Empowering the Future: Cutting-Edge Developments in Supercapacitor Technology for Enhanced Energy Storage
Abstract
:1. Introduction
2. Energy Storage Technologies
2.1. Lithium-Ion Batteries
2.2. Pumped Hydro Energy Storage (PHES)
2.3. Compressed Air Energy Storage (CAES)
2.4. Supercapacitor Energy Storage
2.4.1. Types of Supercapacitors
Electrical Double-Layer Capacitors (EDLCs)
- The extensive surface area of the electrode material, riddled with numerous pores, enables a substantial enhancement in the storage capacity for electric charge. This intricate structure allows for a dramatically increased volume for the formation of electric double layers, which are crucial for energy storage [43].
- The ultrathin electrical double layers that are established at each electrode–electrolyte interface contribute to the elevated capacitance of these devices.
Pseudocapacitors
Hybrid Supercapacitors
2.5. Key Materials in Electrochemical Energy Storage Devices
2.5.1. Electrode Materials
Carbon-Based Materials
Transition Metal Oxides
Conducting Polymers
Polyaniline (PANi)
Polypyrrole
Polythiophene (Pth)
Metal Chalcogenides
Binary Composites as Electrode Materials
Carbon–Carbon Composites
Carbon–MOs Composites
Carbon–CPs Composites
MOs–CPs
MOs–MOs
Ternary Composite Materials
Some Novel Emerging Materials
Organic Framework (COF, MOF)–Carbon Hybrids
2.5.2. Electrolytes
Aqueous Electrolytes
Acidic Electrolyte
Alkaline Electrolytes
Neutral Electrolytes
Organic Electrolytes
Ionic Liquid-Based Electrolytes
2.6. Advantages and Disadvantages of Supercapacitors
- High Power Density: Supercapacitors have a much higher power density than batteries, allowing for faster charging and discharging rates.
- Fast Charge–Discharge Rates: Supercapacitors can be charged and discharged much faster than batteries, making them suitable for applications requiring rapid energy delivery.
- Long Cycle Life: Supercapacitors have a much longer cycle life than batteries, with some devices capable of withstanding hundreds of thousands or even millions of charge–discharge cycles.
- Wide Operating Temperature Range: Supercapacitors can operate over a wider temperature range than batteries, making them suitable for use in harsh environments.
- High Efficiency: Supercapacitors have high energy efficiency, with minimal energy loss during charging and discharging.
- Low Energy Density: Supercapacitors have a lower energy density than batteries, meaning they cannot store as much energy for a given size and weight.
- Voltage Drop During Discharge: The voltage of a supercapacitor decreases linearly during discharge, which can be a problem for some applications.
- High Cost: Supercapacitors can be more expensive than batteries, although the cost is decreasing as the technology matures.
3. Design and Fabrication Strategies
3.1. The Fundamentals of Supercapacitor Electrode Design
3.1.1. Surface Area and Porosity
3.1.2. Selection of Electrode Material
3.1.3. Electrical Conductivity
3.1.4. Electrolyte Compatibility
3.1.5. Binder and Additive Selection
3.1.6. Mass Loading and Electrode Thickness
3.1.7. Scalability and Cost-Effectiveness
4. Electrode Fabrication Techniques and Architecture
4.1. Chemical Vapor Deposition (CVD)
4.1.1. Carbon Nanotube (CNT) Growth
4.1.2. Synthesis of Graphene
4.1.3. Supercapacitor Electrode Applications
4.1.4. Future Directions
4.2. Template-Assisted Synthesis
4.2.1. Using Alumina Membranes as Models
4.2.2. Templates Used as Sacrifices
4.2.3. Applications in Supercapacitor Electrodes
4.3. Sol–Gel Process
4.3.1. Procedures for the Sol–Gel Method
- Sol Formation: The initial phase involves dissolving metal alkoxides or salts in an appropriate solvent, which can be alcohols or water, resulting in a uniform mixture known as a sol. To adjust the final material’s characteristics, dopants or additional chemical agents may be introduced into the sol.
- Hydrolysis Reaction: Within the sol, the metal–oxygen bonds of the metal alkoxides or salts are broken down by water molecules in a process called hydrolysis. This generates metal hydroxides, which are essential for initiating the polymerization that follows.
- Polycondensation Process: The metal hydroxides formed during hydrolysis proceed to react with each other, leading to the creation of metal–oxygen–metal (M-O-M) linkages. This step is critical for the formation of a three-dimensional gel framework. The polycondensation reaction can be regulated to achieve the desired porosity and specific surface area in the gel material.
- Solvent Removal and Thermal Treatment: Once the gel has formed, the next step is to eliminate the solvent through a drying process. Following this, the gel undergoes calcination at high temperatures, typically ranging from 200 to 800 degrees Celsius. This thermal process serves to remove any residual organic substances and induces a transformation into a crystalline metal oxide structure.
4.3.2. Applications in Supercapacitor Electrodes
4.3.3. Advantages and Limitations
4.3.4. Future Directions
4.4. Inkjet Printing
4.4.1. Supercapacitor Electrode Advantages
4.4.2. Applications in Supercapacitor Electrodes
4.4.3. Future Directions
4.5. Three-Dimensional (3D) Architectures
4.5.1. Types of 3D Architectures
- Hierarchical Nanostructures: These architectures consist of a combination of diverse nanosized components, such as nanowires, nanotubes, and nanoparticles, which are assembled to create a multifaceted interconnected network. The hierarchical arrangement of pores within these structures enhances ionic access and facilitates superior charge storage due to the synergistic effects of the various pore sizes and high surface-to-volume ratio.
- Mesoporous Materials: Materials characterized by mesoporosity, with pore dimensions ranging typically between 2 and 50 nm, are highly effective in supercapacitor applications. The interconnected nature of these mesopores contributes to an extensive surface area and substantial pore volume, which enable efficient ionic diffusion and bolster the capacitive properties of the electrode.
- Conductive Frameworks: The utilization of 3D conductive frameworks, like graphene foam or carbon nanotube scaffolds, serves as a supportive skeleton for the active electrode material. These frameworks not only ensure rapid electron transfer but also provide mechanical stability to the electrode, as they are designed to accommodate the strain associated with the charge–discharge cycles.
- Additive Manufacturing: Employing 3D printing technology in the fabrication of supercapacitor electrodes allows for the creation of intricate and tailored geometries. This method enables precise control over the deposition of layers of electrode material, thus catering to specific design requirements and potentially leading to superior structural integrity and functional efficiency.
4.5.2. Applications in Supercapacitor Electrodes
4.5.3. Future Directions
5. Recent Advancements in Electrode Nanotechnology
5.1. Tailored Nanostructures
5.1.1. Advantages in Supercapacitor Technology
- Enhanced Energy Density: Through the implementation of tailored nanostructures, the specific surface area is substantially increased, thereby augmenting the number of active sites for ionic adsorption and desorption processes. This leads to a higher specific capacitance, allowing for greater energy storage per unit mass or volume.
- Rapid Charge and Discharge: The meticulously designed nanostructures facilitate efficient ion diffusion through the electrode material. By reducing the diffusion pathways and enhancing the porosity, the ion transport is significantly accelerated. Consequently, supercapacitors are capable of discharging and charging at high rates, rendering them ideal for applications demanding quick energy release.
- Enhanced Cyclability: Supercapacitors equipped with tailored nanostructures often demonstrate improved mechanical robustness and structural stability over numerous charge–discharge cycles. This characteristic contributes to their prolonged lifespan and minimized maintenance needs.
- Customizable Electrode Architecture: The ability to tailor nanostructures permits the fine-tuning of electrode properties to match the particular requirements of diverse applications. Scientists can optimize supercapacitor performance by adjusting the morphology, composition, and porosity of nanomaterials according to specific energy storage demands.
- Multifunctional Electrode Integration: The strategic design of nanostructures allows for the combination of various functionalities within a single electrode. By merging nanomaterials with complementary traits, such as high conductivity and pseudocapacitance, it is feasible to create hybrid systems capable of electric double-layer capacitance as well as Faradaic redox reactions. This synergistic approach enhances the total energy storage capacity of the device.
5.1.2. Applications in Supercapacitor Technology
5.2. Advanced Carbon Nanomaterials
5.2.1. Graphene-Based Electrodes
5.2.2. Carbon Quantum Dots (CQDs)
5.2.3. Doped Graphene and Its Derivatives
5.2.4. Carbon Nitride (g-C3N4)
5.3. 2D Nanomaterials
Benefits
5.4. Binder-Free Electrodes
Advantages
5.5. Electrodes Made of Nanocomposite Materials: Improved Performance via Cooperation
5.5.1. Design Principles
- Material Combination: These electrodes often consist of a blend of two or more nanomaterials with distinct properties. It is essential to select components that complement each other, such as one contributing to high specific capacitance and the other enhancing electrical conductivity. The harmonious interplay of these materials leads to superior composite performance in electrochemical reactions.
- Interface Optimization: The efficiency of charge transfer within nanocomposite electrodes is significantly influenced by interfacial interactions. Therefore, it is critical to engineer interfaces that promote rapid electron movement and ion diffusion. This synergistic behavior ensures that each material’s unique properties are fully utilized to enhance the electrode’s overall electrochemical effectiveness.
- Nanostructure Manipulation: The shape, size, and arrangement of nanomaterials within the electrode are crucial determinants of its electrochemical characteristics. By controlling the nanostructure, researchers can tailor the properties to optimize the electrochemical performance while simultaneously bolstering the mechanical robustness. This precision in design allows for the maximization of the electrode’s potential in various energy storage and conversion applications.
5.5.2. Advantages
5.6. Advanced Characterization Techniques
5.7. Sustainability of the Environment: Adopting Green Energy Storage Technologies
5.7.1. Environmental Benefits
- Minimized Ecological Footprint: The constituent materials of supercapacitors, like activated carbon, carbon nanotubes, and conductive polymers for electrodes, are generally non-toxic and pose a lower environmental risk compared to traditional batteries, which are based on heavy metals and potentially harmful chemicals. This reduces the environmental strain during their entire lifecycle, from manufacturing to disposal.
- Enhanced Energy Efficiency: Supercapacitors boast high efficiency in energy storage and release, which translates to reduced energy waste during charge and discharge cycles. This efficiency contributes to a decrease in the frequency of replacements, thereby lowering the environmental footprint associated with production and disposal.
- Exceptional Endurance: With the capacity to undergo countless charge–discharge cycles without substantial performance loss, supercapacitors demonstrate remarkable durability. This longevity diminishes the necessity for frequent replacements, thus cutting down on the total waste produced and the resources consumed over time.
- Quick Energy Exchange: The rapid charging and discharging rates of supercapacitors facilitate efficient energy capture and release, which is particularly beneficial for stabilizing power grids. Their responsive nature allows for better integration of renewable energy sources and reduces dependency on fossil fuel-based power plants that are typically less flexible and more carbon-intensive.
- Sustainable Disposal: Supercapacitors can be recycled effectively due to the lack of hazardous materials in their construction. This feature enables the recovery of valuable components, such as carbon-based electrodes and current collectors, which can be reused. This recyclability aspect further reduces the environmental impact by curtailing the depletion of resources and the accumulation of electronic waste.
5.7.2. Support for Sustainable Energy Systems
6. Features of Electrode Performance: Assessing the Important Metrics
7. Advanced Characterization Techniques
7.1. Analytical Characterization Methods
7.1.1. X-Ray Techniques
X-Ray Diffraction (XRD)
X-Ray Absorption Spectroscopy (XAS)
X-Ray Photoelectron Spectroscopy (XPS)
7.1.2. Electron Microscopy
Transmission Electron Microscopy (TEM)
High-Resolution TEM (HRTEM)
Electron Diffraction (ED)
Scanning Electron Microscopy (SEM)
7.1.3. Scanning Probe Microscopy
Atomic Force Microscopy (AFM)
Scanning Electrochemical Microscopy (SECM)
7.1.4. Spectroscopic Techniques
Fourier Transform Infrared (FTIR) Spectroscopy
Raman Spectroscopy (RS)
Laser Raman Mapping
7.1.5. Magnetic Techniques
In Situ Nuclear Magnetic Resonance (NMR) Spectroscopy
7.1.6. Surface Area Measurements
Brunauer–Emmett–Teller (BET) Method
8. Applications of Supercapacitors
8.1. DC Microgrids
8.2. Electric Vehicles
8.3. Smart Phones and Note Computers
8.4. Industrial Drives
8.5. Wind Power
8.6. Multi-Level Inverter with ESSs
8.7. Wave Energy Converters
8.8. Hand-Held Applications
8.9. Wireless Charging
8.10. Comparative Study of EES Systems
9. Future Trends
9.1. Electrode and Electrolyte Materials
9.2. Energy Density Improvement
9.3. Cell Voltage Imbalance
9.4. SC Model
9.5. Industrial Standard
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, Z.M.; Martin, P.; Aleem, S.; Jurado, F.; Gandoman, F.H. Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review. Energies 2023, 16, 5930. [Google Scholar] [CrossRef]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Katsanevakis, M.; Stewart, R.A.; Lu, J. Aggregated applications and benefits of energy storage systems with application-specific control methods: A review. Renew. Sustain. Energy Rev. 2017, 75, 719–741. [Google Scholar] [CrossRef]
- Hayat, A.; Ali, H.; Ajmal, Z.; Alshammari, A.; Alghamdi, M.M.; El-Zahhar, A.A.; Almuqati, N.; Sohail, M.; Abu-Dief, A.M.; Khan, S.; et al. Emerging breakthroughs in covalent triazine frameworks: From fundamentals towards photocatalytic water splitting and challenges. Prog. Mater. Sci. 2025, 147, 101352. [Google Scholar] [CrossRef]
- Ali, H.; Iqbal, O.; Sadiq, M.; Hassan, J.U.; Al Alwan, B.; El Jery, A.; Abu-Dief, A.M.; El-Kasaby, R.A.; Hayat, A.; Yue, D.; et al. Graphdiyne-based metal-free catalysts: Innovations in synthesis, properties, functionalization, morphology and applications. Renew. Sustain. Energy Rev. 2025, 215, 115570. [Google Scholar] [CrossRef]
- Kandari, R.; Neeraj, N.; Micallef, A. Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids. Energies 2022, 16, 317. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, T.; Ma, Y. An overview on microgrid technology. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 76–81. [Google Scholar]
- Aghmadi, A.; Mohammed, O.A. Energy Storage Systems: Technologies and High-Power Applications. Batteries 2024, 10, 141. [Google Scholar] [CrossRef]
- Rekioua, D. Energy Storage Systems for Photovoltaic and Wind Systems: A Review. Energies 2023, 16, 3893. [Google Scholar] [CrossRef]
- Czagany, M.; Hompoth, S.; Keshri, A.K.; Pandit, N.; Galambos, I.; Gacsi, Z.; Baumli, P. Supercapacitors: An Efficient Way for Energy Storage Application. Materials 2024, 17, 702. [Google Scholar] [CrossRef]
- Wustoni, S.; Ohayon, D.; Hermawan, A.; Nuruddin, A.; Inal, S.; Indartono, Y.S.; Yuliarto, B. Material Design and Characterization of Conducting Polymer-Based Supercapacitors. Polym. Rev. 2023, 64, 192–250. [Google Scholar] [CrossRef]
- Shin, S.-J.; Gittins, J.W.; Balhatchet, C.J.; Walsh, A.; Forse, A.C. MetalOrganic Framework Supercapacitors: Challenges and Opportunities. Adv. Funct. Mater. 2024, 34, 2308497. [Google Scholar] [CrossRef]
- Saidon, M.S.; Romli, M.I.F.; Othman, S.M.; Mustafa, W.A.; Manan, M.R.; Aihsan, M.Z. A Review on BLDC Motor Application in Electric Vehicle (EV) using Battery, Supercapacitor and Hybrid Energy Storage System: Efficiency and Future Prospects. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 30, 41–59. [Google Scholar]
- Katkar, P.K.; Sheikh, Z.A.; Chavan, V.D.; Lee, S.W. In-situ growth of 3D amorphous Ni-Co-Mn phosphate on 2D Ti3C2Tx nanocomposite for commercial-level hybrid energy storage application. J. Mater. Sci. Technol. 2025, 206, 282–296. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, Z.; Li, Z.; Li, X.; Qin, J.; Liang, C.; Han, M.; Yin, Y.; Bai, J.; Wang, C.; et al. A Survey of Battery-Supercapacitor Hybrid Energy Storage Systems: Concept, Topology, Control and Application. Symmetry 2022, 14, 1085. [Google Scholar] [CrossRef]
- Parsa, S.M.; Norozpour, F.; Shoeibi, S.; Shahsavar, A.; Aberoumand, S.; Afrand, M.; Said, Z.; Karimi, N. Lithium-ion battery thermal management via advanced cooling parameters: State-of-the-art review on application of machine learning with exergy, economic and environmental analysis. J. Taiwan Inst. Chem. Eng. 2023, 148, 104854. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Rouholamini, M.; Wang, C.; Nehrir, H.; Hu, X.; Hu, Z.; Aki, H.; Zhao, B.; Miao, Z.; Strunz, K. A Review of Modeling, Management, and Applications of Grid-Connected Li-Ion Battery Storage Systems. IEEE Trans. Smart Grid 2022, 13, 4505–4524. [Google Scholar] [CrossRef]
- Bindra, A. Electric Vehicle Batteries Eye Solid-State Technology: Prototypes Promise Lower Cost, Faster Charging, and Greater Safety. IEEE Power Electron. Mag. 2020, 7, 16–19. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Sundararajan, A.; Sarwat, A.I. A review of cathode and anode materials for lithium-ion batteries. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Belekar, K.G.; Patil, S.S.; Bhosale, S.B.; Kumbhar, S.S.; Jadhav, G.D.; Parale, V.G.; Lokhande, C.D.; Park, H.H.; Katkar, P.K.; Patil, U.M. Amorphous, binder-free cobalt manganese phosphate cathodes prepared by SILAR method for asymmetric supercapacitors: Harnessing cationic synergy. Synth. Met. 2025, 311, 117800. [Google Scholar] [CrossRef]
- Xiaopeng, C.; Weixiang, S.; Tu, V.T.; Zhenwei, C.; Ajay, K. An overview of lithium-ion batteries for electric vehicles. In Proceedings of the 2012 10th International Power & Energy Conference (IPEC), Ho Chi Minh City, Vietnam, 12–14 December 2012; IEEE: New York, NY, USA, 2012; pp. 230–235. [Google Scholar]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Abu-Dief, A.M.; El-Dabea, T. Functionalization of Nanomaterials for Energy Storage and Hydrogen Production Applications. Materials 2025, 18, 768. [Google Scholar] [CrossRef] [PubMed]
- Pranav, K.K.; Sang-Wha, L. An Interfacial Engineering Approach of Flower-like Li+ Preintercalated Co–Cu Phosphate for Solid-State Hybrid Energy Storage Device. ACS Sustain. Chem. Eng. 2024, 12, 5927–5942. [Google Scholar]
- Maletić, F.; Deur, J.; Erceg, I. A Multitimescale Kalman Filter-Based Estimator of Li-Ion Battery Parameters Including Adaptive Coupling of State-of-Charge and Capacity Estimation. IEEE Trans. Control. Syst. Technol. 2022, 31, 692–706. [Google Scholar] [CrossRef]
- Pranav, K.K.; Abhijit, N.K.; Sahng-Kyoon, J.; Seung-Hyun, C.; Sang-Wha, L. Rational design of redox active amorphous Ni-Mn phosphate anchored on vertical graphene nanohills (VGNHs) for solid-state energy storage device. J. Alloys Compd. 2023, 968, 171935. [Google Scholar]
- Görtz, J.; Aouad, M.; Wieprecht, S.; Terheiden, K. Assessment of pumped hydropower energy storage potential along rivers and shorelines. Renew. Sustain. Energy Rev. 2022, 165, 112027. [Google Scholar] [CrossRef]
- Kocaman, A.S.; Modi, V. Value of pumped hydro storage in a hybrid energy generation and allocation system. Appl. Energy 2017, 205, 1202–1215. [Google Scholar] [CrossRef]
- Ichimura, S. Utilization of cross-regional interconnector and pumped hydro energy storage for further introduction of solar PV in Japan. Glob. Energy Interconnect. 2020, 3, 68–75. [Google Scholar] [CrossRef]
- Olabi, A.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Alami, A.H. Compressed air energy storage systems: Components and operating parameters—A review. J. Energy Storage 2020, 34, 102000. [Google Scholar] [CrossRef]
- Bazdar, E.; Sameti, M.; Nasiri, F.; Haghighat, F. Compressed air energy storage in integrated energy systems: A review. Renew. Sustain. Energy Rev. 2022, 167, 112701. [Google Scholar] [CrossRef]
- Nozari, M.H.; Yaghoubi, M.; Jafarpur, K.; Mansoori, G.A. Development of dynamic energy storage hub concept: A comprehensive literature review of multi storage systems. J. Energy Storage 2022, 48, 103972. [Google Scholar] [CrossRef]
- Naeem, S.; Patil, A.V.; Shaikh, A.V.; Shinde, U.P.; Husain, D.; Alam, T.; Sharma, M.; Tewari, K.; Ahmad, S.; Shah, A.A.; et al. A Review of Cobalt-Based Metal Hydroxide Electrode for Applications in Supercapacitors. Adv. Mater. Sci. Eng. 2023, 2023, 1133559. [Google Scholar] [CrossRef]
- Kim, K.; Park, J.; Lee, J.; Suh, S.; Kim, W. Ultrafast PEDOT: PSS/H2SO4 Electrical Double Layer Capacitors: Comparison with PANI Pseudocapacitors. ChemSusChem 2023, 16, e202202057. [Google Scholar] [CrossRef] [PubMed]
- Adedoja, O.; Sadiku, E.; Hamam, Y. An Overview of the Emerging Technologies and Composite Materials for Supercapacitors in Energy Storage Applications. Polymers 2023, 15, 2272. [Google Scholar] [CrossRef] [PubMed]
- Hamidah, I.; Ramdhani, R.; Wiyono, A.; Mulyanti, B.; Pawinanto, R.; Hasanah, L.; Diantoro, M.; Yuliarto, B.; Yunas, J.; Rusydi, A. Biomass-Based Supercapacitors Electrodes for Electrical Energy Storage Systems Activated Using Chemical Activation Method: A Literature Review and Bibliometric Analysis. Indones. J. Sci. Technol. 2023, 8, 439–468. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Zhou, G.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338. [Google Scholar] [CrossRef]
- Reddy, M.V.; Rao, G.V.S.; Chowdari, B.V.R. Metal oxides and oxysalts as anode materials for Li-ion batteries. Chem. Rev. 2013, 113, 5364–5457. [Google Scholar]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Ali, H.; Iqbal, O.; Al Alwan, B.; Abdulrahman, A.; Orooji, Y.; Al-Farraj, E.S.; Sadiq, M.; Imran, S.; Abu-Dief, A.M.; Yue, D.; et al. Morphology-controlled metal-organic frameworks for enhanced photocatalytic performance. Coord. Chem. Rev. 2025, 541, 216822. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Liang, W.; Gong, X.; Jing, A.; Yang, W.; Liu, H.; Ren, S. Porous Organic Polymers as Active Electrode Materials for Energy Storage Applications. Small Methods 2024, 8, e2301335. [Google Scholar] [CrossRef]
- Swain, N.; Saravanakumar, B.; Kundu, M.; Schmidt-Mende, L.; Ramadoss, A. Recent trends in template assisted 3D porous materials for electrochemical supercapacitors. J. Mater. Chem. A 2021, 9, 25286–25324. [Google Scholar] [CrossRef]
- Khan, M.; Shakir, S.; Mohammad, B.; Azooz, S.; Ali, R.; Syed, K.G.; Waleed, A.; Hassan, K. Recent advancements in supercapacitors and their charge storage mechanism and progress in transition metal sulfide-based electrodes. Phys. Scr. 2024, 99, 062001. [Google Scholar] [CrossRef]
- Mensah-Darkwa, K.; Nframah Ampong, D.; Agyekum, E.; de Souza, F.M.; Gupta, R.K. Recent Advancements in Chalcogenides for Electrochemical Energy Storage Applications. Energies 2022, 15, 4052. [Google Scholar] [CrossRef]
- Joseph, A.; Thomas, T. Pseudocapacitance: An Introduction. In Pseudocapacitors: Fundamentals to High Performance Energy Storage Devices; Gupta, R.K., Ed.; Springer: Cham, Germany, 2024. [Google Scholar]
- Kavishka, D.; Dulsha, K.-A. A review of supercapacitors: Materials, technology, challenges, and renewable energy applications. J. Energy Storage 2024, 96, 112563. [Google Scholar]
- Shakil, R.; Shaikh, M.N.; Shah, S.S.; Reaz, A.H.; Roy, C.K.; Chowdhury, A.N.; Aziz, M.A. Development of a Novel Bio-based Redox Electrolyte using Pivalic Acid and Ascorbic Acid for the Activated Carbon-based Supercapacitor Fabrication. Asian. J. Org. Chem. 2021, 10, 2220–2230. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Zhukova, V.; Blanco, J.M.; Gonzalez, J.; Zhukov, A. The Impact of High-Temperature Annealing on Magnetic Properties, Structure and Martensitic Transformation of Ni2MnGa-based Glass-Coated Microwires. Ceram. Int. 2025, 51, 4378–4387. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Vega, V.; Caballero-Flores, R.; Prida, V.M.; Fernández, A. Influence of nanoholes array geometrical parameters on magnetic properties of Dy–Fe antidot thin films. Nanotechnology 2019, 30, 455703. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Mukhiya, T.; Muthurasu, A.; Chhetri, K.; Lee, M.; Dahal, B.; Lohani, P.C.; Kim, H.-Y. A review of electrospun carbon nanofiber-based negative electrode materials for supercapacitors. Electrochem 2021, 2, 236–250. [Google Scholar] [CrossRef]
- Sheng, L.; Wei, T.; Liang, Y.; Jiang, L.; Qu, L.; Fan, Z. Vertically Oriented Graphene Nanoribbon Fibers for High-Volumetric Energy Density All-Solid-State Asymmetric Supercapacitors. Small 2017, 13, 1700371. [Google Scholar] [CrossRef]
- Jebakumar, T.N.I.E.; Atchudan, R.; Lee, Y.R. Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction. Int. J. Hydrog. Energy 2019, 44, 2323–2329. [Google Scholar] [CrossRef]
- Rudge, A.; Raistrick, I.; Gottesfeld, S.; Ferraris, J.P. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim. Acta 1994, 39, 273–287. [Google Scholar] [CrossRef]
- Jurewicz, K.; Guterl, C.V.; Frackowiak, E.; Saadallah, S.; Reda, M.; Parmentier, J.; Patarin, J.; Beguin, F. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J. Phys. Chem. Solids 2004, 65, 287–293. [Google Scholar] [CrossRef]
- Wu, M.; Snook, G.A.; Gupta, V.; Shaffer, M.; Fray, D.J.; Chen, G.Z. Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J. Mater. Chem. 2005, 15, 2297–2303. [Google Scholar] [CrossRef]
- Sivakkumar, S.R.; Kim, W.J.; Choi, J.A.; MacFarlane, D.R.; Forsyth, M.; Kim, D.W. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J. Power Sources 2007, 171, 1062–1068. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources 2009, 190, 578–586. [Google Scholar] [CrossRef]
- Yang, Q.; Hou, Z.; Huang, T. Self-assembled polypyrrole film by interfacial polymerization for supercapacitor applications. J. Appl. Polym. Sci. 2015, 132, 41615. [Google Scholar] [CrossRef]
- Rajesh, M.; Raj, C.J.; Kim, B.C.; Cho, B.B.; Ko, J.M.; Yu, K.H. Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films. Electrochim. Acta 2016, 220, 373–383. [Google Scholar] [CrossRef]
- Snook, G.A.; Kao, P.; Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12. [Google Scholar] [CrossRef]
- Laforgue, A.; Simon, P.; Sarrazin, C.; Fauvarque, J.F. Polythiophene-based supercapacitors. J. Power Sources 1999, 80, 142–148. [Google Scholar] [CrossRef]
- Patil, B.H.; Jagadale, A.D.; Lokhande, C.D. Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application. Synth. Met. 2012, 162, 1400–1405. [Google Scholar] [CrossRef]
- Yogita, D.; Muruganandham, H.; Manoj, K.; Ankur, J.; Debasish, S. Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities. Coord. Chem. Rev. 2022, 451, 214265. [Google Scholar]
- Salaheldeen, M.; Vega, V.; Fernández, A.; Prida, V. Anomalous in-plane coercivity behaviour in hexagonal arrangements of ferromagnetic antidot thin films. J. Magn. Magn. Mater. 2019, 491, 165572. [Google Scholar] [CrossRef]
- Zheng, C.; Zhou, X.; Cao, H.; Wang, G.; Liu, Z. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J. Power Sources 2014, 258, 290–296. [Google Scholar] [CrossRef]
- Xia, H.; Wang, Y.; Lin, J.; Lu, L. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res. Lett. 2011, 6, 595. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Wederni, A.; Ipatov, M.; Zhukova, V.; Lopez Anton, R.; Zhukov, A. Enhancing the Squareness and Bi-Phase Magnetic Switching of Co2FeSi Microwires for Sensing Application. Sensors 2023, 23, 5109. [Google Scholar] [CrossRef]
- Xiong, G.; He, P.; Liu, L.; Chen, T.; Fisher, T.S. Plasma-grown graphene petals templating Ni-Co-Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes. J. Mater. Chem. A 2015, 3, 22940–22948. [Google Scholar] [CrossRef]
- Liangliang, T.; Chunyang, J. Conducting polymers as electrode materials for supercapacitors. Prog. Chem. 2010, 22, 1610–1618. [Google Scholar]
- Yang, Y.; Xi, Y.; Li, J.; Wei, G.; Klyui, N.I.; Han, W. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res. Lett. 2017, 12, 394. [Google Scholar] [CrossRef]
- Yan, J. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 2010, 195, 3041–3045. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Wederni, A.; Ipatov, M.; Zhukova, V.; Zhukov, A. Preparation and Magneto-Structural Investigation of High-Ordered (L21 Structure) Co2MnGe Microwires. Processes 2023, 11, 1138. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Yang, Y.; Chang, Z.; Wen, Z.; Wu, Y. Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. J. Mater. Chem. A 2013, 1, 13582–13587. [Google Scholar] [CrossRef]
- Adhikari, S.; Selvaraj, S.; Ji, S.H.; Kim, D.H. Encapsulation of Co3O4 nanocone arrays via ultrathin NiO for superior performance asymmetric supercapacitors. Small 2020, 16, e2005414. [Google Scholar] [CrossRef] [PubMed]
- Lin, H. Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim. Acta 2016, 191, 444–451. [Google Scholar] [CrossRef]
- Yang, X. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes. J. Mater. Sci. Technol. 2020, 55, 223–230. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar]
- Azman, N.H.N.; Mamat Mat Nazir, M.S.; Ngee, L.H.; Sulaiman, Y. Graphene-based ternary composites for supercapacitors. Int. J. Energy Res. 2018, 42, 2104–2116. [Google Scholar] [CrossRef]
- Hao, M. Coherent polyaniline/graphene oxides/multi-walled carbon nanotubes ternary composites for asymmetric supercapacitors. Electrochim. Acta 2016, 191, 165–172. [Google Scholar] [CrossRef]
- Xu, L.; Jia, M.; Li, Y.; Zhang, S.; Jin, X. Design and synthesis of graphene/activated carbon/polypyrrole flexible supercapacitor electrodes. RSC Adv. 2017, 7, 31342–31351. [Google Scholar] [CrossRef]
- Li, J.; Jiao, Y. Polyaniline-polypyrrole nanocomposites using a green and porous wood as support for supercapacitors. Front. Agric. Sci. Eng. 2019, 6, 137–143. [Google Scholar] [CrossRef]
- Hussain, I.; Amna, R.; Kalidasan, B.; Rani, G.M.; Bandi, H.; Venkateswarlu, S.; Khan, S.A.; Mohapatra, D.; Zhang, K. MXenes for Various Applications: Recent Trends and Future Aspects. SmartMat 2025, 6, e70012. [Google Scholar] [CrossRef]
- Borah, A.J.; Natu, V.; Biswas, A.; Srivastava, A. A review on recent progress in synthesis, properties, and applications of MXenes. Oxf. Open Mater. Sci. 2025, 5, itae017. [Google Scholar] [CrossRef]
- Pathaare, Y.; Reddy, A.M.; Sangrulkar, P.; Kandasubramanian, B.; Satapathy, A. Carbon hybrid nano-architectures as an efficient electrode material for supercapacitor applications. Hybrid. Adv. 2023, 3, 100041. [Google Scholar] [CrossRef]
- Lakshmi, K.C.S.; Vedhanarayanan, B. High-performance supercapacitors: A comprehensive review on paradigm shift of conventional energy storage devices. Batteries 2023, 98, 202. [Google Scholar] [CrossRef]
- Arnold, A.M.; Singh, J.; Sydlik, S.A. The Role and Future of Functional Graphenic Materials in Biomedical and Human Health Applications. Biomacromolecules 2025, 26, 2015–2042. [Google Scholar] [CrossRef]
- Al-dolaimy, F.; Saraswat, S.K.; Abed Hussein, B.; Abdul-Reda Hussein, U.; Saeed, S.M.; Kareem, A.T.; Abdulwahid, A.S.; Mizal, T.L.; Muzammil, K.; Alawadi, A.H.; et al. A review of recent advancement in covalent organic framework (COFs) synthesis and characterization with a focus on their applications in antibacterial activity. Micron 2024, 179, 103595. [Google Scholar] [CrossRef]
- Argirusis, C.; Katsanou, M.-E.; Alizadeh, N.; Argirusis, N.; Sourkouni, G. Recent Advances in the Application of MOFs in Supercapacitors. Batteries 2025, 11, 181. [Google Scholar] [CrossRef]
- Ramavath, J.N.; Raja, M.; Kumar, S.; Kothandaraman, R. Mild acidic mixed electrolyte for high-performance electrical double layer capacitor. Appl. Surf. Sci. 2019, 489, 867–874. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Zhukova, V.; Ipatov, M.; Zhukov, A. Unveiling the Magnetic and Structural Properties of (X2YZ; X = Co and Ni, Y = Fe and Mn, and Z = Si) Full-Heusler Alloy Microwires with Fixed Geometrical Parameters. Crystals 2023, 13, 1550. [Google Scholar] [CrossRef]
- Ibukun, O.; Jeong, H.K. Effects of aqueous electrolytes in supercapacitors. New Phys. Sae Mulli 2019, 69, 154–158. [Google Scholar] [CrossRef]
- Bakhshandeh, M.B.; Kowsari, E. Functionalization of partially reduced graphene oxide by metal complex as electrode material in supercapacitor. Res. Chem. Intermed. 2020, 46, 2595–2612. [Google Scholar] [CrossRef]
- Macchi, S.; Siraj, N.; Watanabe, F.; Viswanathan, T. Renewable-resource-based waste materials for supercapacitor application. ChemistrySelect 2019, 4, 492–501. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, L.; Liu, J. Hierarchical porous carbon sheets derived on a MgO template for high-performance supercapacitor applications. Nanotechnology 2019, 30, 295703. [Google Scholar] [CrossRef] [PubMed]
- Jaidev, J.R.I.; Ak, M. Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J. Mater. Chem. 2011, 21, 1760. [Google Scholar] [CrossRef]
- Kang, J.; Jayaram, S.H.; Rawlins, J.; Wen, J. Characterization of thermal behaviors of electrochemical double layer capacitors (EDLCs) with aqueous and organic electrolytes. Electrochim. Acta 2014, 144, 200–210. [Google Scholar] [CrossRef]
- Oyedotun, K.O.; Masikhwa, T.M.; Lindberg, S. Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene. Chem. Eng. J. 2019, 375, 121906. [Google Scholar] [CrossRef]
- Balaji, S.S.; Karnan, M.; Anandhaganesh, P. Performance evaluation of B-doped graphene prepared via two different methods in symmetric supercapacitor using various electrolytes. Appl. Surf. Sci. 2019, 491, 560–569. [Google Scholar] [CrossRef]
- Chen, J.; Chang, B.; Liu, F. Modification of porous carbon with nitrogen elements to enhance the capacitance of supercapacitors. J. Mater. Sci. 2019, 54, 11959–11971. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Nafady, A.; Abu-Dief, A.M.; Díaz Crespo, R.; Fernández-García, M.P.; Andrés, J.P.; López Antón, R.; Blanco, J.A.; Álvarez-Alonso, P. Enhancement of Exchange Bias and Perpendicular Magnetic Anisotropy in CoO/Co Multilayer Thin Films by Tuning the Alumina Template Nanohole Size. Nanomaterials 2022, 12, 2544. [Google Scholar] [CrossRef]
- Lai, C.; Sun, Y.; Lin, B. Synthesis of sandwich-like porous nanostructure of Co3O4-rGO for flexible all-solid-state high-performance asymmetric supercapacitors. Mater. Today Energy. 2019, 13, 342–352. [Google Scholar] [CrossRef]
- Mahieddine, A.; Adnane-Amara, L.; Gabouze, N.; Khenfer, K.; Bahdaouia, A.; Belkhettab, I. Synthesis, characterization, and effect of electrolyte concentration on the electrochemical performance of Li2Cu(WO4)2 as a high-performance positive electrode for hybrid supercapacitors. J. Energy Storage 2022, 56, 106011. [Google Scholar] [CrossRef]
- Dawoud, H.D.; Tahtamouni, A.; Bensalah, T. Sputtered manganese oxide thin film on carbon nanotubes sheet as a flexible and binder-free electrode for supercapacitors. Int. J. Energy Res. 2019, 43, 1245–1254. [Google Scholar] [CrossRef]
- Sopčić, S.; Šešelj, N.; Kraljić Roković, M. Influence of supporting electrolyte on the pseudocapacitive properties of MnO2/carbon nanotubes. J. Solid State Electrochem. 2019, 23, 205–214. [Google Scholar] [CrossRef]
- Ghaly, H.A.; El-Deen, A.G.; Souaya, E.R.; Allam, N.K. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochim. Acta 2019, 310, 58–69. [Google Scholar] [CrossRef]
- Wang, P.; Wen, Y.; Lu, J. Manganese oxide(III)/carbon hybrids with interesting morphologies as improved active materials for supercapacitors. Int. J. Hydrog. Energy 2019, 44, 13623–13631. [Google Scholar] [CrossRef]
- Peng, L.; Liang, Y.; Huang, J. Mixed-biomass wastes derived hierarchically porous carbons for high-performance electrochemical energy storage. ACS Sustain. Chem. Eng. 2019, 7, 10393–10402. [Google Scholar] [CrossRef]
- Mary, A.J.C.; Bose, A.C. Incorporating Mn2+/Ni2+/Cu2+/Zn2+ in the Co3O4 nanorod: To investigate the effect of structural modification in the Co3O4 nanorod and its electrochemical performance. ChemistrySelect 2019, 4, 160–170. [Google Scholar] [CrossRef]
- Durai, G.; Kuppusami, P.; Maiyalagan, T. Supercapacitive properties of manganese nitride thin film electrodes prepared by reactive magnetron sputtering: Effect of different electrolytes. Ceram. Int. 2019, 45, 17120–17127. [Google Scholar] [CrossRef]
- Fenoy, G.E.; Schueren, B.; Scotto, J. Layer-by-layer assembly of iron oxide-decorated few-layer graphene/PANI: PSS composite films for high performance supercapacitors operating in neutral aqueous electrolytes. Electrochim. Acta 2018, 283, 1178–1187. [Google Scholar] [CrossRef]
- Xu, C.; Wei, C.; Li, B. Charge storage mechanism of manganese dioxide for capacitor application: Effect of the mild electrolytes containing alkaline and alkaline-earth metal cations. J. Power Sources 2011, 196, 7854–7859. [Google Scholar] [CrossRef]
- Nguyen, H.V.T.; Kwak, K.; Lee, K.-K. 1,1-Dimethylpyrrolidinium tetrafluoroborate as novel salt for high-voltage electric double-layer capacitors. Electrochim. Acta 2019, 299, 98–106. [Google Scholar] [CrossRef]
- Yang, P.-Y.; Ju, S.-P.; Hsieh, H.-S. Electrolytic molecule in-pore structure and capacitance of supercapacitors with nanoporous carbon electrodes: A coarse-grained molecular dynamics study. Comput. Mater. Sci. 2019, 166, 293–302. [Google Scholar] [CrossRef]
- Lw, L.F. Cell optimisation of supercapacitors using a quasi-reference electrode and potentiostatic analysis. J. Power Sources 2019, 424, 52–60. [Google Scholar]
- Lu, X.; Zhang, Y.; Zhong, H. Molten-salt strategy for fabrication of hierarchical porous N-doped carbon nanosheets towards high-performance supercapacitors. Mater. Chem. Phys. 2019, 230, 178–186. [Google Scholar] [CrossRef]
- Ou, J.; Tu, W.; Zeng, S.-Z.; Yao, Y.; Zhang, Q.; Wu, H.; Lan, T.; Liu, S.; Zeng, X. High-performance supercapacitors based on hierarchically porous carbons with a three-dimensional conductive network structure. Dalton Trans. 2019, 48, 5271–5284. [Google Scholar]
- Ghosh, S.; Sahoo, G.; Polaki, S.R. Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte. J. Appl. Phys. 2017, 122, 214902. [Google Scholar] [CrossRef]
- Sun, J.; Iakunkov, A.; Rebrikova, A.T.; Talyzin, A.V. Exactly matched pore size for the intercalation of electrolyte ions determined using the tunable swelling of graphite oxide in supercapacitor electrodes. Nanoscale 2018, 10, 21386–21395. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Rohita, D.S.; Rao, T.N.; Karthik, M. Electrode mass ratio impact on electrochemical capacitor performance. Electrochim. Acta 2019, 298, 347–359. [Google Scholar] [CrossRef]
- Centeno, T.A.; Sereda, O.; Stoeckli, F. Capacitance in carbon pores of 0.7 to 15 nm: A regular pattern. Phys. Chem. Chem. Phys. 2011, 13, 12403–12406. [Google Scholar] [CrossRef]
- Shim, Y.; Jung, Y.; Kim, H.J. Graphene-based supercapacitors: A computer simulation study. J. Phys. Chem. C 2011, 115, 23574–23583. [Google Scholar] [CrossRef]
- Varanasi, S.R. Complementary effects of pore accessibility and decoordination on the capacitance of nanoporous carbon electrochemical supercapacitors. J. Phys. Chem. C 2015, 119, 28809–28818. [Google Scholar] [CrossRef]
- Li, J.; Tang, J.; Yuan, J. Interactions between graphene and ionic liquid electrolyte in supercapacitors. Electrochim. Acta 2016, 197, 84–91. [Google Scholar] [CrossRef]
- Ue, M. Chemical capacitors and quaternary ammonium salts. Electrochemistry 2007, 75, 565–572. [Google Scholar] [CrossRef]
- Kim, D.; Lee, G.; Kim, D.; Yun, J.; Lee, S.S.; Ha, J.S. High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive. Nanoscale 2016, 8, 15611–15620. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, A.; Rafat, M. Impact of aqueous and organic electrolytes on the supercapacitive performance of activated carbon derived from pea skin. Surf. Coat. Technol. 2018, 349, 242–250. [Google Scholar] [CrossRef]
- Chaudhari, S.; Sharma, Y.; Archana, P.S.; Jose, R.; Ramakrishna, S.; Mhaisalkar, S.; Srinivasan, M. Electrospun polyaniline nanofibers web electrodes for supercapacitors. J. Appl. Polym. Sci. 2013, 129, 1660–1668. [Google Scholar] [CrossRef]
- Wu, F.; Chen, R.; Wu, F. Binary room-temperature complex electrolytes based on LiClO4 and organic compounds with acylamino group and its characterization for electric double layer capacitors. J. Power Sources 2008, 184, 402–407. [Google Scholar] [CrossRef]
- Wee, G.; Soh, H.Z.; Cheah, Y.L. Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J. Mater. Chem. 2010, 20, 6720–6725. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Wee, G.; Al-Oweini, R. A polyoxovanadate as an advanced electrode material for supercapacitors. ChemPhysChem 2014, 15, 2162–2169. [Google Scholar] [CrossRef]
- Azam, M.A.; Dorah, N.; Seman, R.N.A.R. Electrochemical performance of activated carbon and graphene-based supercapacitor. Mater. Technol. 2014, 30, A14–A17. [Google Scholar] [CrossRef]
- Azam, M.A.; Manaf, M.S.A.; Ahsan, Q. Lithium-Ion supercapacitor using vertically-aligned carbon nanotubes from direct growth technique, and its electrochemical characteristics. Port. Electrochim. Acta 2019, 37, 167–178. [Google Scholar] [CrossRef]
- Que, H.; Chang, C.; Yang, X.; Jiang, F.; Li, M. Heteroatoms doped hierarchical porous carbon materials for high performance supercapacitor electrodes. Int. J. Electrochem. Sci. 2019, 14, 3477–3493. [Google Scholar] [CrossRef]
- Xia, H.; Hu, J.; Li, J.; Wang, K. Electrochemical performance of graphene-coated activated mesocarbon microbeads as a supercapacitor electrode. RSC Adv. 2019, 9, 7004–7014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dyatkin, B.; Cummings, P.T. Molecular investigation of oxidized graphene: Anatomy of the double-layer structure and ion dynamics. J. Phys. Chem. C 2019, 123, 12583–12591. [Google Scholar] [CrossRef]
- Ray, A.; Saruhan, B. Application of ionic liquids for batteries and supercapacitors. Materials 2021, 14, 2942. [Google Scholar] [CrossRef]
- Kongsawatvoragul, K.; Kalasina, S.; Kidkhunthod, P.; Sawangphruk, M. Charge storage mechanisms of cobalt hydroxide thin film in ionic liquid and KOH electrolytes for asymmetric supercapacitors with graphene aerogel. Electrochim. Acta 2019, 324, 134854. [Google Scholar] [CrossRef]
- Adusei, P.K.; Gbordzoe, S.; Kanakaraj, S.N.; Hsieh, Y.Y.; Alvarez, N.T.; Fang, Y.; Johnson, K.; McConnell, C.; Shanov, V. Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J. Energy Chem. 2020, 40, 120–131. [Google Scholar] [CrossRef]
- Mendhe, A.; Panda, H.S. A review on electrolytes for supercapacitor device. Discov. Mater. 2023, 3, 29. [Google Scholar] [CrossRef]
- Fic, K.; Gorska, B.; Bujewska, P.; Béguin, F.; Frackowiak, E. Selenocyanate-based ionic liquid as redox-active electrolyte for hybrid electrochemical capacitors. Electrochim. Acta 2019, 314, 1–8. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Ma, X.; Wang, Y.; Zhou, Q.; Zhang, S.A. New DMF-derived ionic liquid with ultra-high conductivity for high-capacitance electrolyte in electric double-layer capacitor. Electrochim. Acta 2019, 319, 843–848. [Google Scholar] [CrossRef]
- Liu, T.; Wang, K.; Chen, Y.; Zhao, S.; Han, Y. Dominant role of wettability in improving the specific capacitance. Green Energy Environ. 2019, 4, 171–179. [Google Scholar] [CrossRef]
- Momodu, D.; Sylla, N.F.; Mutuma, B.; Bello, A.; Masikhwa, T.; Lindberg, S.; Matic, A.; Manyala, N. Stable ionic-liquid-based symmetric supercapacitors from Capsicum seed-porous carbons. J. Electroanal. Chem. 2019, 838, 119–128. [Google Scholar] [CrossRef]
- Gong, X.; Li, S.; Lee, P.S. A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. Nanoscale. 2017, 9, 10794–10801. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Han, J.H.; Yu, D.M.; Lee, J.Y.; Kim, T.H.; Hong, Y.T. Synthesis of mesoporous reduced graphene oxide by Zn particles for electrodes of supercapacitor in ionic liquid electrolyte. J. Ind. Eng. Chem. 2017, 45, 105–110. [Google Scholar] [CrossRef]
- Kim, D.; Keum, K.; Lee, G.; Kim, D.; Lee, S.S.; Ha, J.S. Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/NO2 sensors on textiles. Nano Energy 2017, 35, 199–206. [Google Scholar] [CrossRef]
- Urbain, F.; Smirnov, V.; Becker, J.P.; Lambertz, A.; Yang, F.; Ziegler, J.; Kaiser, B.; Jaegermann, W.; Rau, U.; Finger, F. Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting. Energy Environ. Sci. 2016, 9, 145–154. [Google Scholar] [CrossRef]
- Hu, H.; Wang, J.; Cui, C.; Qian, W. Highly electroconductive mesoporous activated carbon fibers and their performance in the ionic liquid-based electrical double-layer capacitors. Carbon 2019, 154, 1–6. [Google Scholar]
- Yu, L.; Chen, G.Z. Ionic liquid-based electrolytes for supercapacitor and supercapattery. Front. Chem. 2019, 7, 272. [Google Scholar] [CrossRef]
- Eftekhari, A. Supercapacitors utilising ionic liquids. Energy Storage Mater. 2017, 9, 47–69. [Google Scholar] [CrossRef]
- Dar, M.A.; Majid, S.R.; Satgunam, M.; Siva, C.; Ansari, S.; Arularasan, P.; Ahamed, S.R. Advancements in Supercapacitor electrodes and perspectives for future energy storage technologies. Int. J. Hydrog. Energy 2024, 70, 10–28. [Google Scholar] [CrossRef]
- Naikwade, M.B.; Katkar, P.K.; Lee, S.W. Understanding the impact of porosity on Li-ion diffusion enhancement in micro-sized silicon particles for advanced batteries. Ceram. Int. 2024, 50, 54778–54790. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Alzahrani, A.Y.A.; Ali, H.; Abu-Dief, A.M.; Amin, M.S.; Alenad, A.M.; Al-Mhyawi, S.R.; Al-Hadeethi, Y.; Ajmal, Z.; et al. Recent advances in heteroatom-doped/hierarchically porous carbon materials: Synthesis, design and potential applications. Prog. Mater. Sci. 2025, 150, 101408. [Google Scholar] [CrossRef]
- Wu, Z.; Li, L.; Yan, J.-M.; Zhang, X.-B. Materials design and system construction for conventional and new-Concept supercapacitors. Adv. Sci. 2017, 4, 1600382. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Casalongue, H.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef]
- Li, Y.; Kinloch, I.A.; Windle, A.H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef]
- Singh, V.; Kuthe, S.; Skorodumova, N.V. Electrode Fabrication Techniques for Li Ion Based Energy Storage System: A Review. Batteries 2023, 9, 184. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef]
- Sun, G.; Ren, H.; Shi, Z.; Zhang, L.; Wang, Z.; Zhan, K.; Yan, Y.; Yang, J.; Zhao, B. V2O5/vertically-aligned carbon nanotubes as negative electrode for asymmetric supercapacitor in neutral aqueous electrolyte. J. Colloid Interface Sci. 2021, 588, 847–856. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, Y.; Zhou, Y.; Yan, Y.; Zhan, K.; Yang, J.; Li, Y.; Zhao, B. Millimeter-Long Vertically Aligned Carbon-Nanotube- Supported Co3O4 Composite Electrode for High-Performance Asymmetric Supercapacitor. ChemElectroChem 2018, 5, 1394. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Nishihara, H.; Kyotani, T. Carbon materials with a well-developed but interconnected porous texture for supercapacitors. Carbon 2010, 48, 4526–4634. [Google Scholar]
- Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L.C. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 2011, 13, 17615–17624. [Google Scholar] [CrossRef] [PubMed]
- Karthika, P.; Rajalakshmi, N.; Dhathathreyan, K.S. Functionalized exfoliated graphene oxide as supercapacitor electrodes. Soft Nanosci. Lett. 2012, 2, 59–66. [Google Scholar] [CrossRef]
- Kim, T.; Jung, G.; Yoo, S.; Suh, K.S.; Ruoff, R.S. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 2013, 7, 6899–6905. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.; Huang, L.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107. [Google Scholar] [CrossRef]
- Ladrón-de-Guevara, A. Reduced graphene oxide/polyaniline electrochemical supercapacitors fabricated by laser. Appl. Surf. Sci. 2019, 467–468, 691–697. [Google Scholar] [CrossRef]
- Ogata, C.; Kurogi, R.; Hatakeyama, K.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y. All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage. Chem. Commun. 2016, 52, 3919–3922. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, G.; Yuan, R.; Chen, W.; Wang, Z.; Zhang, L.; Zhan, K.; Zhu, M.; Yang, J.; Zhao, B. Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime. J. Mater. Sci. Technol. 2022, 99, 260–269. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes–the route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef]
- Elrouby, M.; Abu-Dief, A.M.; Mohamed, I.M.A. Facile synthesis and electrochemical characterization of erbium oxide and hydroxide for supercapacitor applications. Ionics 2024, 30, 5699–5711. [Google Scholar] [CrossRef]
- Ali, H.; Orooji, Y.; Ajmal, Z.; Abboud, M.; Abu-Dief, A.M.; Al-Ola, K.A.A.; Hassan, H.M.; Yue, D.; Guo, S.R.; Hayat, A. A comprehensive Review based on the synthesis, properties, morphology, functionalization, and potential applications of transition metals nitrides. Coord. Chem. Rev. 2025, 526, 216353. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, R.; Singh, R.K. Recent trends in template assisted 3D porous materials for supercapacitor applications. J. Mater. Chem. A 2021, 9, 22422–22482. [Google Scholar]
- Kumar, A.; Kumar, R.; Singh, R.K. Template-free synthesis of Se-nanorods-rGO nanocomposite for application in supercapacitors. Nanotechnol. Rev. 2019, 8, 661–670. [Google Scholar]
- Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428. [Google Scholar] [CrossRef]
- Sivakumar, S.; Sivakumar, P. Electrochemical performance evaluation of template- assisted and template-free synthesized NiO nanomaterials for supercapacitor applications. J. Solid State Electrochem. 2021, 25, 2505–2515. [Google Scholar]
- Li, J.; Wang, X.; Huang, Q.; Gamboa, S.; Sebastian, P.J. Sol–gel derived manganese oxide as electrode material for electrochemical capacitors. J. Power Sources 2006, 160, 1505–1509. [Google Scholar]
- Kumar, A. Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor. J. Mol. Struct. 2020, 1220, 128654. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Y. Bottom-up versus top-down approaches to the synthesis of monodispersed colloidal nanocrystals of complex materials. Nano Res. 2006, 6, 672–687. [Google Scholar]
- Zhang, H.; Yu, L. Recent advances in sol–gel derived materials for supercapacitor applications: A mini review. J. Mater. Sci. Mater. Electron. 2017, 28, 13383–13393. [Google Scholar]
- Salaheldeen, M.; Abu-Dief, A.M.; Martínez-Goyeneche, L.; Alzahrani, S.O.; Alkhatib, F.; Álvarez-Alonso, P.; Blanco, J.Á. Dependence of the Magnetization Process on the Thickness of Fe70Pd30 Nanostructured Thin Film. Materials 2020, 13, 5788. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Tong, K.; Pei, Q. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 2010, 3, 442–450. [Google Scholar]
- Zhang, Y.; Zhang, L.; Zhou, C. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, T. Ink-based additive manufacturing for electrochemical applications. Heliyon 2024, 10, e33023. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, L.; Liu, L.; Zhu, B.; Dong, H.; Chen, X. All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv. Mater. 2012, 24, 5088–5092. [Google Scholar] [CrossRef]
- Kohlmeyer, R.R.; Chen, H.; Liu, J.; Chen, Z. Three-dimensional carbon nanotube–polyaniline hybrid materials for pseudocapacitive electrodes. J. Mater. Chem. 2011, 21, 9491–9496. [Google Scholar]
- Lewandowski, A.; Galinski, M. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources 2010, 194, 601–609. [Google Scholar] [CrossRef]
- Xu, Q.; Lv, Y.; Dong, C.; Sreeprased, T.S.; Tian, A.; Zhang, H.; Tang, Y.; Yu, Z.; Li, N. Three-dimensional micro/nanoscale architectures: Fabrication and applications. Nanoscale 2015, 7, 10883–10895. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode material for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhou, R.; Zhao, X.S. Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 2010, 20, 5983–5992. [Google Scholar] [CrossRef]
- Meher, S.K.; Gupta, R.K.; Singh, A.K. Graphene oxide and its derivatives as electrode material for supercapacitor. J. Mater. Sci. Mater. Electron. 2017, 28, 12633–12649. [Google Scholar]
- Salaheldeen, M.; Méndez, M.; Vega, V.; Fernández, A.; Prida, V.M. Tuning Nanohole Sizes in Ni Hexagonal Antidot Arrays: Large Perpendicular Magnetic Anisotropy for Spintronic Applications. ACS Appl. Nano Mater. 2019, 2, 1866–1875. [Google Scholar] [CrossRef]
- Wang, Y.-G. Nickel hydroxide/carbon nanotube composite electrodes for supercapacitors. J. Power Sources Jan. 2009, 189, 1270–1276. [Google Scholar]
- Li, H.; Kang, Z.; Liu, Y.; Lee, S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, R.; Singh, R.K. Advances in supercapacitor development: Materials, processes, and applications. J. Electron. Mater. 2022, 52, 96–129. [Google Scholar]
- Wang, H.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J.D.; Fu, X. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. 2010, 49, 441–444. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two- dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Wang, C. Binder-free electrodes and their application for Li-ion batteries. Nanoscale Res. Lett. 2020, 15, 112. [Google Scholar]
- Wang, J.; Xu, Z. Design and synthesis of MnO2/carbon nanotube/graphene ternary composite for high-performance supercapacitors. J. Power Sources 2014, 271, 291–299. [Google Scholar]
- Zhang, L.; Zhao, X.; Ji, H.; Li, Y.; Bai, X.; Fan, L.; Ruoff, R.S. Nitrogen-doped holey graphene as an anode material for high-performance lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1215–1220. [Google Scholar]
- B’eguin, F.; Frąckowiak, E. (Eds.) Supercapacitors: Materials, Systems and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Phor, L.; Kumar, A.; Chahal, S. Electrode materials for supercapacitors: A comprehensive review of advancements and performance. J. Energy Storage 2024, 84, 110698. [Google Scholar]
- Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.L.; Tolbert, S.H.; Dunn, B. High- rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Salaheldeen, M.; Martínez-Goyeneche, L.; Álvarez-Alonso, P.; Fernandez, A. Enhancement the perpendicular magnetic anisotropy of nanopatterned hard/soft bilayer magnetic antidot arrays for spintronic application. Nanotechnology 2020, 31, 485708. [Google Scholar] [CrossRef]
- Shah, S.S.; Niaz, F.; Ehsan, M.A.; Das, H.T.; Younas, M.; Khan, A.S.; Aziz, M.A. Advanced strategies in electrode engineering and nanomaterial modifications for supercapacitor performance enhancement: A comprehensive review. J. Energy Storage 2024, 79, 110152. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Kumar, N.; Jena, A.; Mishra, S.; Lee, C.P.; Lee, S.Y.; Park, S.J. Recent progress in graphene and its derived hybrid materials for high-performance supercapacitor electrode applications. RSC Adv. 2024, 14, 1284–1303. [Google Scholar] [CrossRef]
- Kulkarni, P.; Kim, K.-H. Mathematical Modelling and Simulation of supercapacitors. In Supercapacitors: Theoretical and Practical Devices; Kim, K.-H., Mitra, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 323–348. [Google Scholar]
- Stoller, M.D.; Ruoff, R.S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 2010, 3, 1294–1301. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Zhukova, V.; Rosero, J.; Salazar, D.; Ipatov, M.; Zhukov, A. Comparison of the magnetic and structural properties of MnFePSi microwires and MnFePSi bulk alloy. Materials 2024, 17, 1874. [Google Scholar] [CrossRef]
- Pandey, D.; Kumar, K.S.; Thomas, J. Supercapacitor electrode energetics and mechanism of operation: Uncovering the voltage window. Prog. Mater. Sci. 2023, 141, 101219. [Google Scholar] [CrossRef]
- Burke, A. Ultracapacitors: Why, how, and where is the technology. J. Power Sources 2000, 91, 37–50. [Google Scholar] [CrossRef]
- Bowen, D.K.; Tanner, B.K. High Resolution X-Ray Diffractometry and Topography; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Cullity, B.D.; Stock, S.R. Diffractometer and Spectrometer Measurements. Elements of X-Ray Diffraction, 2nd ed; Addison-Wesley: Boston, MA, USA, 1956; pp. 188–226. [Google Scholar]
- Baig, M.M.; Pervaiz, E.; Afzal, M.J. Catalytic activity and kinetic studies of core@ shell nanostructure NiFe2O4 @TiO2 for photocatalytic degradation of methyl orange dye. J. Chem. Soc. Pak. 2020, 42, 531–541. [Google Scholar]
- Treacy, M.; Newsam, J.; Deem, M. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. A 1991, 411, 499–520. [Google Scholar]
- Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Satyanarayana, P. X-ray peak broadening analysis of AA 6061100−x − x wt.% Al2O3 nanocomposite prepared by mechanical alloying. Mater. Charact. 2011, 62, 661–672. [Google Scholar] [CrossRef]
- Ungar, T. Microstructural parameters from X-ray diffraction peak broadening. Scr. Mater. 2004, 51, 777–781. [Google Scholar] [CrossRef]
- Ali, S.; Karunanithi, R.; Prashanth, M.; Rahman, M.A. X-ray peak broadening on microstructure, and structural properties of titanium and Ti-6Al-4V alloys. Mater. Today Proc. 2020, 27, 2390–2393. [Google Scholar] [CrossRef]
- Wolf, M.; May, B.M.; Cabana, J. Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping. Chem. Mater. 2017, 29, 3347–3362. [Google Scholar]
- Gu, Q.; Kimpton, J.A.; Brand, H.E.; Wang, Z.; Chou, S. Solving key challenges in battery research using in situ synchrotron and neutron techniques. Adv. Energy Mater. 2017, 7, 1602831. [Google Scholar] [CrossRef]
- De Groot, F. High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 2001, 101, 1779–1808. [Google Scholar] [CrossRef]
- Koningsberger, D.; Prins, R. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES; Wiley-Interscience: Hoboken, NJ, USA, 1988. [Google Scholar]
- Kelly, S.; Hesterberg, D.; Ravel, B. Analysis of soils and minerals using X-ray absorption spectroscopy. In Methods of Soil Analysis Part 5—Mineralogical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 387–463. [Google Scholar]
- Thole, B.; Van der Laan, G. Branching ratio in x-ray absorption spectroscopy. Phys. Rev. B 1988, 38, 3158. [Google Scholar] [CrossRef]
- Nam, K.W.; Yoon, W.S.; Kim, K.B. X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors. Electrochim. Acta 2002, 47, 3201–3209. [Google Scholar] [CrossRef]
- Nam, K.W.; Kim, M.G.; Kim, K.B. In Situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors. J. Phys. Chem. C 2007, 111, 749–758. [Google Scholar] [CrossRef]
- Chang, H.W.; Lu, Y.R.; Chen, J.L.; Chen, C.L.; Lee, J.F.; Chen, J.M.; Tsai, Y.C.; Chang, C.M.; Yeh, P.H.; Chou, W.C.; et al. Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: An in situ X-ray absorption spectroscopic investigation. Nanoscale 2015, 7, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.W.; Lu, Y.R.; Chen, J.L.; Chen, C.L.; Lee, J.F.; Chen, J.M.; Tsai, Y.C.; Yeh, P.H.; Choue, W.C.; Dong, C.L. Electrochemical and in situ X-ray spectroscopic studies of MnO2 /reduced graphene oxide nanocomposites as a supercapacitor. Phys. Chem. Chem. Phys. 2016, 18, 18705–18718. [Google Scholar] [CrossRef] [PubMed]
- Toupin, M.; Brousse, T.; B’elanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Tõnisoo, A.; Kruusma, J.; Pärna, R.; Kikas, A.; Hirsimäki, M.; Nõmmiste, E.; Lust, E. In situ XPS studies of electrochemically negatively polarized molybdenum carbide derived carbon double layer capacitor electrode. J. Electrochem. Soc. 2013, 160, A1084–A1093. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, W.; Zhang, B. A review of electrocatalyst characterization by transmission electron microscopy. J. Energy Chem. 2017, 26, 1117–1135. [Google Scholar] [CrossRef]
- Klein, T.; Buhr, E.; Frase, C.G. TSEM: A review of scanning electron microscopy in transmission mode and its applications. In Advances in Imaging and Electron Physics; Elsevier: Amsterdam, The Netherlands, 2012; pp. 297–356. [Google Scholar]
- Song, Z.; Xie, Z.H. A literature review of in situ transmission electron microscopy technique in corrosion studies. Micron 2018, 112, 69–83. [Google Scholar] [CrossRef]
- Zhou, W.; Thomas, J.M. HRTEM surface profile imaging of solids. Curr. Opin. Solid State Mater. Sci. 2001, 5, 75–83. [Google Scholar] [CrossRef]
- Greer, H.F.; Zhou, W. Electron diffraction and HRTEM imaging of beam-sensitive materials. Crystallogr. Rev. 2011, 17, 163–185. [Google Scholar] [CrossRef]
- Rouzaud, J.N.; Clinard, C. Quantitative high-resolution transmission electron microscopy: A promising tool for carbon materials characterization. Fuel Process. Technol. 2002, 77, 229–235. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Vega, V.; Ibabe, A.; Jaafar, M.; Asenjo, A.; Fernandez, A.; Prida, V.M. Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure. Nanomaterials 2018, 8, 227. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.; Zhang, C.; Burnell, G.; Brown, A.; Robertson, J.; Hickey, B. A review of methods for the accurate determination of the chiral indices of carbon nanotubes from electron diffraction patterns. Carbon 2011, 49, 4961–4971. [Google Scholar] [CrossRef]
- Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015. Chem. Rev. 2016, 116, 13234–13278. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Gao, L.; Hu, X.; Cao, K.; Zhou, W.; Wang, W.; Lu, Y. Stereolithographic 3D printing-based hierarchically cellular lattices for high-performance quasi-solid supercapacitor. Nano-Micro Lett. 2019, 11, 46. [Google Scholar] [CrossRef]
- Xue, Y.; Ding, Y.; Niu, J.; Xia, Z.; Roy, A.; Chen, H.; Qu, J.; Wang, Z.L.; Dai, L. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci. Adv. 2015, 1, e1400198. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Garcia-Gomez, A.; Ipatov, M.; Corte-Leon, P.; Zhukova, V.; Blanco, J.M.; Zhukov, A. Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperature. Chemosensors 2022, 10, 225. [Google Scholar] [CrossRef]
- Cleveland, J.; Anczykowski, B.; Schmid, A.; Elings, V. Energy dissipation in tapping- mode atomic force microscopy. Appl. Phys. Lett. 1998, 72, 2613–2615. [Google Scholar] [CrossRef]
- Kumar, K.S.; Choudhary, N.; Pandey, D.; Ding, Y.; Hurtado, L.; Chung, H.S.; Tetard, L.; Jung, Y.; Thomas, J. Investigating 2D WS 2 supercapacitor electrode performance by Kelvin probe force microscopy. J. Mater. Chem. A 2020, 8, 12699–12704. [Google Scholar] [CrossRef]
- Ventosa, E.; Schuhmann, W. Scanning electrochemical microscopy of Li-ion batteries. Phys. Chem. Chem. Phys. 2015, 17, 28441–28450. [Google Scholar] [CrossRef]
- Dendisová, M.; Jeništová, A.; Parchaňská-Kokaislová, A.; Matějka, P.; Prokopec, V.; Švecová, M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal. Chim. Acta 2018, 1031, 1–14. [Google Scholar] [CrossRef]
- Petit, T.; Puskar, L. FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater. 2018, 89, 52–66. [Google Scholar] [CrossRef]
- Khan, M.Z.; Gul, I.H.; Baig, M.M.; Khan, A.N. Comprehensive study on structural, electrical, magnetic and photocatalytic degradation properties of Al 3+ ions substituted nickel ferrites nanoparticles. J. Alloy. Compd. 2020, 848, 155795. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Gouadec, G.; Colomban, P. Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 2007, 53, 1–56. [Google Scholar] [CrossRef]
- Kumar, C.S. Raman Spectroscopy for Nanomaterials Characterization; Springer Science & Business Media: Heidelberg, Germany, 2012. [Google Scholar]
- Krishnamoorthy, K.; Pazhamalai, P.; Kim, S.J. Two-dimensional siloxene nanosheets: Novel high-performance supercapacitor electrode materials. Energy Environ. Sci. 2018, 11, 1595–1602. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Mariappan, V.K.; Pazhamalai, P.; Sahoo, S.; Kim, S.J. Mechanical energy harvesting properties of free-standing carbyne enriched carbon film derived from dehydrohalogenation of polyvinylidene fluoride. Nano Energy 2019, 59, 453–463. [Google Scholar] [CrossRef]
- Blanc, F.; Leskes, M.; Grey, C.P. In situ solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors, and fuel cells. Acc. Chem. Res. 2013, 46, 1952–1963. [Google Scholar] [CrossRef]
- Borchardt, L.; Oschatz, M.; Paasch, S.; Kaskel, S.; Brunner, E. Interaction of electrolyte molecules with carbon materials of well-defined porosity: Characterization by solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 15177–15184. [Google Scholar] [CrossRef]
- Griffin, J.M.; Forse, A.C.; Tsai, W.Y.; Taberna, P.L.; Simon, P.; Grey, C.P. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 2015, 14, 812–819. [Google Scholar] [CrossRef]
- Sinha, P.; Datar, A.; Jeong, C.; Deng, X.; Chung, Y.G.; Lin, L.C. Surface Area Determination of porous materials using the Brunauer–Emmett–Teller (BET) method: Limitations and improvements. J. Phys. Chem. C 2019, 123, 20195–20209. [Google Scholar] [CrossRef]
- Mohan, V.B.; Jayaraman, K.; Bhattacharyya, D. Brunauer–Emmett–Teller (BET) specific surface area analysis of different graphene materials: A comparison to their structural regularity and electrical properties. Solid State Commun. 2020, 320, 114004. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Zhukova, V.; Gonzalez, J.; Zhukov, A. The Effect of High-Temperature Annealing on the Magnetic and Structural Properties of (MnFePSi)-Based Glass-Coated Microwires. Crystals 2025, 15, 311. [Google Scholar] [CrossRef]
- Muhammad, K. A review on the selected applications of battery-supercapacitor hybrid energy storage systems for microgrids. Energies 2019, 12, 4559. [Google Scholar] [CrossRef]
- Xun, Q.; Liu, Y.; Zhao, J.; Grunditz, E.A. Modelling and simulation of fuel cell/ supercapacitor passive hybrid vehicle system. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 2690–2696. [Google Scholar]
- Ping, W.; Zhao, C.; Zhang, Y.; Jing, L.; Yongping, G. A bidirectional three-level DC-DC converter with a wide voltage conversion range for hybrid energy source electric vehicles. J. Power Electron. 2017, 17, 334–345. [Google Scholar]
- Julius, P.; Dina, I.A. The role of supercapacitors in regenerative braking systems. Energies 2019, 12, 2683. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Yang, L.; Gao, Y.; Jin, B. Multi-parameter collaborative power prediction to improve the efficiency of supercapacitor-based regenerative braking system, IEEE Trans. Energy Convers 2021, 36, 2612–2622. [Google Scholar] [CrossRef]
- Salari, O.; Zaad, K.H.; Bakhshai, A.; Jain, P. Reconfigurable hybrid energy storage system for an electric vehicle DC–AC inverter, IEEE Trans. Power Electron. 2020, 35, 12846–12860. [Google Scholar]
- Hsieh, M.-F.; Chen, P.-H.; Pai, F.-S.; Weng, R.-Y. Development of supercapacitor- aided hybrid energy storage system to enhance battery life cycle of electric vehicles. Sustainability 2021, 13, 7682. [Google Scholar] [CrossRef]
- Petru, V.R.; Adam, S.; Marcin, S. On-board energy storage devices with supercapacitors for metro trains—Case study analysis of application effectiveness. Energies 2019, 12, 1291. [Google Scholar]
- Jaemin, K.; Donghwa, S.; Donkyu, B.; Jaehyun, P. Design and optimization of supercapacitor hybrid architecture for power supply-connected batteries lifetime enhancement. Electronics 2019, 8, 41. [Google Scholar] [CrossRef]
- Kim, J.; Pröbstl, A.; Chakraborty, S.; Chang, N. Aging mitigation of power supply-connected batteries. In Proceedings of the 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), La Jolla, CA, USA, 11–13 August 2014. [Google Scholar]
- Shi, R.; Semsar, S.; Lehn, P.W. Single-stage hybrid energy storage integration in electric vehicles using vector-controlled power sharing, IEEE Trans. Ind. Electron. 2021, 68, 10623–10633. [Google Scholar] [CrossRef]
- Panhwar, H. Mitigating power fluctuations for energy storage in wind energy conversion system using supercapacitors. IEEE Access 2020, 8, 189747–189760. [Google Scholar] [CrossRef]
- Aranizadeh, A.; Zaboli, A.; Gashteroodkhani, O.A.; Vahidi, B. Wind turbine and ultra-capacitor harvested energy increasing in microgrid using wind speed forecasting, Engineering Science and Technology. Int. J. 2019, 22, 1161–1167. [Google Scholar]
- Yadlapalli, R.T.; Kotapati, A.; Rajani, K. Advancements in power conditioning units for electric vehicle applications: A review. Int. J. Electr. Hybrid Veh. 2021, 13, 81–115. [Google Scholar] [CrossRef]
- Ali, D.F.; Hossein, T. Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbine. J. Energy Storage 2021, 42, 102983. [Google Scholar]
- Salaheldeen, M.; Garcia-Gomez, A.; Corte-Leon, P.; Gonzalez, A.; Ipatov, M.; Zhukova, V.; Lopez Anton, R.; Zhukov, A. Manipulation of magnetic and structure properties of Ni2FeSi glass-coated microwires by annealing. J. Alloys Compd. 2023, 942, 169026. [Google Scholar] [CrossRef]
- Weaver, W.W. Super capacitor energy storage system design for wave energy converter demonstration. In Proceedings of the 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 24–26 June 2020; pp. 564–570. [Google Scholar]
- Aditya, S.S.; Chakraborty, A.K.; Bhattacharyya, B.K. Supercapacitor module solely powering DC–DC buck converter for hand-held applications. IETE J. Res. 2020, 66, 115–123. [Google Scholar]
- Sambit, S.; Sanchali, D.; Bidyut, K.B. How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors. J. Energy Storage 2020, 27, 101044. [Google Scholar]
- Ahsan, E.; Arslan, A.A.; Umar, T.S.; Muhammad, T.U.; Muhammad, S.I. Efficient wireless charging system for supercapacitor-based electric vehicle using inductive coupling power transfer technique. Adv. Mech. Eng. 2019, 11, 168781401988696. [Google Scholar]
- Ali, N.; Liu, Z.; Armghan, H.; Ahmad, I.; Hou, Y. LCC-S-based integral terminal sliding mode controller for a hybrid energy storage system using a wireless power system. Energies 2021, 14, 1693. [Google Scholar] [CrossRef]
- Gao, C.; Huang, J.; Xiao, Y. A seamlessly integrated device of micro- supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat. Commun. 2021, 12, 2647. [Google Scholar] [CrossRef]
- López Antón, R.; Andres, J.P.; Gonzalez, J.A.; Garcia-Gomez, A.; Zhukova, V.; Chizhik, A.; Salaheldeen, M.; Zhukov, A. Tuning of magnetic properties and Giant Magnetoimpedance effect in multilayered microwires. J. Sci. Adv. Mater. Devices 2024, 9, 100821. [Google Scholar] [CrossRef]
- Felsmann, B.; Mezősi, A.; Szabó, L. Market versus Bureaucracy—Price Regulation in the Electricity Retail Sector. In Proceedings of the Importance of Kornai’s Research Today, Budapest, Hungary, 21–22 February 2018. [Google Scholar]
- Tawalbeh, M.; Murtaza, S.Z.; Al-Othman, A.; Alami, A.H.; Singh, K.; Olabi, A.G. Ammonia: A versatile candidate for the use in energy storage systems. Renew. Energy 2022, 194, 955–977. [Google Scholar] [CrossRef]
- Chakraborty, M.R.; Dawn, S.; Saha, P.K.; Basu, J.B.; Ustun, T.S. A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems. Batteries 2022, 8, 124. [Google Scholar] [CrossRef]
- Asri, L.I.M.; Ariffin, W.N.S.F.W.; Zain, A.S.M.; Nordin, J.; Saad, N.S.C. Comparative Study of Energy Storage Systems (ESSs). J. Phys. Conf. Ser. 2021, 1962, 012035. [Google Scholar] [CrossRef]
- Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects. Energies 2020, 13, 3651. [Google Scholar] [CrossRef]
- David, B.R.; Spencer, S.; Miller, J.; Almahmoud, S.; Jouhara, H. Comparative environmental life cycle assessment of conventional energy storage system and innovative thermal energy storage system. Int. J. Thermofluids 2021, 12, 100116. [Google Scholar] [CrossRef]
- Christen, T.; Carlen, M.W. Theory of Ragone plots. J. Power Sources 2000, 91, 210–216. [Google Scholar] [CrossRef]
- Schneuwly, A.; Gallay, R. Properties and applications of supercapacitors from the state-of-the-art to future trends. In Proceeding PCIM; Mesago PCIM GmbH: Nuremberg, Germany, 2000. [Google Scholar]
- Kosala, G. 4-Capacitors as energy storage devices—Simple basics to current commercial families. In Energy Storage Devices for Electronic Systems; Kularatna, N., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 137–148. ISBN 9780124079472. [Google Scholar]
- Inga, B.; Astrid, B.; Hanke-Rauschenbach, R. Ragone plots revisited: A review of methodology and application across energy storage technologies. J. Energy Storage 2023, 73, 109097. [Google Scholar]
- Shifei, H.; Samrat, S.; Yufeng, Z. Challenges and opportunities for supercapacitors. APL Mater. 2019, 7, 100901. [Google Scholar]
- Sayed, Y.A.; Saad, G.M.; Yosry, F.B.; Hamdy, H.H.; Zoubi, W.A. Supercapacitor electrode materials: Addressing challenges in mechanism and charge storage. Rev. Inorg. Chem. 2021, 42, 53–88. [Google Scholar]
- Wu, Y.; Cao, C. The way to improve the energy density of supercapacitors: Progress and perspective. Sci. China Mater. 2018, 61, 1517–1526. [Google Scholar] [CrossRef]
- Yaseen, M.; Khattak, M.A.K.; Humayun, M.; Usman, M.; Shah, S.S.; Bibi, S.; Hasnain, B.S.U.; Ahmad, S.M.; Khan, A.; Shah, N. A review of supercapacitors: Materials design, modification, and applications. Energies 2021, 14, 7779. [Google Scholar] [CrossRef]
- Aqib, M.; Basheer Ahamed, M.; Kalim, D.; Jagannathan, T. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar]
- Sandhiya, M.; Suresh Balaji, S.; Sathish, M. Boosting the energy density of flexible supercapacitors by redox-additive hydrogels. Energy Fuels 2020, 34, 11536–11546. [Google Scholar] [CrossRef]
- Edurne, R.; Lewis, W.; Le, F.; Richard, F.; Rebecca, T.; Andrew, J.F.; Dryfe, R.A.W. Enhancing supercapacitor energy density by mass- balancing of graphene composite electrodes. Electrochim. Acta 2020, 360, 136957. [Google Scholar]
- Rani, J.R.; Thangavel, R.; Oh, S.I.; Lee, Y.S.; Jang, J.H. An ultra-high-energy density supercapacitor; fabrication based on thiol-functionalized graphene oxide scrolls. Nanomaterials 2019, 9, 148. [Google Scholar] [CrossRef]
- Hérou, S.; Josh, J.B.; Matt, K.; Philipp, S.; Rhodri, J.; Dan, J.L.B.; Paul, R.S.; Maria, C.R.; Magdalena, T. High- density lignin-derived carbon nanofiber supercapacitors with enhanced volumetric energy density. Adv. Sci. 2021, 8, 2100016. [Google Scholar] [CrossRef]
- Katkar, P.K.; Naikwade, M.B.; Patil, S.A.; Lee, S.W. Self-assembly of Sr2P2O7@2D rGO nano/micro-architecture for highly durable and bendable solid-state supercapattery. Mater. Today Phys. 2024, 46, 101510. [Google Scholar] [CrossRef]
- Ren, K.; Liu, Z.; Wei, T. Recent developments of transition metal compounds- carbon hybrid electrodes for high energy/power supercapacitors. Nano-Micro Lett. 2021, 13, 129. [Google Scholar] [CrossRef]
- Jiandong, D.; Minghang, D.; Zhang, K.; Zhengkai, L.; Sun, L. Research on voltage equalization among multiple supercapacitor modules based on multiwinding transformer. Int. J. Electr. Power Energy Syst. 2020, 120, 106031. [Google Scholar]
- Yu, Y.; Saasaa, R.; Khan, A.A.; Eberle, W. A series resonant energy storage cell voltage balancing circuit. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3151–3161. [Google Scholar] [CrossRef]
- Liao, W.; Chen, Y.; Zeng, J.; Lai, Z.; Liu, J. Topology, analysis and modeling of voltage equalizers based on reutilization technique for supercapacitor storage system. IEEE Trans. Transp. Electrif. 2021; early access. [Google Scholar]
- Jiang, F. Consensus-Based Cell Balancing of Reconfigurable Supercapacitors. IEEE Trans. Ind. Appl. 2020, 56, 4146–4154. [Google Scholar] [CrossRef]
- Zhang, L.; Xiaosong, L.; Zhenpo, W.; Fengchun, S.; David, G.D. A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renew. Sustain. Energy Rev. 2018, 81, 1868–1878. [Google Scholar] [CrossRef]
- Helseth, L.E. Modelling supercapacitors using a dynamic equivalent circuit with a distribution of relaxation times. J. Energy Storage 2019, 25, 100912. [Google Scholar] [CrossRef]
- Miniguano, H.; Barrado, A.; Fernández, C.; Zumel, P.; Lázaro, A. A general parameter identification procedure used for the comparative study of supercapacitors models. Energies 2019, 12, 1776. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, W.; Fang, Z.; Liu, S. A parameters identification method of the equivalent circuit model of the supercapacitor cell module based on segmentation optimization. IEEE Access 2020, 8, 92895–92906. [Google Scholar] [CrossRef]
- Khaled, L.; Antonio, J.M.C. A review of supercapacitors modeling, SoH, and SoE estimation methods: Issues and challenges. Int. J. Energy Res. 2021, 45, 18424–18440. [Google Scholar]
- Ankaj, S.; Satadru, D.; Munmun, K. Second-life applications of supercapacitors: Effective capacitance prognosis and aging. J. Power Sources 2021, 496, 229824. [Google Scholar]
- Zhao, J.; Burke, A. Review on supercapacitors: Technologies and performance evaluation. J. Energy Chem. 2020, 59, 276–291. [Google Scholar] [CrossRef]
- Riaz, A.; Sarker, M.R.; Saad, M.H.M.; Mohamed, R. Review on comparison of different energy storage technologies used in micro-energy HARVESTING, WSNs, Low-Cost microelectronic devices: Challenges and recommendations. Sensors 2021, 21, 5041. [Google Scholar] [CrossRef]
- Ebadi, R.; Sadeghi, Y.A.; Kazemzadeh, R.; Mohammadi-Ivatloo, B. Techno-economic evaluation of transportable battery energy storage in robust day-ahead scheduling of integrated power and railway transportation networks. Int. J. Electr. Power Energy Syst. 2021, 126, 106606. [Google Scholar] [CrossRef]
- Can Supercapacitors Surpass Batteries for Energy Storage? 2021. Available online: https://www.electronicdesign.com/power-management/article/21801779/can-supercapacitors-surpass-batteries-for-energy-storage (accessed on 20 April 2025).
Parameters | Li-Ion Manganese | Li-Ion Cobalt | Li-Ion Phosphate |
---|---|---|---|
Specific energy density (Wh/kg) | 100–135 | 150–190 | 90–120 |
Cell voltage (nominal V) | 3.8 | 3.6 | 3.3 |
Cycle life (80% discharge) | 500–1000 | 500–1000 | 1000–2000 |
Internal resistance (mΩ) | 25–75 | 150–300 | 25–50 |
Fast charge time (Hours) | <1 | 2–4 | <1 |
IL Electrolyte | Electrode | Capacitance | References |
---|---|---|---|
[EMIm][SeCN] | Activated carbon | 49 F/g for Al 56 F/g for stainless steel | [142] |
[EDMF]BF4 | GC electrode | 126 F/g | [143] |
[EMIM]BF4 | Nonporous gold | 12.1 to 6.6 F/cm3 | [144] |
EMIM-TFSI | “Peppered”-activated carbon | [145] | |
[EMIM][TFSI]/FS | MnO2@CF//FeOOH/PPy@CF | [146] | |
EMIM-TFSI | Mesoporous reduced graphene oxide | 104.3 F/g | [147] |
[EMIM][TFSI]/LiCl/Al2O3 | (MWNT)/V2O5 nanowires (NWs) | 10.6 mF/cm2 at 0.5 mA/cm2 | [148] |
(EMIMTFSI)/ acetonitrile | Manganese oxide (MnOx)-decorated carbonized porous silicon nanowire | 635 F/g | [149] |
[BMPyr+] [DCA−] | α-Co(OH)2 | 28.6 F/g @0.15 mA/cm2 | [139] |
EMIMBF4 | Boron-doped graphene | 138 F/g | [100] |
EMIMBF4 | Highly conductive mesoporous activated carbon fiber | 204 F/g @0.5 A/g | [150] |
(1-Ethylimidazolium bis(trifluoromethane sulfonyl) Imide | Carbon nanofiber | 77.1 F/g @0.5 A/g | [99] |
Design Principle | Advantages | Applications | Limitations |
---|---|---|---|
Surface Area and Porosity | Higher charge storage capacity, faster ion diffusion, enhanced charge–discharge rates, and improved capacitance retention. | Supercapacitor electrodes, energy storage in portable electronics, power buffering in renewable energy systems, hybrid electric vehicles, and grid stabilization and frequency regulation. | Challenging to achieve ultrahigh porosity and limitations in mass loading due to pore structure. |
Electrode Material Selection | High specific capacitance, excellent charge–discharge characteristics, wide range of available materials, and tunable properties for various applications. | Energy storage in electric vehicles, portable electronics, renewable energy storage, and aerospace and defense applications. | Limited voltage windows for some materials may exhibit poor cycling stability and high cost for certain advanced materials. |
Electrical Conductivity | Low internal resistance, efficient charge transfer, and enhanced power delivery. | High-power applications, rapid charge–discharge cycles, high-frequency applications, and reduced energy losses. | Some materials may suffer from poor conductivity, compatibility with certain electrolytes, and energy harvesting. |
Electrolyte Compatibility | Efficient ion transport, improved charge–discharge rates, lower internal resistance, and a wide range of available electrolytes. | Portable electronics, renewable energy systems, electric vehicles, and grid stabilization and frequency regulation. | Limited operating voltage window for certain electrolytes and potential for electrolyte decomposition. |
Binder and Additive Selection | Enhanced electrode stability, improved electrode–electrolyte interface, and better mechanical integrity. | Supercapacitor electrodes, portable electronics, renewable energy storage, and hybrid electric vehicles. | Potential for binder and additive decomposition: binder content may reduce the effective surface area. |
Electrode Thickness and Mass Loading | Higher energy density, enhanced ion transport, improved power density, and tailored properties for specific applications. | Supercapacitor electrodes, energy storage in portable electronics, renewable energy systems, and electric vehicles. | Limited mass loading may affect overall capacitance, thicker electrodes may lead to slower charge–discharge rates, and mass loading may affect mechanical stability. |
Scalability and Cost-Effectiveness | Cost-effective manufacturing, large-scale production feasibility, commercial viability, and potential for integration with existing processes. | Supercapacitor electrodes, energy storage in portable electronics, renewable energy systems, and electric vehicles. | Scalability may affect some material properties, scalability may introduce fabrication challenges, and cost-effectiveness may compromise performance. |
Electrode Material | Specific Capacitance (F/g) | Reference |
---|---|---|
Graphene oxide | 200:300 | [160] |
Carbon nanotubes | 100:300 | [160] |
Manganese dioxide | 350:400 | [163] |
Nickel hydroxide | 2000:3000 | [176] |
Characteristic | Description | Importance | Measurement Unit | Reference |
---|---|---|---|---|
Specific Capacitance | Energy storage capacity per unit mass or surface area | Fundamental for energy storage efficiency | Farads per gram (F/g) or farads per square centimeter (F/cm2) | [212] |
Energy Density | Total energy storage capacity per unit volume or mass | Determines overall device performance | Watt-hours per kilogram (Wh/kg) or watt-hours per liter (Wh/L) | [213] |
Power Density | Rate of energy charge and discharge | Crucial for high-power applications | Watts per kilogram (W/kg) or watts per liter (W/L) | [214] |
Cycling Stability | Ability to maintain performance over charge–discharge cycles | Ensures long-term device reliability | N/A | [215] |
Rate Capability | Ability to handle rapid charge and discharge rates | Important for dynamic energy storage applications | N/A | [216] |
Equivalent Series Resistance (ESR) | Internal resistance affecting energy conversion efficiency | Influences power performance | Ohms | [199] |
Cycle Life | Number of charge–discharge cycles before performance degradation | Important for device lifespan and cost-effectiveness | N/A | [166] |
System | Max. Power Rating (MW) | Efficiency (%) | Discharge Time | Cost/KW (USD) | Cost/KWh (USD) | Energy Density (Wh/L) |
---|---|---|---|---|---|---|
PHS | 3000 | 70–85 | 4 h–16 h | 600–2000 | 5–100 | 0.2–2 |
CAES | 1000 | 40–70 | 2 h–30 h | 400–800 | 2–50 | 2–6 |
FES | 20 | 70–95 | sec–mins | 250–350 | 1000–5000 | 20–80 |
Lead–acid | 100 | 80–90 | 1 min–8 h | 300–600 | 200–400 | 50–80 |
NiCd/NiMH | 40 | sec–hours | 500–1500 | 800–1500 | 60–150 | |
Li-ion | 100 | 85–95 | 1 min–8 h | 1200–4000 | 600–2500 | 200–400 |
Metal–air | 0.01 | 50 | secs–day | 100–250 | 10–60 | 500–10,000 |
Sodium–sulfur | 0.05–8 | 75–90 | sec–hours | 1000–3000 | 300–500 | 150–250 |
RFB/HFB | 100 | 60–85 | hours | 700–2500 | 150–1000 | 20–70 |
H2 | 100 | 25–45 | min–week | 10 | 600 | |
Fuel Cell | 50 | 60–80 | secs–day | 10,000 | 500–3000 | |
SMES | 10 MW | 95 | millisec–secs | 200–300 | 1000–10,000 | 0.2–2.5 |
Thermal | 150 | 80–90 | hours | 200–300 | 30–60 | 70–210 |
System | Lifetime/Cycles | Environmental Impact | Description of Impact |
---|---|---|---|
PHS | 30–60 years | -ve | Cutting trees and landscapes for reservoirs |
CAES | 20–40 years | -ve | Remains from fossil fuel |
FES | 20,000–100,000 | Negligible | |
Lead–acid | 6–40 years | -ve | Toxic residues |
NiCd/NiMH | 10–20 years | -ve | Toxic residues |
Li-ion | 1000–10,000 | -ve | Toxic residues |
Metal–air | 100–300 | Very small | Slight residues |
Sodium–sulfur | 10–15 years | -ve | Toxic residues |
RFB/HFB | 12,000–14,000 | -ve | Toxic residues |
H2 | 5–30 years | Yes | Emission of hydrogen in atmosphere can create disturbance in the distribution of methane and ozone, thereby causing imbalance |
Fuel Cell | 5–15 years | -ve | Remains from fossil fuel |
SMES | 20 years | -ve | High magnetic field |
Thermal | 30 years | Small | Releasing charge into atmosphere |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salaheldeen, M.; Eskander, T.N.A.; Fathalla, M.; Zhukova, V.; Blanco, J.M.; Gonzalez, J.; Zhukov, A.; Abu-Dief, A.M. Empowering the Future: Cutting-Edge Developments in Supercapacitor Technology for Enhanced Energy Storage. Batteries 2025, 11, 232. https://doi.org/10.3390/batteries11060232
Salaheldeen M, Eskander TNA, Fathalla M, Zhukova V, Blanco JM, Gonzalez J, Zhukov A, Abu-Dief AM. Empowering the Future: Cutting-Edge Developments in Supercapacitor Technology for Enhanced Energy Storage. Batteries. 2025; 11(6):232. https://doi.org/10.3390/batteries11060232
Chicago/Turabian StyleSalaheldeen, Mohamed, Thomas Nady A. Eskander, Maher Fathalla, Valentina Zhukova, Juan Mari Blanco, Julian Gonzalez, Arcady Zhukov, and Ahmed M. Abu-Dief. 2025. "Empowering the Future: Cutting-Edge Developments in Supercapacitor Technology for Enhanced Energy Storage" Batteries 11, no. 6: 232. https://doi.org/10.3390/batteries11060232
APA StyleSalaheldeen, M., Eskander, T. N. A., Fathalla, M., Zhukova, V., Blanco, J. M., Gonzalez, J., Zhukov, A., & Abu-Dief, A. M. (2025). Empowering the Future: Cutting-Edge Developments in Supercapacitor Technology for Enhanced Energy Storage. Batteries, 11(6), 232. https://doi.org/10.3390/batteries11060232