Investigations on a Mesoporous Glass Membrane as Ion Separator for a Redox Flow Battery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Membrane Pore Size and Chemical Composition
2.2. Proton Transport Selectivity over Vanadium Ions
2.3. Existence of Vn+ in Membrane Pores
2.4. Ion Conduction and Transport Diffusivity
2.5. OCV Decay
2.6. VRFB Charge–Discharge Efficiency
2.7. Stability in Long-Term Cyclic Operation
2.8. Temperature Tolerance and Stability
3. Conclusions
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Ion Diffusion Measurement
4.3. Examination of Proton Conductivity and Permeability
4.4. Membrane Characterizations
4.5. Membrane Performance in VRFB Operation
4.6. SEM and EDS Measurements
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Darling, R.M.; Gallagher, K.G.; Kowalski, J.A.; Ha, S.; Brushett, F.R. Pathways to low-cost electrochemical energy storage: A comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 2014, 7, 3459–3477. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.M.; Wang, W.L.; Bi, D.Q.; Rogers, C.B.; Peng, F.Z.; de Almeida, A.T.; Abu-Rub, H. Energy storage system-based power control for grid-connected wind power farm. Int. J. Electr. Power 2013, 44, 115–122. [Google Scholar] [CrossRef]
- Rychcik, M.; Skyllas-Kazacos, M. Characteristics of a new all-vanadium redox flow battery. J. Power Sources 1988, 22, 59–67. [Google Scholar] [CrossRef]
- Skyllas-Kazacos, M.; Kazacos, G.; Poon, G.; Verseema, H. Recent advances with unsw vanadium-based redox flow batteries. Int. J. Energy Res. 2010, 34, 182–189. [Google Scholar] [CrossRef]
- Zeng, Y.K.; Zhao, T.S.; An, L.; Zhou, X.L.; Wei, L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 2015, 300, 438–443. [Google Scholar] [CrossRef]
- Crawford, A.; Viswanathan, V.; Stephenson, D.; Wang, W.; Thomsen, E.; Reed, D.; Li, B.; Balducci, P.; Kintner-Meyer, M.; Sprenkle, V. Comparative analysis for various redox flow batteries chemistries using a cost performance model. J. Power Sources 2015, 293, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Schwenzer, B.; Zhang, J.L.; Kim, S.; Li, L.Y.; Liu, J.; Yang, Z.G. Membrane development for vanadium redox flow batteries. Chemsuschem 2011, 4, 1388–1406. [Google Scholar] [CrossRef]
- Wei, X.L.; Nie, Z.M.; Luo, Q.T.; Li, B.; Chen, B.W.; Simmons, K.; Sprenkle, V.; Wang, W. Nanoporous polytetrafl uoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane. Adv. Energy Mater. 2013, 3, 1215–1220. [Google Scholar] [CrossRef]
- Luo, T.; David, O.; Gendel, Y.; Wessling, M. Porous poly(benzimidazole) membrane for all vanadium redox flow battery. J. Power Sources 2016, 312, 45–54. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Li, M.R.; Yuan, Z.Z.; Li, X.F.; Zhang, H.M.; Vankelecom, I.F.J. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries. Adv. Funct. Mater. 2016, 26, 210–218. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Chen, Q. Parallel cylindrical water nanochannels in nafion fuel-cell membranes. Nat. Mater. 2008, 7, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, M.; Bhuvaneswari, M.S.; Nachimuthu, P.; Schwenzer, B.; Kim, S.; Yang, Z.G.; Liu, J.; Graff, G.L.; Thevuthasan, S.; Hu, J.Z. Spectroscopic investigations of the fouling process on nafion membranes in vanadium redox flow batteries. J. Membr. Sci. 2011, 366, 325–334. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Mai, Z.; Zhang, H.; Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 2011, 4, 1147–1160. [Google Scholar] [CrossRef] [Green Version]
- Ye, R.; Henkensmeier, D.; Yoon, S.J.; Huang, Z.; Kim, D.K.; Chang, Z.; Kim, S.; Chen, R. Redox Flow Batteries for Energy Storage: A Technology Review. J. Electrochem. Energy. Convers. Storage 2017, 15, 010801. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.D.; Xu, Z.; Yang, S.W.; Michos, I.; Li, L.F.; Angelopoulos, A.P.; Dong, J.H. Nonionic zeolite membrane as potential ion separator in redox-flow battery. J. Membr. Sci. 2014, 450, 12–17. [Google Scholar] [CrossRef]
- Hinkle, K.R.; Wang, X.; Gu, X.; Jameson, C.J.; Murad, S. Computational Molecular Modeling of Transport Processes in Nanoporous Membranes. Processes 2018, 6, 124. [Google Scholar] [CrossRef]
- Xu, Z.; Michos, I.; Wang, X.R.; Yang, R.D.; Gu, X.H.; Dong, J.H. A zeolite ion exchange membrane for redox flow batteries. Chem. Commun. 2014, 50, 2416–2419. [Google Scholar] [CrossRef]
- Xu, Z. Investigations on Molecular Sieve Zeolite Membranes as Proton-Selective Ion Separators for Redox Flow Batteries. Ph.D. Dissertation, University of Cincinnati, Cincinnati, OH, USA, 2015. [Google Scholar]
- Bennett, J.M. Non-identity of the zeolites erionite and offretite. Nature 1967, 214, 1005–1006. [Google Scholar] [CrossRef]
- Michos, I. Studies on Ion Transport in Mesoporous and Microporous Inorganic Membranes as Ion Separators for Redox Flow Batteries. Ph.D. Dissertation, University of Cincinnati, Cincinnati, OH, USA, 2016. [Google Scholar]
- Yan, L.G.; Li, D.; Li, S.Q.; Xu, Z.; Dong, J.H.; Jing, W.H.; Xing, W.H. Balancing osmotic pressure of electrolytes for nanoporous membrane vanadium redox flow battery with a draw solute. ACS Appl. Mater. Interfaces 2016, 8, 35289–35297. [Google Scholar] [CrossRef]
- Mogelin, H.; Yao, G.; Zhong, H.; dos Santos, A.R.; Barascu, A.; Meyer, R.; Krenkel, S.; Wassersleben, S.; Hickmann, T.; Enke, D.; et al. Porous glass membranes for vanadium redox-flow battery application—Effect of pore size on the performance. J. Power Sources 2018, 377, 18–25. [Google Scholar] [CrossRef]
- Shelekhin, A.B.; Pien, S.; Ma, Y.H. Permeability, surface-area, pore volume and pore-size of vycor glass membrane heat-treated at high-temperatures. J. Membr. Sci. 1995, 103, 39–43. [Google Scholar] [CrossRef]
- Li, L.X.; Dong, J.H.; Nenoff, T.M. Transport of water and alkali metal ions through mfi zeolite membranes during reverse osmosis. Sep. Purif. Technol. 2007, 53, 42–48. [Google Scholar] [CrossRef]
- Xu, Z.; Michos, I.; Cao, Z.S.; Jing, W.H.; Gu, X.H.; Hinkle, K.; Murad, S.; Dong, J.H. Proton-selective ion transport in zsm-5 zeolite membrane. J. Phys. Chem. C 2016, 120, 26386–26392. [Google Scholar] [CrossRef]
- Choi, P.; Jalani, N.H.; Datta, R. Thermodynamics and proton transport in nafion—II. Proton diffusion mechanisms and conductivity. J. Electrochem. Soc. 2005, 152, E123–E130. [Google Scholar] [CrossRef]
- Morris, D.R.; Sun, X.D. Water-sorption and transport-properties of nafion-117-h. J. Appl. Polym. Sci. 1993, 50, 1445–1452. [Google Scholar] [CrossRef]
- Elmer, T.H. Porous and Reconstructed Glasses. Engineered Materials Handbook Vol. 4: Ceramics and Glasses; ASM International: Materials Park, OH, USA, 1992; pp. 427–432. [Google Scholar]
- Llewellyn, P.; Grossmith, F.; Fane, A.; Skyllas-Kazacos, M. Membrane evaluation for vanadium redox cell. In Proceedings of the Symposium on Energy Storage: Load Levelling and Remote Applications; The Electrochemical Society: Pennington, NJ, USA, 1988; Volume 88-11. [Google Scholar]
- Baccino, F.; Marinelli, M.; Norgard, P.; Silvestro, F. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system. J. Power Sources 2014, 254, 277–286. [Google Scholar] [CrossRef]
- Gencten, M.; Gursu, H.; Sahin, Y. Electrochemical investigation of the effects of v(v) and sulfuric acid concentrations on positive electrolyte for vanadium redox flow battery. Int. J. Hydrogen Energy 2016, 41, 9868–9875. [Google Scholar] [CrossRef]
- Kazacos, M.; Cheng, M.; Skyllas-Kazacos, M. Vanadium redox cell electrolyte optimization studies. J. Appl. Electrochem. 1990, 20, 463–467. [Google Scholar] [CrossRef]
Membrane: VPG | |||||
---|---|---|---|---|---|
Ion | Ji (10−4 mol/m2·s) | Ki (10−12 m2/s) | αH+/V(n+) | ||
JV(n+) | JH+ | KV(n+) | KH+ | ||
V2+ | 0.102 | 2.42 | 2.55 | 30.3 | 23.7 |
V3+ | 0.081 | 2.29 | 2.03 | 28.6 | 28.3 |
V4+ (VO2+) | 0.186 | 3.44 | 4.65 | 43.0 | 18.5 |
V5+ (VO2+) | 0.131 | 3.69 | 3.28 | 46.1 | 28.2 |
Membrane: Nafion | |||||
Ion | Ji (10−4 mol/m2·s) | Ki (10−12 m2/s) | αH+/V(n+) | ||
JV(n+) | JH+ | KV(n+) | KH+ | ||
V2+ | 0.079 | 3.69 | 0.723 | 16.9 | 46.7 |
V3+ | 0.110 | 4.19 | 1.01 | 19.2 | 38.1 |
V4+ (VO2+) | 0.175 | 4.94 | 1.60 | 22.6 | 28.2 |
V5+ (VO2+) | 0.098 | 4.19 | 0.897 | 19.2 | 42.8 |
Nafion | |||||
Ion | Fresh | V2+ | V3+ | VO2+ | VO2+ |
C | 0.345 | 0.154 | 0.237 | 0.308 | 0.349 |
O | 0.101 | 0.378 | 0.243 | 0.127 | 0.113 |
F | 0.539 | 0.361 | 0.468 | 0.540 | 0.517 |
S | 0.016 | 0.078 | 0.041 | 0.021 | 0.019 |
V | 0.000 | 0.030 | 0.012 | 0.004 | 0.002 |
Total | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
VPG | |||||
Ion | Fresh | V2+ | V3+ | VO2+ | VO2+ |
Si | 0.329 | 0.331 | 0.332 | 0.323 | 0.334 |
O | 0.671 | 0.657 | 0.658 | 0.662 | 0.657 |
S | 0.000 | 0.009 | 0.008 | 0.011 | 0.006 |
V | 0.000 | 0.003 | 0.002 | 0.004 | 0.003 |
Total | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Ion Separator | CE, % | VE, % | EE, % |
---|---|---|---|
VPG after 40 cycles at 45 °C | 97.1 | 79.7 | 77.3 |
Fresh VPG | 94.4 | 83.8 | 79.1 |
Nafion after 40 cycles at 45 °C | 98.2 | 79.8 | 78.4 |
Fresh Nafion | 97.2 | 89.3 | 86.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michos, I.; Cao, Z.; Xu, Z.; Jing, W.; Dong, J. Investigations on a Mesoporous Glass Membrane as Ion Separator for a Redox Flow Battery. Batteries 2019, 5, 6. https://doi.org/10.3390/batteries5010006
Michos I, Cao Z, Xu Z, Jing W, Dong J. Investigations on a Mesoporous Glass Membrane as Ion Separator for a Redox Flow Battery. Batteries. 2019; 5(1):6. https://doi.org/10.3390/batteries5010006
Chicago/Turabian StyleMichos, Ioannis, Zishu Cao, Zhi Xu, Wenheng Jing, and Junhang Dong. 2019. "Investigations on a Mesoporous Glass Membrane as Ion Separator for a Redox Flow Battery" Batteries 5, no. 1: 6. https://doi.org/10.3390/batteries5010006
APA StyleMichos, I., Cao, Z., Xu, Z., Jing, W., & Dong, J. (2019). Investigations on a Mesoporous Glass Membrane as Ion Separator for a Redox Flow Battery. Batteries, 5(1), 6. https://doi.org/10.3390/batteries5010006