Next Article in Journal / Special Issue
On the Use of Statistical Entropy Analysis as Assessment Parameter for the Comparison of Lithium-Ion Battery Recycling Processes
Previous Article in Journal
Effect of Mixed Li+/Na+-ion Electrolyte on Electrochemical Performance of Na4Fe3(PO4)2P2O7 in Hybrid Batteries
Previous Article in Special Issue
Recycling of Alkaline Batteries via a Carbothermal Reduction Process
Open AccessArticle

Considerations when Modelling EV Battery Circularity Systems

1
Division of Supply and Operations Management, Chalmers University of Technology, 412 96 Gothenburg, Sweden
2
RISE—Research Institutes of Sweden, 431 53 Mölndal, Sweden
3
Division of Energy and Materials, Nuclear Chemistry and Industrial Materials Recycling Group, Chalmers University of Technology, 412 96 Gothenburg, Sweden
*
Author to whom correspondence should be addressed.
Batteries 2019, 5(2), 40; https://doi.org/10.3390/batteries5020040
Received: 1 February 2019 / Revised: 8 April 2019 / Accepted: 8 April 2019 / Published: 15 April 2019
(This article belongs to the Special Issue Circular Economy of Batteries Production and Recycling)
The electric vehicle market is expected to grow substantially in the coming years, which puts new requirements on the end-of-life phase and on the recycling systems. To a larger extent, the environmental footprint from these vehicles is related to raw material extraction and production, and, consequently, a material- and energy-efficient 3R system (reuse, remanufacturing, recycling) is urgently needed. The ability to understand and model the design and development of such a system therefore becomes important. This study contributes to this by identifying factors that affect 3R system design and performance, relating these factors to the various actors and processes of the system and categorising them according to time from implementation to impact. The above is achieved by applying a PEST analysis (political, economic, social and technological factors), differentiating between political, economic, social and technological factors. Data were gathered from literature, by interviews and by a number of workshops in the automotive industry and the 3R system and observations at meetings, etc. The study confirms some previous results on how vehicle battery 3R systems work and adds knowledge about the influencing factors, especially the timeframes and dynamics of the system, necessary for modelling the system and the influencing factors. For practitioners, the results indicate how to use appropriate models and which factors are most relevant to them. View Full-Text
Keywords: electric vehicle batteries; circular economy; recycling; reuse; remanufacturing; second life; modelling electric vehicle batteries; circular economy; recycling; reuse; remanufacturing; second life; modelling
Show Figures

Graphical abstract

MDPI and ACS Style

Kurdve, M.; Zackrisson, M.; Johansson, M.I.; Ebin, B.; Harlin, U. Considerations when Modelling EV Battery Circularity Systems. Batteries 2019, 5, 40.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop