The Effect of Input Parameter Variation on the Accuracy of a Vanadium Redox Flow Battery Simulation Model
Abstract
:1. Introduction
2. Results and Discussion
2.1. Model Validation for Power Specific Parametrization
2.2. Model Validation for Universally Valid Parametrization
2.3. Accuracy Evaluation for Charging and Discharging Cycles
3. Materials and Methods
3.1. Experimental Set-Up
3.2. Method
3.2.1. Physical Description of the Battery Model
Part I: Calculation of the SoC
Part II: Calculation of the Cell Voltage
Part III: Calculation of Power
3.2.2. Boundary Conditions of Optimization Process and State Variable Definition
- Define index p in vector Papl to iterate different input data scopes.
- Define start values for CStor,SV, ILoss,SV, U0′SV, and Ri,SV and adjust them after every step s = 1,…,3.
- Calculate vector CStor(k) for brute force screening for every step s = 1,…,3.
3.2.3. Optimization Function
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aneke, M.; Wang, M. Energy storage technologies and real life applications—A state of the art review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Maria, S.-K.; Miron, R.; Robert, R. All-Vanadium Redox Battery. U.S. Patent US4786567A, 11 February 1986. [Google Scholar]
- Skyllas-Kazacos, M.; Kazacos, G.; Poon, G.; Verseema, H. Recent advances with UNSW vanadium-based redox flow batteries. Int. J. Energy Res. 2010, 34, 182–189. [Google Scholar] [CrossRef]
- Skyllas-Kazacos, M.; Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M. Progress in Flow Battery Research and Development. J. Electrochem. Soc. 2011, 158, R55–R79. [Google Scholar] [CrossRef]
- Roznyatovskaya, N.; Noack, J.; Pinkwart, K.; Tübke, J. Aspects of electron transfer processes in vanadium redox-flow batteries. Curr. Opin. Electrochem. 2020, 19, 42–48. [Google Scholar] [CrossRef]
- Charvát, J.; Mazúr, P.; Dundálek, J.; Pocedič, J.; Vrána, J.; Mrlík, J.; Kosek, J.; Dinter, S. Performance enhancement of vanadium redox flow battery by optimized electrode compression and operational conditions. J. Energy Storage 2020, 30, 101468. [Google Scholar] [CrossRef]
- Messaggi, M.; Rabissi, C.; Gambaro, C.; Meda, L.; Casalegno, A.; Zago, M. Investigation of vanadium redox flow batteries performance through locally-resolved polarisation curves and impedance spectroscopy: Insight into the effects of electrolyte, flow field geometry and electrode thickness. J. Power Sources 2020, 449, 227588. [Google Scholar] [CrossRef]
- Mazur, P.; Mrlik, J.; Pocedic, J.; Vrana, J.; Dundalek, J.; Kosek, J.; Bystron, T. Effect of graphite felt properties on the long-term durability of negative electrode in vanadium redox flow battery. J. Power Sources 2019, 414, 354–365. [Google Scholar] [CrossRef]
- König, S.; Suriyah, M.R.; Leibfried, T. Innovative model-based flow rate optimization for vanadium redox flow batteries. J. Power Sources 2016, 333, 134–144. [Google Scholar] [CrossRef]
- Lucas, A.; Chondrogiannis, S. Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery. Int. J. Electr. Power Energy Syst. 2016, 80, 26–36. [Google Scholar] [CrossRef]
- Müller, M.; Viernstein, L.; Truong, C.N.; Eiting, A.; Hesse, H.C.; Witzmann, R.; Jossen, A. Evaluation of grid-level adaptability for stationary battery energy storage system applications in Europe. J. Energy Storage 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Bao, J.; Skyllas-Kazacos, M. Control of electrolyte flow rate for the vanadium redox flow battery by gain scheduling. J. Energy Storage 2017, 14, 125–133. [Google Scholar] [CrossRef]
- Yang, W.W.; Yan, F.Y.; Qu, Z.G.; He, Y.L. Effect of various strategies of soc-dependent operating current on performance of a vanadium redox flow battery. Electrochim. Acta 2018, 259, 772–782. [Google Scholar] [CrossRef]
- Guarnieri, M.; Trovò, A.; Picano, F. Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method. Appl. Energy 2020, 262, 114532. [Google Scholar] [CrossRef]
- Pugach, M.; Parsegov, S.; Gryazina, E.; Bischi, A. Output feedback control of electrolyte flow rate for Vanadium Redox Flow Batteries. J. Power Sources 2020, 455, 227916. [Google Scholar] [CrossRef]
- Viswanathan, V.; Crawford, A.; Stephenson, D.; Kim, S.; Wang, W.; Li, B.; Coffey, G.; Thomsen, E.; Graff, G.; Balducci, P.; et al. Cost and performance model for redox flow batteries. J. Power Sources 2014, 247, 1040–1051. [Google Scholar] [CrossRef]
- Minke, C.; Kunz, U.; Turek, T. Techno-economic assessment of novel vanadium redox flow batteries with large-area cells. J. Power Sources 2017, 361, 105–114. [Google Scholar] [CrossRef]
- Rodby, K.E.; Carney, T.J.; Ashraf Gandomi, Y.; Barton, J.L.; Darling, R.M.; Brushett, F.R. Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing. J. Power Sources 2020, 460, 227958. [Google Scholar] [CrossRef]
- Li, M.-J.; Zhao, W.; Chen, X.; Tao, W.-Q. Economic analysis of a new class of vanadium redox-flow battery for medium- and large-scale energy storage in commercial applications with renewable energy. Appl. Therm. Eng. 2017, 114, 802–814. [Google Scholar] [CrossRef]
- Parasuraman, A.; Lim, T.M.; Menictas, C.; Skyllas-Kazacos, M. Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 2013, 101, 27–40. [Google Scholar] [CrossRef]
- Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q. Redox flow batteries: A review. J. Appl. Electrochem. 2011, 41, 1137–1164. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, T.; Bhattacharjee, A.; Samanta, H.; Bhattacharya, K.; Saha, H. Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Energy Convers. Manag. 2019, 191, 102–118. [Google Scholar] [CrossRef]
- Gonçalves, J.; Martins, A.; Neves, L. Methodology for real impact assessment of the best location of distributed electric energy storage. Sustain. Cities Soc. 2016, 26, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, M.G.; Di Silvestre, M.L.; Sanseverino, E.R.; Zizzo, G.; Graditi, G. Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios. Energy 2014, 64, 648–662. [Google Scholar] [CrossRef]
- Duun-Henriksen, A.K.; Schmidt, S.; Røge, R.M.; Møller, J.B.; Nørgaard, K.; Jørgensen, J.B.; Madsen, H. Model identification using stochastic differential equation grey-box models in diabetes. J. Diabetes Sci. Technol. 2013, 7, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Baccino, F.; Marinelli, M.; Nørgård, P.; Silvestro, F. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system. J. Power Sources 2014, 254, 277–286. [Google Scholar] [CrossRef]
- DAgostino, R.; Baumann, L.; Damiano, A.; Boggasch, E. A Vanadium-Redox-Flow-Battery Model for Evaluation of Distributed Storage Implementation in Residential Energy Systems. IEEE Trans. Energy Convers. 2015, 30, 421–430. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Saha, H. Design and experimental validation of a generalised electrical equivalent model of Vanadium Redox Flow Battery for interfacing with renewable energy sources. J. Energy Storage 2017, 13, 220–232. [Google Scholar] [CrossRef]
- Turker, B.; Klein, S.A.; Hammer, E.-M.; Lenz, B.; Komsiyska, L. Modeling a vanadium redox flow battery system for large scale applications. Energy Convers. Manag. 2013, 66, 26–32. [Google Scholar] [CrossRef]
- Chahwan, J.; Abbey, C.; Joos, G. VRB Modelling for the Study of Output Terminal Voltages, Internal Losses and Performance. In Proceedings of the IEEE Canada Electrical Power Conference, Montreal, QC, Canada, 25–26 October 2007; pp. 387–392. [Google Scholar] [CrossRef]
- Qiu, X.; Nguyen, T.A.; Guggenberger, J.D.; Crow, M.L.; Elmore, A.C. A Field Validated Model of a Vanadium Redox Flow Battery for Microgrids. IEEE Trans. Smart Grid 2014, 5, 1592–1601. [Google Scholar] [CrossRef]
- Skyllas-Kazacos, M.; Kazacos, M. State of charge monitoring methods for vanadium redox flow battery control. J. Power Sources 2011, 196, 8822–8827. [Google Scholar] [CrossRef]
- Ontiveros, L.J.; Mercado, P.E. Modeling of a Vanadium Redox Flow Battery for power system dynamic studies. Int. J. Hydrogen Energy 2014, 39, 8720–8727. [Google Scholar] [CrossRef]
- Cellstrom GmbH. Vanadium Redox Durchfluss Batterie—FB 10-100; Betriebsanleitung, Cellstrom GmbH: Wiener Neudorf, Austria, 2012. [Google Scholar]
- Schreiber, M.; Harrer, M.; Whitehead, A.; Bucsich, H.; Dragschitz, M.; Seifert, E.; Tymciw, P. Practical and commercial issues in the design and manufacture of vanadium flow batteries. J. Power Sources 2012, 206, 483–489. [Google Scholar] [CrossRef]
- Trovò, A.; Picano, F.; Guarnieri, M. Comparison of energy losses in a 9 kW vanadium redox flow battery. J. Power Sources 2019, 440, 227144. [Google Scholar] [CrossRef]
- Kurzweil, P.; Dietlmeier, O. Elektrochemische Speicher. In Superkondensatoren, Batterien, Elektrolyse-Wasserstoff, Rechtliche Grundlagen; Springer: Wiesbaden, Germany, 2015; ISBN 978-3-658-10899-1. [Google Scholar]
- König, S. Model-Based Design and Optimization of Vanadium Redox Flow Batteries. Ph.D. Thesis, Karlsruher Instituts für Technologie, Karlsruhe, Germany, 2017. [Google Scholar]
- Hudak, N.S. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries. J. Power Sources 2014, 269, 962–974. [Google Scholar] [CrossRef]
- Corcuera, S.; Skyllas-Kazacos, M. State-of-Charge Monitoring and Electrolyte Rebalancing Methods for the Vanadium Redox Flow Battery. Eur. Chem. Bull. 2012, 1, 511–519. [Google Scholar] [CrossRef]
- Fathima, A.H.; Palanismay, K. Modeling and Operation of a Vanadium Redox Flow Battery for PV Applications. Energy Procedia 2017, 117, 607–614. [Google Scholar] [CrossRef]
- Kjelstrup, S.; Bedeaux, D. Non-Equilibrium Thermodynamics of Heterogeneous Systems; World Scientific: Hackensack, NJ, USA, 2008; ISBN 978-981-277-913-7. [Google Scholar]
- Molugaram, K.; Rao, G.S. Statistical Techniques for Transportation Engineering; Butterworth-Heinemann: Oxford, UK, 2017; ISBN 978-0-12-811555-8. [Google Scholar]
Evaluation Case | Papl (kW) | Index p in Papl | Index n 1 |
---|---|---|---|
Case 1 | 1, 2.5, 5, 7.5, 10 | p1 = [1; 2; 3; 4; 5] | 10 |
Case 2A | 1, 10 | p2 = [1; 5] | 4 |
Case 2B | 2.5, 7.5 | p3 = [2; 4] | 4 |
Case 3A | 1, 5, 10 | p4 = [1; 3; 5] | 6 |
Case 3B | 2.5, 5, 7.5 | p5 = [2; 3; 4] | 6 |
Case 4A | 1 | p6 = [1] | 2 |
Case 4B | 2.5 | p7 = [2] | 2 |
Case 4C | 5 | p8 = [3] | 2 |
Case 4D | 7.5 | p9 = [4] | 2 |
Case 4E | 10 | p10 = [5] | 2 |
Evaluation Case | Fitting Parameters | Ri/(mΩ) | U0′/(V) | ILoss/(A) | CStor/(Ah) |
---|---|---|---|---|---|
Case 4A | 1 kW | 0.5602 | 1.3846 | 7.01 | 2321 |
Case 4B | 2.5 kW | 0.6489 | 1.3822 | 8.62 | 2286 |
Case 4C | 5 kW | 0.6736 | 1.3774 | 6.06 | 2409 |
Case 4D | 7.5 kW | 0.6316 | 1.3730 | 7.17 | 2363 |
Case 4E | 10 kW | 0.6337 | 1.3749 | 8.30 | 2402 |
Papl | WLSS/(%) | |||||
---|---|---|---|---|---|---|
Case 1 | Case 2A | Case 2B | Case 3A | Case 3B | Case 4 | |
1 kW | 7.2 | 10.6 | 487.1 | 13.8 | 136.3 | * |
2.5 kW | 278.9 | 293.6 | 96.5 | 283.3 | 104.0 | * |
5 kW | 32.6 | 30.4 | 102.5 | 28.6 | 85.0 | * |
7.5 kW | 2.9 | 2.9 | 2.0. | 3.9 | 0.5 | * |
10 kW | * | 15.7 | 12.8 | 0.7 | 13.1 | 11.5 |
Evaluation Cases | Ri/(mΩ) | U0′/(V) | ILoss/(A) | CStor/(Ah) |
---|---|---|---|---|
Case 1 | 0.6387 | 1.3755 | 6.94 | 2386 |
Case 2A | 0.6425 | 1.3767 | 6.82 | 2382 |
Case 2B | 0.6285 | 1.3755 | 8.16 | 2367 |
Case 3A | 0.6426 | 1.3766 | 6.93 | 2387 |
Case 3B | 0,6399 | 1.3762 | 7.89 | 2367 |
Case 41 kW | 0.5602 | 1.3846 | 7.01 | 2321 |
Case 42.5 kW | 0.6489 | 1.3822 | 8.62 | 2286 |
Case 45 kW | 0.6736 | 1.3774 | 6.06 | 2409 |
Case 47.5 kW | 0.6316 | 1.3730 | 7.17 | 2363 |
Case 410 kW | 0.6337 | 1.3749 | 8.30 | 2402 |
WLSS/(%) | ||||
---|---|---|---|---|
Case 1 | Case 2A | Case 2B | Case 3A | Case 3B |
* | 1.67 | 52.76 | 6.98 | 82.58 |
Case 4A | Case 4B | Case 4C | Case 4D | Case 4E |
129.65 | 187.58 | 100.14 | 7.90 | 120.51 |
Optimization Step | Screening Range of CStor (Startvalue Calculated with Equation (6)) |
---|---|
s = 1 | 1 |
s = 2 | 1 |
s = 3 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zugschwert, C.; Dundálek, J.; Leyer, S.; Hadji-Minaglou, J.-R.; Kosek, J.; Pettinger, K.-H. The Effect of Input Parameter Variation on the Accuracy of a Vanadium Redox Flow Battery Simulation Model. Batteries 2021, 7, 7. https://doi.org/10.3390/batteries7010007
Zugschwert C, Dundálek J, Leyer S, Hadji-Minaglou J-R, Kosek J, Pettinger K-H. The Effect of Input Parameter Variation on the Accuracy of a Vanadium Redox Flow Battery Simulation Model. Batteries. 2021; 7(1):7. https://doi.org/10.3390/batteries7010007
Chicago/Turabian StyleZugschwert, Christina, Jan Dundálek, Stephan Leyer, Jean-Régis Hadji-Minaglou, Juraj Kosek, and Karl-Heinz Pettinger. 2021. "The Effect of Input Parameter Variation on the Accuracy of a Vanadium Redox Flow Battery Simulation Model" Batteries 7, no. 1: 7. https://doi.org/10.3390/batteries7010007
APA StyleZugschwert, C., Dundálek, J., Leyer, S., Hadji-Minaglou, J.-R., Kosek, J., & Pettinger, K.-H. (2021). The Effect of Input Parameter Variation on the Accuracy of a Vanadium Redox Flow Battery Simulation Model. Batteries, 7(1), 7. https://doi.org/10.3390/batteries7010007