Effects of the Nail Geometry and Humidity on the Nail Penetration of High-Energy Density Lithium Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Battery Cell Safety Investigation Chamber and Test Set Up
2.2. Nail Geometries
2.3. Modified Setup for the Increase of Humidity
2.4. Gas Measurement Via Fourier-Transform Infrared Spectroscopy (FTIR)
2.5. X-Ray Imaging
2.6. Investigated Cells
3. Results and Discussion
3.1. Variation of the Nail Geometry
3.2. Influence of the Cell Capacity on Gaseous Reaction Compound Concentrations
3.3. Influence of an Increase of Humidity in the Measuring Chamber
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwade, A.; Haselrieder, W.; Leithoff, R.; Modlinger, A.; Dietrich, F.; Droeder, K. Current status and challenges for automotive battery production technologies. Nat. Energy 2018, 3, 290–300. [Google Scholar] [CrossRef]
- Korthauer, R. Handbuch Lithium-Ionen-Batterien; Korthauer, R., Ed.; Springer Vieweg: Berlin, Germany, 2013; ISBN 978-3-642-30653-2. [Google Scholar]
- Nishi, Y. The development of lithium ion secondary batteries. Chem. Rec. 2001, 1, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid State Electrochem. 2017, 21, 1939–1964. [Google Scholar] [CrossRef]
- Ruiz, V.; Pfrang, A.; Kriston, A.; Omar, N.; van den Bossche, P.; Boon-Brett, L. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renew. Sustain. Energy Rev. 2018, 81, 1427–1452. [Google Scholar] [CrossRef]
- Lamb, J.; Orendorff, C.J. Evaluation of mechanical abuse techniques in lithium ion batteries. J. Power Sources 2014, 247, 189–196. [Google Scholar] [CrossRef]
- Diekmann, J.; Doose, S.; Weber, S.; Münch, S.; Haselrieder, W.; Kwade, A. Development of a New Procedure for Nail Penetration of Lithium-Ion Cells to Obtain Meaningful and Reproducible Results. J. Electrochem. Soc. 2020, 167, 90504. [Google Scholar] [CrossRef]
- Mao, B.; Chen, H.; Cui, Z.; Wu, T.; Wang, Q. Failure mechanism of the lithium ion battery during nail penetration. Int. J. Heat Mass Transf. 2018, 122, 1103–1115. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.G.; Kim, H.-S.; Lee, T.J.; Park, H.; Ryu, J.H.; Oh, S.M. Thermal Degradation of Solid Electrolyte Interphase (SEI) Layers by Phosphorus Pentafluoride (PF 5) Attack. J. Electrochem. Soc. 2017, 164, A2418–A2425. [Google Scholar] [CrossRef]
- Yang, H.; Zhuang, G.V.; Ross, P.N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources 2006, 161, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Tebbe, J.L.; Fuerst, T.F.; Musgrave, C.B. Mechanism of hydrofluoric acid formation in ethylene carbonate electrolytes with fluorine salt additives. J. Power Sources 2015, 297, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Von Sacken, U.; Nodwell, E.; Sundher, A.; Dahn, J.R. Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J. Power Sources 1995, 54, 240–245. [Google Scholar] [CrossRef]
- Larsson, F.; Andersson, P.; Blomqvist, P.; Mellander, B.-E. Toxic fluoride gas emissions from lithium-ion battery fires. Sci. Rep. 2017, 7, 10018. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Yang, L.; Ju, X.; Liao, B.; Ye, K.; Li, L.; Cao, B.; Ni, Y. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J. Hazard. Mater. 2020, 381, 120916. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Sun, J.; Ouyang, M.; Wang, F.; He, X.; Lu, L.; Peng, H. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion. battery module. J. Power Sources 2015, 275, 261–273. [Google Scholar] [CrossRef]
- Roth, E.P.; Orendorff, C.J. How electrolytes influence battery safety. Electrochem. Soc. Interface 2012, 21, 45–49. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
typ. capacity (Ah) | 5.7 | 3.7 |
min. capacity (Ah) | 5.3 | 3.3 |
nominal voltage (V) | 3.7 | 3.7 |
charge cut-off voltage (V) | 4.2 | 4.2 |
discharge cut-off voltage (V) | 2.7 | 2.7 |
max. discharge current (A) | 10.6 | 6.6 |
main electrolyte components | EMC, EC, LiPF6 | EMC, EC, LiPF6 |
cathode active material | LiNiCoO2/LiCoO2 | LiNiCoO2/LiCoO2 |
anode active material | Graphite | Graphite |
weight (g) | 102 | 67 |
cell dimensions (mm) | 64.5 × 95.5 × 7.8 | 64.5 × 95.5 × 5.4 |
cathodic area capacity (mAh/cm2) (calculated from min. capacity) | 5.196 | 5.392 |
Gaseous Reaction Component | Percentage Decrease with Increase of Humidity (%) |
---|---|
HF | 30.16 |
CO | 32.92 |
CO2 | 31.47 |
EC | 16.91 |
EMC | 36.08 |
CH4 | 23.85 |
C2H4 | 15.64 |
C2H6 | 31.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doose, S.; Haselrieder, W.; Kwade, A. Effects of the Nail Geometry and Humidity on the Nail Penetration of High-Energy Density Lithium Ion Batteries. Batteries 2021, 7, 6. https://doi.org/10.3390/batteries7010006
Doose S, Haselrieder W, Kwade A. Effects of the Nail Geometry and Humidity on the Nail Penetration of High-Energy Density Lithium Ion Batteries. Batteries. 2021; 7(1):6. https://doi.org/10.3390/batteries7010006
Chicago/Turabian StyleDoose, Stefan, Wolfgang Haselrieder, and Arno Kwade. 2021. "Effects of the Nail Geometry and Humidity on the Nail Penetration of High-Energy Density Lithium Ion Batteries" Batteries 7, no. 1: 6. https://doi.org/10.3390/batteries7010006
APA StyleDoose, S., Haselrieder, W., & Kwade, A. (2021). Effects of the Nail Geometry and Humidity on the Nail Penetration of High-Energy Density Lithium Ion Batteries. Batteries, 7(1), 6. https://doi.org/10.3390/batteries7010006