Research in Nickel/Metal Hydride Batteries 2016
Abstract
:1. Introduction
2. Contributions
2.1. Reviews in Related Work
2.2. Metal Hydride Alloys
2.3. Electrolyte
2.4. Analytic Methodology
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Teraoka, H. NiMH Stationary Energy Storage—Extreme Temperature and Long Life Developments. In Proceedings of the 33rd International Battery Seminar & Exhibit, Fort Lauderdale, FL, USA, 21–24 March 2016.
- HighPower International. The Current Status and Future Trend of Domestic and International Market of Ni/MH Batteries. 2014. Available online: http://cbea.com/u/cms/www/201406/06163842rc0l.pdf (accessed on 8 September 2016). (In Chinese)
- Zelinsky, M.; Koch, J.; Fetcenko, M. Heat Tolerant NiMH Batteries for Stationary Power; Ovonic Battery Company: Rochester Hill, MI, USA, 2010. [Google Scholar]
- Zelinsky, M.; Koch, J. Batteries and Heat—A Recipe for Success? Available online: www.battcon.com/PapersFinal2013/16-Mike%20Zelinsky%20-%20Batteries%20and%20Heat.pdf (accessed on 8 September 2016).
- Zelinsky, M.; Koch, J. Market Advancement of NiMH Batteries for Stationary Applications. Available online: www.battcon.com/PapersFinal2016/Zelinsky%20paper%202016.pdf (accessed on 8 September 2016).
- Wikipedia. Hybrid Electric Vehicle. Available online: https://en.wikipedia.org/wiki/Hybrid_electric_vehicle (accessed on 8 September 2016).
- Panasonic. Headquarters News—Panasonic’s 12V Ni-MH Energy Recovery Systems in New Idle-Stop Minicars from Nissan and Mitsubishi. 2014. Available online: http://news.panasonic.com/global/press/data/2014/02/en140213-3/en140213-3.html (accessed on 8 September 2016).
- Kawasaki Heavy Industry. Battery Power System (BPS) for Railways. Available online: http://global.kawasaki.com/en/energy/solutions/battery_energy/applications/bps.html (accessed on 8 September 2016).
- Green City Ferries. MOVITZ—The World’s First Supercharged Electrical Ferry. Available online: http://www.greencityferries.com/boatfleet/movitz/ (accessed on 8 September 2016).
- Zibo Guoli New Power Source Technology Co., Ltd. Available online: http://www.glxdy.com (accessed on 8 September 2016).
- Young, K.; Wang, C.; Wang, L.Y.; Strunz, K. Electrical Vehicle Battery Technologies. In Electric Vehicle Integration into Modern Power Network; Garcia-Valle, R., Lopes, J.A.P., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Yartys, V.A. Ti-Zr Based AB2 Alloys for High Power Metal Hydride Batteries. In Proceedings of the 15th International Symposium on Metal-Hydrogen System, Interlaken, Switzerland, 7–12 August 2016.
- Young, K.; Ng, K.Y.S.; Bendersky, L.A. A technical report of the Robust Affordable Next Generation Energy Storage System-BASF program. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Chang, S.; Young, K.; Nei, J.; Fierro, C. Reviews on the U.S. Patents regarding nickel/metal hydride batteries. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Ouchi, T.; Young, K.; Moghe, D. Reviews on the Japanese Patent Applications regarding nickel/metal hydride batteries. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Young, K.; Yasuoka, S. Capacity degradation mechanisms in nickel/metal hydride batteries. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Young, K. Stoichiometry in Inter-Metallic Compounds for Hydrogen Storage Applications. In Stoichiometry and Materials Science: When Numbers Matter; Innocenti, A., Kamarulzaman, N., Eds.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Young, K. Electrochemical Applications of Metal Hydrides. In Compendium of Hydrogen Energy; Barbir, F., Basile, A., Veziroğlu, T.N., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2016; Volume 3, pp. 289–304. [Google Scholar]
- Nei, J.; Young, K. Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu) for nickel metal hydride battery applications. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Young, K.; Nei, J. The current status of hydrogen storage alloy development for electrochemical applications. Materials 2013, 6, 4574–4608. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Huang, B.; Nei, J. Structure, hydrogen storage, and electrochemical properties of body-centered-cubic Ti40V30Cr15Mn13X2 alloys (X = B, Si, Mn, Ni, Zr, Nb, Mo, and La). Batteries 2015, 1, 74–90. [Google Scholar] [CrossRef]
- Chang, S.; Young, K.; Ouchi, T.; Meng, T.; Nei, J.; Wu, X. Studies on incorporation of Mg in Zr-based AB2 metal hydride alloys. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Nei, J.; Moghe, D. The importance of rare-earth additions in Zr-based AB2 metal hydride alloys. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Young, K.; Wong, D.F.; Nei, J. Effects of vanadium/nickel contents in Laves phase-related body-centered-cubic solid solution metal hydride alloys. Batteries 2015, 1, 34–53. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Meng, T.; Wong, D.F. Studies on the synergetic effects in multi-phase metal hydride alloys. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Wong, D.F.; Young, K.; Ouchi, T.; Ng, K.Y.S. First-principles point defect models for Zr7Ni10 and Zr2Ni7 phases. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Wang, L.; Young, K.; Shen, H. New type of alkaline rechargeable battery—Ni-Ni battery. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Meng, T.; Young, K.; Koch, J.; Ouchi, T.; Yasuoka, S. Failure mechanisms of nickel/metal hydride batteries with cobalt-substituted superlattice hydrogen-absorbing alloy anodes at 50 °C. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Nei, J.; Young, K.; Rotarov, D. Studies on MgNi-based metal hydride electrode with aqueous electrolytes composed of various hydroxides. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Mu, D.; Hatano, Y.; Abe, T.; Watanabe, K. Degradation kinetics of discharge capacity for amorphous Mg-Ni electrode. J. Alloys Compd. 2002, 334, 232–237. [Google Scholar] [CrossRef]
- Liu, J.; Jiao, L.; Yuan, H.; Wang, Y.; Liu, Q. Effect of discharge cut off voltage on cycle life of MgNi-based electrode for rechargeable Ni-MH batteries. J. Alloys Compd. 2005, 403, 270–274. [Google Scholar] [CrossRef]
- Yu, X.B.; Wu, Z.; Xia, B.J.; Xu, N.X. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity. J. Chem. Phys. 2004, 121, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Young, K.; Ng, K.Y.S. Effects of salt additives to the KOH electrolyte used in Ni/MH batteries. Batteries 2015, 1, 54–73. [Google Scholar] [CrossRef]
- Young, K. Metal Hydride. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Reedijk, J., Ed.; Elsevier: Waltham, MA, USA, 2013. [Google Scholar]
- Young, K.; Chao, B.; Nei, J. Microstructures of the activated Si-containing AB2 metal hydride alloy surface by transmission electron microscope. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Liu, Y.; Young, K. Microstructure investigation on metal hydride alloys by electron backscatter diffraction technique. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Shen, H.-T.; Young, K.-H.; Meng, T.; Bendersky, L.A. Clean grain boundary found in C14/body-center-cubic multi-phase metal hydride alloys. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Mosavati, N.; Young, K.; Meng, T.; Ng, K.Y.S. Electrochemical open-circuit voltage and pressure-concentration-temperature isotherm comparison for metal hydride alloys. Batteries 2016, 2. [Google Scholar] [CrossRef]
- Young, K.; Huang, B.; Regmi, R.K.; Lawes, G.; Liu, Y. Comparisons of metallic clusters imbedded in the surface oxide of AB2, AB5, and A2B7 alloys. J. Alloys Compd. 2010, 506, 831–840. [Google Scholar] [CrossRef]
- Young, K.; Chao, B.; Pawlik, D.; Shen, H. Transmission electron microscope studies in the surface oxide on the La-containing AB2 metal hydride alloy. J. Alloys Compd. 2016, 672, 356–365. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, K.-H. Research in Nickel/Metal Hydride Batteries 2016. Batteries 2016, 2, 31. https://doi.org/10.3390/batteries2040031
Young K-H. Research in Nickel/Metal Hydride Batteries 2016. Batteries. 2016; 2(4):31. https://doi.org/10.3390/batteries2040031
Chicago/Turabian StyleYoung, Kwo-Hsiung. 2016. "Research in Nickel/Metal Hydride Batteries 2016" Batteries 2, no. 4: 31. https://doi.org/10.3390/batteries2040031
APA StyleYoung, K. -H. (2016). Research in Nickel/Metal Hydride Batteries 2016. Batteries, 2(4), 31. https://doi.org/10.3390/batteries2040031