y.; Zhang, X.E.; Wu, Q.H.; Han, Y.; Wu, X.Y.; Ji, P.L.; Zhou, M.; Diao, G.W.; Chen, M. Confined growth of 2D MoS2 nanosheets in N-doped pearl necklace-like structured carbon nanofibers with boosted lithium and sodium storage performance. Chem. Commun. 2020, 56, 141–144. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.W.; Wang, Z.T.; Zhao, J.; Dong, G.D. Glycerol-controlled synthesis of MoS2 hierarchical architectures with well-tailored subunits and enhanced electrochemical performance for lithium ion batteries. Chem. Eng. J. 2018, 334, 487–496. [Google Scholar] [CrossRef]
- Cao, Y.P.; Chen, H.; Shen, Y.P.; Chen, M.; Zhang, Y.L.; Zhang, L.Y.; Wang, Q.; Guo, S.J.; Yang, H. SnS2 Nanosheets Anchored on Nitrogen and Sulfur Co-Doped MXene Sheets for High-Performance Potassium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 17668–17676. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.M.; Sun, Z.Q.; Li, J.Z.; Zhu, Y.K.; Yuan, Z.Y.; Zhang, Y.M.; Li, D.D.; Wang, L.L.; Han, W. Microbe-Assisted Assembly of Ti3C2Tx MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage. ACS Nano 2021, 15, 3423–3433. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.J.; Wang, B.; Chen, C.; Lang, J.W.; Yan, C.; Yan, X.B. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 24635–24644. [Google Scholar] [CrossRef]
- Zhu, X.D.; Cao, Z.Y.; Wang, W.J.; Li, H.J.; Dong, J.C.; Gao, S.P.; Xu, D.X.; Li, L.; Shen, J.F.; Ye, M.X. Superior-Performance Aqueous Zinc-Ion Batteries Based on the In Situ Growth of MnO2 Nanosheets on V2CTx MXene. ACS Nano 2021, 15, 2971–2983. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, C.; Long, M.; Xiao, J.; Li, J.; Chen, J.; Xiao, Y.; Zhang, G.; Gao, H.; Liu, H. One-Step Hydrothermal Reaction Induced Nitrogen-Doped MoS2/MXene Composites with Superior Lithium-Ion Storage. Batteries 2022, 8, 156. https://doi.org/10.3390/batteries8100156
Gong C, Long M, Xiao J, Li J, Chen J, Xiao Y, Zhang G, Gao H, Liu H. One-Step Hydrothermal Reaction Induced Nitrogen-Doped MoS2/MXene Composites with Superior Lithium-Ion Storage. Batteries. 2022; 8(10):156. https://doi.org/10.3390/batteries8100156
Chicago/Turabian StyleGong, Cheng, Mengqi Long, Jun Xiao, Jiayi Li, Jun Chen, Yang Xiao, Guilai Zhang, Hong Gao, and Hao Liu. 2022. "One-Step Hydrothermal Reaction Induced Nitrogen-Doped MoS2/MXene Composites with Superior Lithium-Ion Storage" Batteries 8, no. 10: 156. https://doi.org/10.3390/batteries8100156
APA StyleGong, C., Long, M., Xiao, J., Li, J., Chen, J., Xiao, Y., Zhang, G., Gao, H., & Liu, H. (2022). One-Step Hydrothermal Reaction Induced Nitrogen-Doped MoS2/MXene Composites with Superior Lithium-Ion Storage. Batteries, 8(10), 156. https://doi.org/10.3390/batteries8100156