Early Detection of Failing Automotive Batteries Using Gas Sensors
Abstract
:1. Introduction
1.1. Early Failure Detection in Battery Packs
1.2. Literature on Battery Failure Detection with Gas Sensors
1.3. What Is Missing in the Current Literature and What Is Needed
2. Methods and Measurement Technology
2.1. Early Failure Detection Method Development
2.1.1. Battery Failure Cases
2.1.2. Investigated Cells
2.1.3. Analysis of Produced Gases
2.1.4. Sensor Selection
- Target gas: the sensor must detect emitted gases from battery failures such as electrolyte vapor (VOCs), H2, CO or CO2 in a suitable concentration range.
- Price: the sensor must be inexpensive for the end application (<<10 €).
- Lifespan/certification: the sensor should meet automotive lifetime expectations (typically >10 years or > 8000–10,000 h of continuous operation) and ideally shall be qualified according to automotive requirements.
- Size: the sensor must be dimensioned according to its place of use, maximum size as 40 mm × 30 mm × 10 mm.
2.1.5. Sensor Test Setup
2.1.6. Event Detection
- If the value is higher than the maximal positive gradient (MPG), the MPG is added to the previous BL value.
- If the is lower than the maximal negative gradient (MNG), the MNG is added.
- If both criteria are not valid, the current value is added to the previous BL value.
3. Experimental Results and Discussion
3.1. Gases Produced in the Investigated Four Battery Failure Cases
3.2. Sensor Selection
3.3. Sensor Tests
3.3.1. Electrolysis
3.3.2. Electrolyte Vapor
3.3.3. First Venting and Thermal Runaway
Overtemperature TR Test
Overcharge TR Test
Nail-Penetration TR Test
3.3.4. Additional Failure Cases
3.3.5. Event Detection
3.4. Comparison of Different Sensor Types
3.4.1. Detectability of Tracer Gases
3.4.2. Lifetime of the Sensors
3.4.3. Cross Sensitivity
3.4.4. Most Promising Sensors for Battery Failure Applications
4. Summary and Conclusions
- Automotive certificate of the sensors. This typically requires a sensor lifetime of 15 years and a demanding robustness against mechanical, electrical, and environmental stress. The market of automotive grade MOx gas sensors is limited to complete modules including read-out electronics, data interface and housing. To our knowledge there are currently no isolated automotive grade MOx gas sensor elements with 15 years lifetime on the market.
- Secure prevention of false positives. This investigation shows the high sensitivity of MOx gas sensors to gases produced at battery failures but also to gases which might be transported into the battery pack such as gasoline vapor, solvents used for cleaning the car, etc.
- Detection of the target gas in relation to the background. The weakest point of the MOx sensor technology is a rather poor selectivity with respect to differentiating classes of oxidizing or reducing compounds. Therefore, a sufficiently large gas volume in comparison to background gases is an essential requirement for the reliable detection of early failure cases. Additionally, the gas dilution during the diffusion from its source to the gas sensor could have a limiting impact on its detectability.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LIB | Lithium-ion battery | EC | Ethylene carbonate |
TR | Thermal runaway | DMC | Dimethyl carbonate |
EV | Electric vehicle | DEC | Diethylene carbonate |
MOx | Metal oxide semiconductor (sensor) | EMC | Ethyl methyl carbonate |
NDIR | Nondispersive infrared (sensor) | VOC | Volatile organic compound |
FTIR | Fourier-transform infrared (spectrometer) | ppm | Parts per million |
GC | Gas chromatograph | SOC | State-of-charge |
PCB | Printed circuit board | MNG | Maximal negative gradient MNG |
ADC | Analog-to-digital converter | MPG | Maximal positive gradient MPG |
I2C | Inter-integrated circuit | NMC | Nickel manganese cobalt oxide (cathode) |
CID | Current interrupt device | OSD | Overcharge safety device |
SNR | Signal-to-noise ratio | BL | Baseline |
ED1 | Event detector 1 | ED2 | Event detector 2 |
References
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, R1–R25. [Google Scholar] [CrossRef]
- Essl, C.; Golubkov, A.W.; Gasser, E.; Nachtnebel, M.; Zankel, A.; Ewert, E.; Fuchs, A. Comprehensive hazard analysis of failing automotive Lithium-ion batteries in overtemperature experiments. Batteries 2020, 6, 30. [Google Scholar] [CrossRef]
- Essl, C.; Golubkov, A.W.; Fuchs, A. Comparing Different Thermal Runaway Triggers for Two Automotive Lithium-Ion Battery Cell Types. J. Electrochem. Soc. 2020, 167, 1–13. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Planteu, R.; Krohn, P.; Rasch, B.; Brunnsteiner, B.; Thaler, A.; Hacker, V. Thermal runaway of large automotive Li-ion batteries. RSC Adv. 2018, 8, 40172–40186. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Zhang, S.; Li, K.; Zhang, G.; Habetler, T.G. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J. Power Sources 2019, 436, 1–19. [Google Scholar] [CrossRef]
- National Standard of the People’s Republic China (GB): Electric Vehicles Traction Battery Safety Requirements; GB 38031-2020; Standardization Administration: Beijing, China, 2020; pp. 1–42.
- Kenichiroh, K. Journey to a New Regulatory Option. In OICA Submission to IWG for GTR 20, Phase 2; United Nations Economic Commission for Europe (UNECE): Berlin, Germany, 2019. [Google Scholar]
- Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M.Y. Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE Ind. Electron. Mag. 2013, 7, 4–16. [Google Scholar] [CrossRef]
- Liu, K.; Li, K.; Peng, Q.; Zhang, C. A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 2019, 14, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Wenger, M.; Waller, R.; Lorentz, V.R.H.; März, M.; Herold, M. Investigation of Gas Sensing in Large Lithium-Ion Battery Systems for early Fault Detection and Safety Improvement. In Proceedings of the InIECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October 2014. [Google Scholar] [CrossRef]
- Koch, S.; Birke, K.P.; Kuhn, R. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries. Batteries 2018, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Pfrang, A.; Kriston, A.; Ruiz, V.; Lebedeva, N.; di Persio, F. Chapter Eight-Safety of Rechargeable Energy Storage Systems with a Focus on Li-Ion Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Nedjalkov, A.; Meyer, J.; Köhring, M.; Doering, A.; Angelmahr, M.; Dahle, S.; Sander, A.; Fischer, A.; Schade, W. Toxic Gas Emissions from Damaged Lithium Ion Batteries—Analysis and Safety Enhancement Solution. Batteries 2016, 5, 5. [Google Scholar] [CrossRef]
- Lebedeva, N.P.; Boon-Brett, L. Considerations on the Chemical Toxicity of Contemporary Li-Ion Battery Electrolytes and Their Components. J. Electrochem. Soc. 2016, 163, A821–A830. [Google Scholar] [CrossRef]
- Cai, T.; Stefanopoulou, A.G.; Siegel, J.B. Early Detection for Li-Ion Batteries Thermal Runaway Based on Gas Sensing Ting. ECS Trans. 2019, 89, 85–97. [Google Scholar] [CrossRef]
- Mateev, V.; Marinova, I.; Kartunov, Z. Automatic system for li-ion battery packs gas leakage detection. In Proceedings of the 2018 12th International Conference on Sensing Technology (ICST), Limerick, Ireland, 4–6 December 2018. [Google Scholar] [CrossRef]
- Swartz, S.L. Lithium Ion Battery Off-Gas Sensor for Battery Health and Safety Monitoring Joint Service Power Expo. In Proceedings of the Joint Service Power Expo, Cincinnati, OH, USA, 27 August 2015. [Google Scholar]
- Herold, M. Detection of failure modes and protection solutions for Li-Ion energy packs by means of gas sensors. In Proceedings of the Battery Power Conference, Denver, CO, USA, 5–6 August 2015. [Google Scholar]
- Hill, D.; Gully, B.; Agarwal, A.; Nourai, A.; Thrun, L.; Swartz, S.; Koslowske, M.; Cummings, S.; Butkowski, J.; Moore, B. Detection of off Gassing from Li-Ion Batteries. In Proceedings of the 2013 IEEE Energytech, Cleveland, OH, USA, 21 May 2013. [Google Scholar] [CrossRef]
- Cummings, S.R.; Swartz, S.L.; Frank, N.B.; Dawson, W.J.; Hill, D.M.; Gully, B.H. Systems and Methods for Monitoring for a Gas Analyte. USA Patent Application US 20180003685 A1, 4 January 2018. [Google Scholar]
- Swartz, S.L.; Cummings, S.R.; Frank, N.B.; Dawson, W.J. Lithium Ion Battery Off-Gas Monitoring for Battery Health and Safety; NEXCERIS: Lewis Center, OH, USA, 2017. [Google Scholar]
- Fernandes, Y.; Bry, A.; de Persis, S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. J. Power Sources 2018, 389, 106–119. [Google Scholar] [CrossRef]
- Koch, S.; Fill, A.; Birke, K.P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J. Power Sources 2018, 398, 106–112. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633–3642. [Google Scholar] [CrossRef] [Green Version]
- Golubkov, A.W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-Impact of state of charge and overcharge. RSC Adv. 2015, 5, 57171–57186. [Google Scholar] [CrossRef] [Green Version]
- Atkins, P.W.; Jones, L. Chemie-Einfach Alles; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Schröder, V. Explosionsgrenzen von Wasserstoff und Wasserstoff/Methan-Gemischen; Wiley-VCH: Berlin, Germany, 2002. [Google Scholar]
- Baird, A.R.; Archibald, E.J.; Marr, K.C.; Ezekoye, O.A. Explosion hazards from lithium-ion battery vent gas. J. Power Sources 2020, 446, 1–13. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Gong, X.; Guo, Z. The intensification technologies to water electrolysis for hydrogen production-A review. Renew. Sustain. Energy Rev. 2014, 29, 573–588. [Google Scholar] [CrossRef]
- Zhou, T.; Francois, B. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system. Int. J. Hydrog Energy 2009, 34, 21–30. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. Signal to Noise Ratio 2017. Available online: https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/snr.htm#:~:text=Description%3AThesamplesignalto,s%7D%7B%5Cbar%7Bx%7D%7D (accessed on 12 December 2020).
- Schröder, D.J. Astronomical Optics, 2nd ed.; Academic Press: San Diego, CA, US, 2000. [Google Scholar] [CrossRef]
- Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Yue, P.L. Investigation on the electrolysis voltage ofelectrocoagulation Xueming. Chem. Eng. Sci. 2007, 57, 63. [Google Scholar] [CrossRef]
- Dahn, J.R.; Fuller, E.W.; Obrovac, M.; von Sacken, U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ion. 1994, 69, 265–270. [Google Scholar] [CrossRef]
- Gachot, G.; Ribière, P.; Mathiron, D.; Grugeon, S.; Armand, M.; Leriche, J.B.; Pilard, S.; Laruelle, S. Gas chromatography/mass spectrometry as a suitable tool for the li-ion battery electrolyte degradation mechanisms study. Anal. Chem. 2011, 83, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Kumai, K.; Miyashiro, H.; Kobayashi, Y.; Takei, K.; Ishikawa, R. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources 1999, 81–82, 715–719. [Google Scholar] [CrossRef]
- Sensirion, A.G. Preliminary Datasheet SGP40: Indoor Air Quality Sensor for VOC Measurements; SENSIRION: Stäfa, Switzerland, 2020. [Google Scholar]
- Schultealbert, C.; Uzun, I.; Baur, T.; Sauerwald, T.; Schütze, A. Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation-Sensitivity and selectivity. J. Sens. Sens. Syst. 2020, 9, 283–292. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Seifert, R.; Keller, H.B.; Illyaskutty, N.; Knoblauch, J.; Kohler, H. Numerical Signal Analysis of Thermo-Cyclically Operated MOG Gas Sensor Arrays for Early Identification of Emissions from Overloaded Electric Cables. Sens. Transducers 2015, 193, 74–79. [Google Scholar]
- Sensirion, A.G. Datasheet Sensirion SCD30 Sensor Module: CO2, Humidity, and Temperature Sensor; SENSIRION: Stäfa, Switzerland, 2018. [Google Scholar]
- Göpel, W.; Schierbaum, K.D. SnO2 sensors: Current status and future prospects. Sens. Actuators B Chem. 1995, 26–27, 1–12. [Google Scholar] [CrossRef]
- Illyaskutty, N.; Knoblauch, J.; Schwotzer, M.; Kohler, H. Thermally modulated multi sensor arrays of SnO2/additive/electrode combinations for enhanced gas identification. Sens. Actuators B Chem. 2015, 217, 2–12. [Google Scholar] [CrossRef]
- Andersson, P.; Rotzetter, A. Resistive Metal Oxide Gas Sensor Coated with a Fluoropolymer Filter. WO 2018/053655 A1, 29 March 2018. [Google Scholar]
Parameter | Cell Type #1 | Cell Type #2 | Cell Type #3 | Cell Type #4 |
---|---|---|---|---|
type | pouch | prismatic hard case | pouch | pouch |
cathode material | NMC | NMC | NMC/LMO | NMC |
anode material | graphite | graphite | graphite | graphite /LTO |
electrolyte | EC:EMC (1:1) | EC:DMC:EMC (2:3:3) | EC:DEC:DMC (12:12:1) | EMC:PC:EC (4:2:1) |
capacity | 60 Ah | 60 Ah | 41 Ah | 37 Ah |
nominal voltage | 3.6 V | 3.6 V | 3.8 V | 3.6 V |
gravimetric energy density | 250 Wh/kg | 225 Wh/kg | 180 Wh/kg | 190 Wh/kg |
electrode design | stacked | 2 jelly rolls | stacked | stacked |
Battery Failure Case | (Vent) Gases | Gas Amount / mol | |
---|---|---|---|
(a) | electrolysis | H2, O2 | up to 0.013 mol H2/h |
(b) | electrolyte vapor | electrolyte | up to 1.4 mol |
(c) | first venting | electrolyte, H2O, CO2, CO, C2H6, H2, C2H4 | up to 1.8 mol |
(d) | thermal runaway | CO, H2, CO2, H2O, C2H4, CH4, C4H10, C2H6, C2H2, electrolyte | up to 0.11 mol/Ah, for 60 Ah, 7 mol |
Sensor | Manufacturer | Sensor Principle | Target Gas |
---|---|---|---|
MiCS-5524 | SGX Sensortech | MOx | CO, H2, CH4 |
MiCS-6814 | SGX Sensortech | MOx | CO, NH3, NOx |
iAQ-core | AMS | MOx | VOCs |
CCS811 | AMS | MOx | VOCs |
TGS 8100 | Figaro | MOx | ethanol, H2 |
TGS 5141 | Figaro | electrochemical (solid electrolyte) | CO, H2 |
TGS 2620 | Figaro | MOx | ethanol, H2 |
MQ-2 | Winsen | MOx | smoke, LPG, ethanol |
MQ-8 | Winsen | MOx | H2 |
SCD30 | Sensirion | NDIR, hygrometer, thermometer | CO2 |
SGP30 | Sensirion | MOx | VOC, H2 |
SGP4x_eng | Sensirion | MOx | VOC, NOx, VOC, S |
SGAS701 | IDT | MO | H2 |
SHT31 | Sensirion | hygrometer, thermometer | water vapor, temperature |
BME 680 | Bosch | MOx, hygrometer, thermometer, barometer | VOCs, temperature, pressure, water vapor |
BME 280 | Bosch | hygrometer, thermometer, barometer | temperature, pressure, water vapor |
Experiment NR. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ED1 | Pixel 1 | |||||||||||||||||||||
Pixel 2 | ||||||||||||||||||||||
ED2 | Pixel 1 | |||||||||||||||||||||
Pixel 2 | ||||||||||||||||||||||
SNR | >100 | >20 | >10 | >5 |
Principle | Example | Electrolysis | Electrolyte | 1st venting | TR |
---|---|---|---|---|---|
MOx | SGP30 | ||||
electrochemical | TGS 5141 | ||||
nondispersive infrared sensor (NDIR) (CO2) | MH-Z16 | ||||
hygrometer | SHT31 | ||||
Fourier-transform infrared spectrometer (FTIR) | Bruker | ||||
gas chromatograph (GC) | Agilent | ||||
voltage | |||||
current | |||||
temperature | |||||
detectable | |||||
unlikely detectable | |||||
not detectable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essl, C.; Seifert, L.; Rabe, M.; Fuchs, A. Early Detection of Failing Automotive Batteries Using Gas Sensors. Batteries 2021, 7, 25. https://doi.org/10.3390/batteries7020025
Essl C, Seifert L, Rabe M, Fuchs A. Early Detection of Failing Automotive Batteries Using Gas Sensors. Batteries. 2021; 7(2):25. https://doi.org/10.3390/batteries7020025
Chicago/Turabian StyleEssl, Christiane, Lauritz Seifert, Michael Rabe, and Anton Fuchs. 2021. "Early Detection of Failing Automotive Batteries Using Gas Sensors" Batteries 7, no. 2: 25. https://doi.org/10.3390/batteries7020025
APA StyleEssl, C., Seifert, L., Rabe, M., & Fuchs, A. (2021). Early Detection of Failing Automotive Batteries Using Gas Sensors. Batteries, 7(2), 25. https://doi.org/10.3390/batteries7020025