Progress, Challenges and Opportunities in Recycling Electric Vehicle Batteries: A Systematic Review Article
Abstract
1. Introduction
1.1. Technological Progress in Battery Recycling
1.2. Battery Lifecycle and End-of-Life Scenarios
1.3. Technological Advances in Recycling Processes
2. Methodology
- Not focused on EV or lithium-ion battery recycling;
- Not relevant to the scope of circular economy or sustainability;
- Editorials, commentaries, patents, or non-peer-reviewed sources;
- Review or meta-analysis articles (as this study focuses on primary data).
3. Results
4. Discussions
4.1. Energy Density and Technical Performance
4.2. Recycling Efficiency and Metal Recovery
4.3. Environmental Impact and Process Conditions
4.4. Cost Considerations and Economic Viability
4.5. Safety Considerations: State of Charge (SOC) and Thermal Stability
4.6. Strategic Implications for Future Battery Design and Recycling
4.7. Policy and Market Dynamics
4.8. Processing
4.9. Logistical Barriers in Battery Collection and Transport
4.10. Cross-Sectoral Collaboration in EV Battery Recycling
4.11. Risks and Limitations of Battery Reuse
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Nomenclature
BEV | Battery Electric Vehicle |
BMS | Battery Management System |
BESS | Battery Energy Storage System |
Co | Cobalt |
EV | Electric Vehicle |
EoL | End of Life |
LIB | Lithium-Ion Battery |
Li | Lithium |
LFP | Lithium Iron Phosphate |
LCO | Lithium Cobalt Oxide |
LMO | Lithium Manganese Oxide |
Li-NMC | Lithium Nickel Manganese Cobalt Oxide |
Li-NCA | Lithium Nickel Cobalt Aluminum Oxide |
Ni | Nickel |
NMC | Lithium Nickel Manganese Cobalt Oxides |
MHEV | Mild hybrid electric vehicle |
Mn | Manganese |
Pyrometallurgy | High-temperature process for metal recovery |
Hydrometallurgy | Aqueous solution-based metal extraction |
Direct Recycling | Recovery of battery components with minimal reprocessing |
SOH | State of Health (battery degradation metric) |
SOC | State of Charge |
WEEE | Waste Electrical and Electronic Equipment Directive (EU legislation) |
VOC | Volatile Organic Compounds |
Circular Economy | Economic system aimed at eliminating waste and continual resource use |
References
- IEA. 2024. Available online: https://www.iea.org/reports/italy-2023/executive-summary (accessed on 30 April 2025).
- Moore, J. BloombergNEF: Strategies for a Cleaner, More Competitive Future. In World Scientific Encyclopedia of Climate Change: Case Studies of Climate Risk, Action, and Opportunity; World Scientific Publishing Co Pte Ltd.: Singapore, 2021; Volume 3, pp. 247–275. [Google Scholar]
- Meegoda, J.N.; Malladi, S.; Zayas, I.C. End-of-life management of electric vehicle lithium-ion batteries in the United States. Clean Technol. 2022, 4, 1162–1174. [Google Scholar] [CrossRef]
- Bell, M. The Cobalt Mines of the Democratic Republic of Congo; Global Encounters: New Visions Department of Geography and Planning, Queen’s University: Kingston, ON, USA, 2024; p. 24. [Google Scholar]
- Wu, W.; Zhang, M.; Jin, D.; Ma, P.; Wu, W.; Zhang, X. Decision-making analysis of electric vehicle battery recycling under different recycling models and deposit-refund scheme. Comput. Ind. Eng. 2024, 191, 110109. [Google Scholar] [CrossRef]
- Tripathy, A.; Bhuyan, A.; Padhy, R.; Corazza, L. Technological, organizational, and environmental factors affecting the adoption of electric vehicle battery recycling. IEEE Trans. Eng. Manag. 2022, 71, 12992–13005. [Google Scholar] [CrossRef]
- Wesselkämper, J.; Von Delft, S. Current status and future research on circular business models for electric vehicle battery recycling. Resour. Conserv. Recycl. 2024, 206, 107596. [Google Scholar] [CrossRef]
- Chan, K.H.; Malik, M.; Azimi, G. Direct recycling of degraded lithium-ion batteries of an electric vehicle using hydrothermal relithiation. Mater. Today Energy 2023, 37, 101374. [Google Scholar] [CrossRef]
- Toro, L.; Moscardini, E.; Baldassari, L.; Forte, F.; Falcone, I.; Coletta, J.; Toro, L. A systematic review of battery recycling technologies: Advances, challenges, and future prospects. Energies 2023, 16, 6571. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, R.; Chen, R.; Xie, X.; Ke, C. Exploring the coevolution dynamics of residents and recyclers in electric vehicle battery recycling decisions on the two-layer heterogeneous complex networks. Appl. Energy 2025, 382, 125235. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Q.; Liu, B.; Li, Y.; Ni, R.; Wang, Y. What influences residents’ intention to participate in the electric vehicle battery recycling? Evidence from China. Energy 2023, 276, 127563. [Google Scholar] [CrossRef]
- Dong, B.; Ge, J. What affects consumers’ intention to recycle retired EV batteries in China? J. Clean. Prod. 2022, 359, 132065. [Google Scholar] [CrossRef]
- Hao, H.; Xu, W.; Wei, F.; Wu, C.; Xu, Z. Reward–penalty vs. deposit–refund: Government incentive mechanisms for EV battery recycling. Energies 2022, 15, 6885. [Google Scholar] [CrossRef]
- Dikmen, I.C.; Karadag, T. Electrical method for battery chemical composition determination. IEEE Access 2022, 10, 6496–6504. [Google Scholar] [CrossRef]
- Latini, D.; Vaccari, M.; Lagnoni, M.; Orefice, M.; Mathieux, F.; Huisman, J.; Tognotti, L.; Bertei, A. A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling. J. Power Sources 2022, 546, 231979. [Google Scholar] [CrossRef]
- Wasesa, M.; Hidayat, T.; Andariesta, D.T.; Natha, M.G.; Attazahri, A.K.; Afrianto, M.A.; Mubarok, M.Z.; Zulhan, Z.; Putro, U.S. Economic and environmental assessments of an integrated lithium-ion battery waste recycling supply chain: A hybrid simulation approach. J. Clean. Prod. 2022, 379, 134625. [Google Scholar] [CrossRef]
- Nguyen-Tien, V.; Dai, Q.; Harper, G.D.J.; Anderson, P.A.; Elliott, R.J.R. Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy. Appl. Energy 2022, 321, 119230. [Google Scholar] [CrossRef]
- Van Hoof, G.; Robertz, B.; Verrecht, B. Towards sustainable battery recycling: A carbon footprint comparison between pyrometallurgical and hydrometallurgical battery recycling flowsheets. Metals 2023, 13, 1915. [Google Scholar] [CrossRef]
- Liu, A.; Hu, G.; Wu, Y.; Guo, F. Life cycle environmental impacts of pyrometallurgical and hydrometallurgical recovery processes for spent lithium-ion batteries: Present and future perspectives. Clean Technol. Environ. Policy 2024, 26, 381–400. [Google Scholar] [CrossRef]
- Saleem, U.; Joshi, B.; Bandyopadhyay, S. Hydrometallurgical routes to close the loop of electric vehicle (EV) lithium-ion batteries (LIBs) value chain: A review. J. Sustain. Metall. 2023, 9, 950–971. [Google Scholar] [CrossRef]
- Chen, Q.; Hou, Y.; Lai, X.; Shen, K.; Gu, H.; Wang, Y.; Guo, Y.; Lu, L.; Han, X.; Zheng, Y. Evaluating environmental impacts of different hydrometallurgical recycling technologies of the retired nickel-manganese-cobalt batteries from electric vehicles in China. Sep. Purif. Technol. 2023, 311, 123277. [Google Scholar] [CrossRef]
- Chen, Q.; Lai, X.; Hou, Y.; Gu, H.; Lu, L.; Liu, X.; Ren, D.; Guo, Y.; Zheng, Y. Investigating the environmental impacts of different direct material recycling and battery remanufacturing technologies on two types of retired lithium-ion batteries from electric vehicles in China. Sep. Purif. Technol. 2023, 308, 122966. [Google Scholar] [CrossRef]
- Rosenberg, S.; Kurz, L.; Huster, S.; Wehrstein, S.; Kiemel, S.; Schultmann, F.; Reichert, F.; Wörner, R.; Glöser-Chahoud, S. Combining dynamic material flow analysis and life cycle assessment to evaluate environmental benefits of recycling–A case study for direct and hydrometallurgical closed-loop recycling of electric vehicle battery systems. Resour. Conserv. Recycl. 2023, 198, 107145. [Google Scholar] [CrossRef]
- Rizos, V.; Urban, P. Barriers and policy challenges in developing circularity approaches in the EU battery sector: An assessment. Resour. Conserv. Recycl. 2024, 209, 107800. [Google Scholar] [CrossRef]
- Gautam, D.; Bolia, N. Fostering second-life applications for electric vehicle batteries: A thorough exploration of barriers and solutions within the framework of sustainable energy and resource management. J. Clean. Prod. 2024, 456, 142401. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, Z.; Wang, Y.; Goh, M. Performance evaluation of regulatory schemes for retired electric vehicle battery recycling within dual-recycle channels. J. Environ. Manag. 2023, 332, 117354. [Google Scholar] [CrossRef]
- Bird, R.; Baum, Z.J.; Yu, X.; Ma, J. The regulatory environment for lithium-ion battery recycling. ACS Energy Lett. 2022, 7, 736–740. [Google Scholar] [CrossRef]
- Xing, Z.; Srinivasan, M. Electrochemical approach for lithium recovery from spent lithium-ion batteries: Opportunities and challenges. ACS Sustain. Resour. Manag. 2024, 1, 1326–1339. [Google Scholar] [CrossRef]
- Homs, N.; Jamil, T.; Pilar, R.d.l.P. Chapter 1. Catalytic Processes for Activation of CO2. In New and Future Developments in Catalysis; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Kallitsis, E.; Korre, A.; Kelsall, G.H. Life cycle assessment of recycling options for automotive Li-ion battery packs. J. Clean. Prod. 2022, 371, 133636. [Google Scholar] [CrossRef]
- Koroma, M.S.; Costa, D.; Philippot, M.; Cardellini, G.; Hosen, S.; Coosemans, T.; Messagie, M. Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management. Sci. Total Environ. 2022, 831, 154859. [Google Scholar] [CrossRef]
- Safarian, S. Environmental and energy impacts of battery electric and conventional vehicles: A study in Sweden under recycling scenarios. Fuel Commun. 2023, 14, 100083. [Google Scholar] [CrossRef]
- Castro, F.D.; Mehner, E.; Cutaia, L.; Vaccari, M. Life cycle assessment of an innovative lithium-ion battery recycling route: A feasibility study. J. Clean. Prod. 2022, 368, 133130. [Google Scholar] [CrossRef]
- Lai, X.; Chen, Q.; Tang, X.; Zhou, Y.; Gao, F.; Guo, Y.; Bhagat, R.; Zheng, Y. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. Etransportation 2022, 12, 100169. [Google Scholar] [CrossRef]
- Azizighalehsari, S.; Venugopal, P.; Singh, D.P.; Soeiro, T.B.; Rietveld, G. Empowering Electric Vehicles Batteries: A Comprehensive Look at the Application and Challenges of Second-Life Batteries. Batteries 2024, 10, 161. [Google Scholar] [CrossRef]
- Colombo, C.G.; Longo, M.; Zaninelli, D. Batteries: Advantages and Importance in the Energy Transition. In Emerging Battery Technologies to Boost the Clean Energy Transition; Springer: Berlin/Heidelberg, Germany, 2024; p. 69. [Google Scholar]
- Patel, A.N.; Lander, L.; Ahuja, J.; Bulman, J.; Lum, J.K.H.; Pople, J.O.D.; Hales, A.; Patel, Y.; Edge, J.S. Lithium-ion battery second life: Pathways, challenges and outlook. Front. Chem. 2024, 12, 1358417. [Google Scholar]
- Chigbu, B.I. Advancing sustainable development through circular economy and skill development in EV lithium-ion battery recycling: A comprehensive review. Front. Sustain. 2024, 5, 1409498. [Google Scholar] [CrossRef]
- Reinhart, L.; Vrucak, D.; Woeste, R.; Lucas, H.; Rombach, E.; Friedrich, B.; Letmathe, P. Pyrometallurgical recycling of different lithium-ion battery cell systems: Economic and technical analysis. J. Clean. Prod. 2023, 416, 137834. [Google Scholar] [CrossRef]
- Ferrarese, A.; Kumoto, E.A.; Gobo, L.A.; Junior, A.B.B.; Tenório, J.A.S.; Espinosa, D. Flexible Hydrometallurgy Process for Electric Vehicle Battery Recycling; No. 2022-36-0072. SAE Technical Paper; SAE: Warrendale, PA, USA, 2023. [Google Scholar]
- Wang, J.; Ma, J.; Zhuang, Z.; Liang, Z.; Jia, K.; Ji, G.; Zhou, G.; Cheng, H.-M. Toward direct regeneration of spent lithium-ion batteries: A next-generation recycling method. Chem. Rev. 2024, 124, 2839–2887. [Google Scholar] [CrossRef]
- Yang, T.; Luo, D.; Yu, A.; Chen, Z. Enabling future closed-loop recycling of spent lithium-ion batteries: Direct cathode regeneration. Adv. Mater. 2023, 35, 2203218. [Google Scholar] [CrossRef]
- Kay, I.; Farhad, S.; Mahajan, A.; Esmaeeli, R.; Hashemi, S.R. Robotic disassembly of electric vehicles’ battery modules for recycling. Energies 2022, 15, 4856. [Google Scholar] [CrossRef]
- Kalinin, A.; Rudnik, R.; Tsvetov, A.; Bondarenko, K.; Shuranova, A. Emerging Markets Decoded 2024. 2024. Available online: https://ssrn.com/abstract=4862785 (accessed on 9 June 2025).
- Slotte, P.; Pohjalainen, E.; Hanski, J.; Kivikytö-Reponen, P. Effect of life extension strategies on demand and recycling of EV batteries–material flow analysis of Li and Ni in battery value chain for Finnish EV fleet by 2055. Resour. Conserv. Recycl. 2025, 215, 108081. [Google Scholar] [CrossRef]
- Statista. Forecast Lithium-Ion Battery Recycling Market Worldwide from 2023 to 2033. Available online: https://www.statista.com/statistics/1330758/lithium-ion-battery-recycling-market-value-worldwide/ (accessed on 30 April 2025).
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Shen, Z.; Tiruta-Barna, L.; Karan, S.K.; Hamelin, L. Simultaneous carbon storage in arable land and anthropogenic products (CSAAP): Demonstrating an integrated concept towards well below 2° C. Resour. Conserv. Recycl. 2022, 182, 106293. [Google Scholar] [CrossRef]
- Lain, M.; Kendrick, E. Understanding the limitations of lithium ion batteries at high rates. J. Power Sources 2021, 493, 229690. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, X.; Chen, X.; Ren, Z.J. Energy-efficient microbial electrochemical lignin and alkaline hydroxide recovery from DMR black liquor. Resour. Conserv. Recycl. 2022, 186, 106529. [Google Scholar] [CrossRef]
- Rachmadhani, D.R.; Priyono, B. Techno-economic analysis of the business potential of recycling lithium-ion batteries using hydrometallurgical methods. ASEAN J. Sci. Eng. Mater. 2024, 3, 117–132. [Google Scholar] [CrossRef]
- Ali, A.; Shoaib, A.; Tasbirul, I.M.; Qadir, S.A.; Shahid, M. Sustainable Recycling of End-of-Life Electric Vehicle Batteries: EV Battery Recycling Frameworks in China and the USA. Recycling 2025, 10, 68. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Bachér, J.; Laatikainen-Luntama, J.; Rintala, L.; Horttanainen, M. The distribution of valuable metals in gasification of metal-containing residues from mechanical recycling of end-of-life vehicles and electronic waste. J. Environ. Manag. 2025, 373, 123526. [Google Scholar] [CrossRef]
- Deloitte China, and CAS. Lithium-Ion Battery Recycling: Market & Innovation Trends for a Green Future. 2023. Available online: https://web.cas.org/marketing/pdf/INSGENENGBRO102412-CAS-Insights-Lithium-Ion-Full-Report-Digital.pdf (accessed on 30 April 2025).
- Niemi, T.; Kaarlela, T.; Niittyviita, E.; Lassi, U.; Röning, J. CAN Interface Insights for Electric Vehicle Battery Recycling. Batteries 2024, 10, 158. [Google Scholar] [CrossRef]
- de Castro, R.H.; Espinosa, D.C.R.; Gobo, L.A.; Kumoto, E.A.; Junior, A.B.B.; Tenorio, J.A.S. Design of recycling processes for NCA-type Li-ion batteries from electric vehicles toward the circular economy. Energy Fuels 2024, 38, 5545–5557. [Google Scholar] [CrossRef]
- Yang, H.; Hu, X.; Zhang, G.; Dou, B.; Cui, G.; Yang, Q.; Yan, X. Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China. Waste Manag. 2024, 178, 168–175. [Google Scholar] [CrossRef]
- Kasy, F.I.; Hisjam, M.; Jauhari, W.A.; Hassan, S.A.H.S. Optimizing the Supply Chain for Recycling Electric Vehicle NMC Batteries. J. Optimasi Sist. Ind. 2024, 23, 207–226. [Google Scholar] [CrossRef]
- Kamath, D.; Moore, S.; Arsenault, R.; Anctil, A. A system dynamics model for end-of-life management of electric vehicle batteries in the US: Comparing the cost, carbon, and material requirements of remanufacturing and recycling. Resour. Conserv. Recycl. 2023, 196, 107061. [Google Scholar] [CrossRef]
- Slattery, M.; Dunn, J.; Kendall, A. Charting the electric vehicle battery reuse and recycling network in North America. Waste Manag. 2024, 174, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Mu, N.; Wang, Y.; Chen, Z.-S.; Xin, P.; Deveci, M.; Pedrycz, W. Multi-objective combinatorial optimization analysis of the recycling of retired new energy electric vehicle power batteries in a sustainable dynamic reverse logistics network. Environ. Sci. Pollut. Res. 2023, 30, 47580–47601. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, Y.-T.; Lee, S.-W. Optimization of the electrochemical discharge of spent li-ion batteries from electric vehicles for direct recycling. Energies 2023, 16, 2759. [Google Scholar] [CrossRef]
- Kastanaki, E.; Giannis, A. Dynamic estimation of end-of-life electric vehicle batteries in the EU-27 considering reuse, remanufacturing and recycling options. J. Clean. Prod. 2023, 393, 136349. [Google Scholar] [CrossRef]
- Tankou, A.; Bieker, G.; Hall, D. Scaling Up Reuse and Recycling of Electric Vehicle Batteries: Assessing Challenges and Policy Approaches; ICCT: Washington, DC, USA, 2023; pp. 1–138. [Google Scholar]
- Dunn, J.; Kendall, A.; Slattery, M. Electric vehicle lithium-ion battery recycled content standards for the US–targets, costs, and environmental impacts. Resour. Conserv. Recycl. 2022, 185, 106488. [Google Scholar] [CrossRef]
- Lima, M.C.C.; Pontes, L.P.; Vasconcelos, A.S.M.; Junior, W.d.A.S.; Wu, K. Economic aspects for recycling of used lithium-ion batteries from electric vehicles. Energies 2022, 15, 2203. [Google Scholar] [CrossRef]
- Yang, H.; Song, X.; Zhang, X.; Lu, B.; Yang, D.; Li, B. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: A case study of China. Environ. Sci. Pollut. Res. 2021, 28, 45867–45878. [Google Scholar] [CrossRef]
- Qiao, D.; Wang, G.; Gao, T.; Wen, B.; Dai, T. Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010–2050. Sci. Total Environ. 2021, 764, 142835. [Google Scholar] [CrossRef]
- Fu, Y.; Schuster, J.; Petranikova, M.; Ebin, B. Innovative recycling of organic binders from electric vehicle lithium-ion batteries by supercritical carbon dioxide extraction. Resour. Conserv. Recycl. 2021, 172, 105666. [Google Scholar] [CrossRef]
- Yao, P.; Zhang, X.; Wang, Z.; Long, L.; Han, Y.; Sun, Z.; Wang, J. The role of nickel recycling from nickel-bearing batteries on alleviating demand-supply gap in China’s industry of new energy vehicles. Resour. Conserv. Recycl. 2021, 170, 105612. [Google Scholar] [CrossRef]
- Abdelbaky, M.; Peeters, J.R.; Dewulf, W. On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe. Waste Manag. 2021, 125, 1–9. [Google Scholar] [CrossRef]
- Lander, L.; Cleaver, T.; Rajaeifar, M.A.; Nguyen-Tien, V.; Elliott, R.J.R.; Heidrich, O.; Kendrick, E.; Edge, J.S.; Offer, G. Financial viability of electric vehicle lithium-ion battery recycling. Iscience 2021, 24, 102787. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Su, X.; Wang, D.; Zhang, L.; Liu, Y.; Yang, Y.; Liang, H.; Gong, M.; Zhang, W.; Jiang, J. Economic analysis of lithium-ion batteries recycled from electric vehicles for secondary use in power load peak shaving in China. J. Clean. Prod. 2020, 276, 123327. [Google Scholar] [CrossRef]
- Bat-Orgil, T.; Dugarjav, B.; Shimizu, T. Cell equalizer for recycling batteries from hybrid electric vehicles. J. Power Electron. 2020, 20, 811–822. [Google Scholar] [CrossRef]
- Skeete, J.-P.; Wells, P.; Dong, X.; Heidrich, O.; Harper, G. Beyond the EVent horizon: Battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition. Energy Res. Soc. Sci. 2020, 69, 101581. [Google Scholar] [CrossRef]
- Hoarau, Q.; Lorang, E. An assessment of the European regulation on battery recycling for electric vehicles. Energy Policy 2022, 162, 112770. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Zhang, J.Z.; Tong, Z. Optimal configuration of electric vehicle battery recycling system under across-network cooperation. Appl. Energy 2023, 338, 120898. [Google Scholar] [CrossRef]
- Sastre, J.P.P.; Saleem, U.; Prasetyo, E.; Bandyopadhyay, S. Resynthesis of cathode active material from heterogenous leachate composition produced by electric vehicle (EV) battery recycling stream. J. Clean. Prod. 2023, 429, 139343. [Google Scholar] [CrossRef]
- Guzek, M.; Jackowski, J.; Jurecki, R.S.; Szumska, E.M.; Zdanowicz, P.; Żmuda, M. Electric vehicles-an overview of current issues-Part 1-environmental impact, source of energy, recycling, and second life of battery. Energies 2024, 17, 249. [Google Scholar] [CrossRef]
- Tao, R.; Xing, P.; Li, H.; Cun, Z.; Sun, Z.; Wu, Y. In situ reduction of cathode material by organics and anode graphite without additive to recycle spent electric vehicle LiMn2O4 batteries. J. Power Sources 2022, 520, 230827. [Google Scholar] [CrossRef]
- Wang, K.; Xue, Y.; Shahidehpour, M.; Chang, X.; Li, Z.; Zhou, Y.; Sun, H. Resilience-oriented two-stage restoration considering coordinated maintenance and reconfiguration in integrated power distribution and heating systems. IEEE Trans. Sustain. Energy 2024, 16, 124–137. [Google Scholar] [CrossRef]
- Chaianong, A.; Pharino, C.; Langkau, S.; Limthongkul, P.; Kunanusont, N. Pathways for enhancing sustainable mobility in emerging markets: Cost-benefit analysis and policy recommendations for recycling of electric-vehicle batteries in Thailand. Sustain. Prod. Consum. 2024, 47, 1–16. [Google Scholar] [CrossRef]
- Energy, Lithium-Ion Battery. Reuse and Recycling: Environmental Sustainability of Lithium-Ion Battery Energy Storage Systems. 2020. Available online: https://openknowledge.worldbank.org/server/api/core/bitstreams/51d49949-abea-50da-a395-c0415a7c2026/content (accessed on 9 June 2025).
- Jayaraman, V.K.; Kannan, P.; Gangadharappa, V.A.; Kumaresan, H.N.; Prakash, A.S. An alternative approach for NMC-based Li-ion battery cathode production and its techno-economic analysis. Clean Technol. Environ. Policy 2024, 26, 319–330. [Google Scholar] [CrossRef]
- Adaikkappan, M.; Sathiyamoorthy, N. Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review. Int. J. Energy Res. 2022, 46, 2141–2165. [Google Scholar] [CrossRef]
- Fallah, N.; Fitzpatrick, C. Exploring the state of health of electric vehicle batteries at end of use; hierarchical waste flow analysis to determine the recycling and reuse potential. J. Remanufacturing 2024, 14, 155–168. [Google Scholar] [CrossRef]
- Gonzales-Calienes, G.; Yu, B.; Bensebaa, F. Development of a reverse logistics modeling for end-of-life lithium-ion batteries and its impact on recycling viability-A case study to support end-of-life electric vehicle battery strategy in Canada. Sustainability 2022, 14, 15321. [Google Scholar] [CrossRef]
- Safarzadeh, H.; Di Maria, F. How to Fit Energy Demand Under the Constraint of EU 2030 and FIT for 55 Goals: An Italian Case Study. Sustainability 2025, 17, 3743. [Google Scholar] [CrossRef]
- Yang, L.; Zhong, S.; Ding, Z. A Four-Party Evolutionary Game Analysis of Retired Power Battery Recycling Strategies Under the Low Carbon Goals. World Electr. Veh. J. 2025, 16, 187. [Google Scholar] [CrossRef]
- Gulati, M.; Becqué, R.; Godfrey, N.; Akhmouch, A.; Cartwright, A.; Eis, J.; Huq, S.; Jacobs, M.; King, R.; Rode, P. The Economic Case for Greening the Global Recovery Through Cities: Seven Priorities for National Governments; Coalition for Urban Transitions: London, UK; Washington, DC, USA, 2020. [Google Scholar]
- Schulz, V.; Bell, M.G.H.; Monios, J.; Geers, D.G.; Zhu, S. Recycling ships, revitalising ports: Assessing the economic viability of diversifying coal ports with ship recycling. Transp. Res. Part E Logist. Transp. Rev. 2025, 200, 104212. [Google Scholar] [CrossRef]
- Nie, S.; Cai, G.; Huang, Y.; He, J. Deciphering stakeholder strategies in electric vehicle battery recycling: Insights from a tripartite evolutionary game and system dynamics. J. Clean. Prod. 2024, 452, 142174. [Google Scholar] [CrossRef]
- Zhu, J.; Feng, T.; Lu, Y.; Xue, R. Optimal government policies for carbon–neutral power battery recycling in electric vehicle industry. Comput. Ind. Eng. 2024, 189, 109952. [Google Scholar] [CrossRef]
- Barkhausen, R.; Fick, K.; Durand, A.; Rohde, C. Analysing policy change towards the circular economy at the example of EU battery legislation. Renew. Sustain. Energy Rev. 2023, 186, 113665. [Google Scholar] [CrossRef]
- Lee, C.-H. Global patent analysis of battery recycling technologies: A comparative study of Korea, China, and the United States. World Electr. Veh. J. 2024, 15, 260. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, Q.; Zhang, J. Bridging the regulatory gap: A policy review of extended producer responsibility for power battery recycling in China. Energy Sustain. Dev. 2025, 86, 101697. [Google Scholar] [CrossRef]
- Kishita, Y.; Boks, C.; Proff, M.; Uhlig, E.; Ahmed, S.; Pantelatos, L.; Mennenga, M.; Blomeke, S.; Scheller, C.; Amasawa, E.; et al. Towards Sustainable Circular EV Battery Value Chains: A Review and Comparative Analysis Between Germany, Norway, and Japan. In Proceedings of the 2024 Electronics Goes Green 2024+(EGG), Berlin, Germany, 18–20 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–9. [Google Scholar]
- Lee, Y.; Kim, M.; Kim, K. Revisiting actors’ role in circular economy governance: A case of electric vehicle waste batteries in South Korea. Environ. Eng. Res. 2024, 29, 230351. [Google Scholar] [CrossRef]
- Yan, J.; Lai, F.; Liu, Y.; Yu, D.C.; Yi, W.; Yan, J. Multi-stage transport and logistic optimization for the mobilized and distributed battery. Energy Convers. Manag. 2019, 196, 261–276. [Google Scholar] [CrossRef]
- Daniel, S.E.; Pappis, C.P.; Voutsinas, T.G. Applying life cycle inventory to reverse supply chains: A case study of lead recovery from batteries. Resour. Conserv. Recycl. 2003, 37, 251–281. [Google Scholar] [CrossRef]
- Hendrickson, T.P.; Kavvada, O.; Shah, N.; Sathre, R.; Scown, C.D. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California. Environ. Res. Lett. 2015, 10, 014011. [Google Scholar] [CrossRef]
- Yang, F.; Wang, D.; Xu, F.; Huang, Z.; Tsui, K.-L. Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model. J. Power Sources 2020, 476, 228654. [Google Scholar] [CrossRef]
- Zhou, K.; Xie, Q.; Li, B.; Manthiram, A. An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries. Energy Storage Mater. 2021, 34, 229–240. [Google Scholar] [CrossRef]
- Wang, H.; Xu, H.; Zhang, Z.; Wang, Q.; Jin, C.; Wu, C.; Xu, C.; Hao, J.; Sun, L.; Du, Z.; et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study. ETransportation 2022, 13, 100190. [Google Scholar] [CrossRef]
- Kebede, A.A.; Hosen, S.; Kalogiannis, T.; Behabtu, H.A.; Assefa, M.Z.; Jemal, T.; Ramayya, V.; Van Mierlo, J.; Coosemans, T.; Berecibar, M. Optimal sizing and lifetime investigation of second life lithium-ion battery for grid-scale stationary application. J. Energy Storage 2023, 72, 108541. [Google Scholar] [CrossRef]
- Arwa, E.O.; Schell, K.R. Batteries or silos: Optimizing storage capacity in direct air capture plants to maximize renewable energy use. Appl. Energy 2024, 355, 122345. [Google Scholar] [CrossRef]
- Tasnim Mowri, S. Assessing the Impact of First-Life Degradation of Lithium-Ion Batteries on Second life Degradation Rate. Ph.D. Thesis, University of Warwick, Coventry, UK, 2024. [Google Scholar]
- Liu, Q.; Miao, W.; Ye, Q.; Li, C. Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine. Renew. Energy 2022, 185, 1124–1138. [Google Scholar] [CrossRef]
- Birou, C.; Roboam, X.; Radet, H.; Lacressonnière, F. Techno-economic analysis of second-life lithium-ion batteries integration in microgrids. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, 7–11 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–10. [Google Scholar]
- Sascha, N.; Winter, M. Elemental analysis of lithium ion batteries. J. Anal. At. Spectrom. 2017, 32, 1833–1847. [Google Scholar]
- Warner, J.T. Lithium-Ion Battery Chemistries: A Primer; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Warner, J.T. The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types, and Terminology; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Lee, K.T.; Jeong, S.; Cho, J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res. 2013, 46, 1161–1170. [Google Scholar] [CrossRef]
- Osiak, M.; Geaney, H.; Armstrong, E.; O’Dwyer, C. Structuring materials for lithium-ion batteries: Advancements in nanomaterial structure, composition, and defined assembly on cell performance. J. Mater. Chem A. 2014, 2, 9433–9460. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J.; Zhang, Z.; Chen, Y.; Wang, C. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. J. Clean. Prod. 2018, 204, 437–446. [Google Scholar] [CrossRef]
- Hu, X.; Mousa, E.; Tian, Y.; Ye, G. Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction-Part I: A laboratory-scale study. J. Power Sources 2021, 483, 228936. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, H.; Chen, Y.; Wang, C. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J. Power Sources 2017, 351, 192–199. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Li, M.; Chen, R.; Wu, F.; Amine, K.; Lu, J. The recycling of spent lithium-ion batteries: A review of current processes and technologies. Electrochem. Energy Rev. 2018, 1, 461–482. [Google Scholar] [CrossRef]
- Ramesh, K.; Liu, C.; Ha, G.-S.; Park, Y.-K.; Khan, M.A.; Jang, M.; Kim, S.-H.; Amin, M.A.; Gacem, A.; Jeon, B.-H. Downstream recovery of Li and value-added metals (Ni, Co, and Mn) from leach liquor of spent lithium-ion batteries using a membrane-integrated hybrid system. Chem. Eng. J. 2022, 447, 137507. [Google Scholar]
- Gaines, L.; Dunn, J.B.; Sullivan, J.L. ReCell: Advanced Battery Recycling R&D Center. Argonne National Laboratory. 2020. Available online: https://recellcenter.org/ (accessed on 28 May 2025).
- European Commission. Building a Strategic Battery Value Chain in Europe; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Umicore. Umicore and Audi Close Loop for Cobalt and Nickel. 2021. Available online: https://www.umicore.com/en/media/newsroom/battery-recycling-audi-and-umicore-start-closed-loop-for-cobalt-and-nickel/ (accessed on 28 May 2025).
- Volvo Cars. Volvo Cars and Northvolt to Open Joint Battery R&D Center in Sweden. 2022. Available online: https://www.media.volvocars.com/global/en-gb/media/pressreleases/296041/ (accessed on 28 May 2025).
- Contemporary Amperex Technology Co., Limited (CATL). Battery Recycling and EPR Strategy Report. 2023. Available online: https://www.catl.com/en/news/712.html (accessed on 28 May 2025).
Method | Description | Recovery Rates | Energy Use | Cost Effectiveness | Advantages | Challenges | Ref. |
---|---|---|---|---|---|---|---|
Pyrometallurgy | High-temperature smelting to extract metals | Moderate (Co, Ni), low (Li, Al) | High | Moderate | Mature, handles mixed chemistries | Energy-intensive; loss of lithium and aluminum | [18,19] |
Hydrometallurgy | Chemical leaching using acids or solvents | High (>95% for Co, Ni) | Moderate | High (depends on reagents) | High selectivity, better Li recovery | Produces hazardous liquid waste | [20,21] |
Direct Recycling | Mechanical and chemical recovery of components | High (preserves cathode material) | Low | Potentially high | Maintains structure; low energy use | Still under development; complex standardization | [22,23] |
Electrochemical Recovery | Electrolysis-based metal extraction from leachates | Very high (selective for metals) | Moderate | Moderate–High | High selectivity; lower chemical usage | Still lab-scale; requires precise control | [28] |
Supercritical Fluid Extraction | Uses supercritical CO2/solvents to separate components | Moderate–High (depends on solute) | Low–Moderate | Currently low | Green solvent use, selective metal extraction | High equipment cost; not yet industrialized | [29] |
Study | Year | Focus Areas | Recycling Methods Covered | Second-Life Use | Policy and Regulation | Economic Feasibility | Technology Assessment | Novelty |
---|---|---|---|---|---|---|---|---|
[47] | 2019 | General LIB recycling | Pyrometallurgy, Hydrometallurgy | ✖ | ✖ | ✖ | ✔ | Early-stage overview |
[48] | 2022 | Recycling tech review | Hydro-, Direct | Partial | ✔ | ✖ | ✔ | Regulatory overview |
[49] | 2021 | Process design, metallurgy | Pyrometallurgy, Hydrometallurgy | ✖ | ✖ | ✔ | ✔ | Process optimization |
[50] | 2022 | Energy-efficiency | Hydro-, Direct | ✔ | ✔ | ✔ | ✖ | Circularity strategy |
[51] | 2024 | Techno-economic assessment | All three + Hybrid | ✖ | ✔ | ✔ | ✔ | Tech-econ coupling |
[52] | 2025 | Global policy review | N/A | ✖ | ✔ | Partial | ✖ | Policy comparison |
This review | 2025 | Tech, Economic, Regulatory, Policy | Pyrometallurgy, Hydrometallurgy, Direct, Emerging (e.g., Electrolytic) | ✔ | ✔ | ✔ | ✔ | Integrated multidimensional synthesis |
Ref. | Title | Country | Methodology | Main Focus | Key Finding | Year |
---|---|---|---|---|---|---|
[54] | The distribution of valuable metals in gasification of metal-containing residues from mechanical recycling of end-of-life vehicles and electronic waste | Finland | Experimental | Recycling of metal-containing wastes such as end-of-life vehicles (ELV) | Gasification enabled the efficient removal of organic matter and liberation of metals. | 2025 |
[55] | Deloitte China, and CAS. Lithium-Ion Battery Recycling: Market & Innovation Trends for A Green Future | China | Simulation | The future of recycling of Li-ion batteries in China | - | 2025 |
[56] | CAN Interface Insights for Electric Vehicle Battery Recycling | Finland | Simulation | Controller area network interface insights for electric vehicle battery recycling | - | 2024 |
[57] | Design of Recycling Processes for NCA-Type Li-Ion Batteries from Electric Vehicles toward the Circular Economy | Brazil | Experimental | Hydrometallurgical recycling process of NCA cylindrical batteries | 92% of Li, 80% of Ni, and 85% of Co can be recovered in hydrometallurgical processing. | 2024 |
[58] | Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China | China | Experimental | LCA of secondary use and physical recycling of lithium-ion batteries | Secondary use has the greatest impact on assessment results in dynamic situations. | 2024 |
[59] | Optimizing the Supply Chain for Recycling Electric Vehicle NMC Batteries | Indonesia | Simulation | Optimizing the supply chain for recycling EV batteries | - | 2024 |
[60] | A system dynamics model for end-of-life management of electric vehicle batteries in the US: Comparing the cost, carbon, and material requirements of remanufacturing and recycling | USA | Simulation | End-of-life management of electric vehicle batteries | Remanufacturing can reduce the carbon footprint of the EV battery life cycle. | 2024 |
[61] | Charting the electric vehicle battery reuse and recycling network in North America | USA | Simulation | Electric vehicle battery reuse and recycling network in North America | EV and EV battery EoL is a market-driven system, relying on profitability. | 2024 |
[62] | Multi-objective combinatorial optimization analysis of the recycling of retired new energy electric vehicle power batteries in a sustainable dynamic reverse logistics network | China | Simulation | Explore the layout of the sustainable reverse logistics network for battery recycling | The dynamic reverse logistics network is superior to its static counterpart. | 2023 |
[63] | Optimization of the Electrochemical Discharge of Spent Li-Ion Batteries from Electric Vehicles for Direct Recycling | Republic of Korea | Experimental | Optimization of the electrochemical discharge of spent Li-ion batteries | The process will be suitable for the direct recycling of spent LIBs. | 2023 |
[64] | Dynamic estimation of end-of-life electric vehicle batteries in the EU-27 considering reuse, remanufacturing and recycling options | Germany, France | Simulation | Dynamic estimation of end-of-life electric vehicle batteries | The recycled metals could meet 5.2–11.3% of the demand for the EU Battery Directive. | 2023 |
[65] | Scaling up reuse and recycling of electric vehicle batteries: Assessing challenges and policy approaches | India | Experimental | Challenges and policy approaches | - | 2023 |
[66] | Electric vehicle lithium-ion battery recycled content standards for the US—targets, costs, and environmental impacts | USA | Simulation | Electric vehicle lithium-ion battery recycled content standards for the USA | Recycling US EV retirements domestically is more expensive than recycling in China. | 2022 |
[67] | Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles | Brazil | Simulation | Factors that influence the economic feasibility of disposing of batteries | A business model is created for recycling LIBs in Brazil. | 2022 |
[68] | Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China | China | - | Recycling potential in electric vehicle batteries | Increasing recycling potential by 2030. | 2021 |
[69] | Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010–2050 | China | Simulation | Potential impact of battery recycling on lithium demand in China | The recovered lithium could meet 60% of the lithium demand for LIBs produced by 2050. | 2021 |
[70] | Innovative recycling of organic binders from electric vehicle lithium-ion batteries by supercritical carbon dioxide extraction | Sweden | Experimental | Innovative recycling of organic binders | Recovered PVDF retained the same superficial chemical properties as the raw sample. | 2021 |
[71] | The role of nickel recycling from nickel-bearing batteries on alleviating demand-supply gap in China’s industry of new energy vehicles | China | Simulation | Nickel recycling from nickel-bearing batteries | Recovered nickel is likely to play a vital role in closing the nickel loop in the industry of NEVs in China. | 2021 |
[72] | On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe | Belgium | Simulation | A novel forecasting model is developed to include second-use of vehicle batteries | Cobalt content of recycled EV batteries may fulfil 91% of Europe’s 2040 EV demand. | 2021 |
[73] | Financial viability of electric vehicle lithium-ion battery recycling | UK, Belgium, USA, Republic of Korea, China | Simulation | Comprehensive techno-economic cost model for electric vehicle battery recycling | Economies of scale and battery materials are decisive for recycling profits. | 2021 |
[74] | Economic analysis of lithium-ion batteries recycled from electric vehicles for secondary use in power load peak shaving in China | China | NA | A novel cost-benefit model for battery energy storage system of recycled Li-ion batteries | NA | 2020 |
[75] | Cell equalizer for recycling batteries from hybrid electric vehicles | Japan | Experimental | Cell equalizer for recycling | NA | 2020 |
[76] | Beyond the EVent horizon: Battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition | UK | Simulation | Recycling, and sustainability in the United Kingdom electric vehicle market | Sustainable recycling solutions will require sustainable business models. | 2020 |
Ref. | Battery Type | EV / HEV | Energy (kWh) | Voltage (V) | Current (A) | Peak current (A) | Capacity (Ah) | Mass (kg) | Number of Cells | Min SOC (%) | Max SOC (%) | Process. Time (min) | Charge Time (min) | Temp. (C) | pH | Rec. Li (%) | Rec. Ni (%) | Rec. Co (%) | Rec. Cost |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[54] | NA | NA | NA | NA | NA | NA | NA | 150–400 | NA | NA | NA | NA | NA | 415–885 | NA | NA | NA | NA | NA |
[55] | Li-ion (NMC) | EV | 65 | 400 | 150 | 300 | 162.5 | 450 | 96 | 20 | 90 | 120 | 45 | 25 | 7 | 95 | 90 | 85 | USD 1000/ton |
[56] | Li-ion | HEV | 0.43 | 48 | 75 | 250 | 9.8 | 17.5 | 16 | 8 | 82 | NA | 110 | 23–65 | NA | NA | NA | NA | NA |
[57] | Li-ion | EV | NA | NA | NA | NA | NA | NA | NA | NA | NA | 30–180 | NA | 25–90 | 1–3.5 | 91.6 | 80.3 | 85 | NA |
[58] | Li-ion | NA | NA | NA | NA | NA | NA | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
[59] | NMC | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | IDR 128,000/kg |
[60] | LiCoO2 (LCO) | EV | 43.75 | 350 | 150 | 300 | 180 | 420 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | 95 | 95 | 95 | ~2.5 |
LiMn2O4 (LMO) | EV | 31.25 | 350 | 150 | 300 | 180 | 420 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | ~2.5 | ||||
LiF2PO4 (LFP) | EV | 26.25 | 350 | 150 | 300 | 180 | 420 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | ~2.5 | ||||
NMC 111 | EV | 46.25 | 350 | 150 | 300 | 180 | 420 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | ~2.5 | ||||
NMC 622 | EV | 46.25 | 350 | 150 | 300 | 180 | 420 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | ~2.5 | ||||
NMC 811 | EV | 46.25 | 350 | 150 | 300 | 180 | 420 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | ~2.5 | ||||
LiNiCoAlO2 (NCA) | EV | 75 | 350 | 150 | 300 | 180 | 420 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | ~2.5 | ||||
[62] | NiMH | HEV | 40 | 300 | 120 | 240 | 133.3 | 350 | 80 | 30 | 90 | 90 | 35 | 25 | 6.8 | 75 | 65 | 55 | USD 800/ton |
[63] | SM3 ZEs | EV | 35.9 | 360 | NA | NA | 74 | NA | 192 | NA | NA | 24 (h) | NA | 40 | NA | NA | NA | NA | NA |
[64] | NCA | EV / HEV | 8.6–72 | 320 | 140 | 280 | 160 | 400 | 100 | 10 | 90 | 35 | 50 | 25–40 | 7 | 85 | – | – | ~1.8 |
LMO | 320 | 140 | 280 | 160 | 400 | 100 | 10 | 90 | 35 | 50 | 25–40 | 7 | 85 | – | – | ~1.8 | |||
LFP | 320 | 140 | 280 | 160 | 400 | 100 | 10 | 90 | 35 | 50 | 25–40 | 7 | 85 | – | – | ~1.8 | |||
NMC 811 | 320 | 140 | 280 | 160 | 400 | 100 | 10 | 90 | 35 | 50 | 25–40 | 7 | 85 | – | – | ~1.8 | |||
NMC 622 | 320 | 140 | 280 | 160 | 400 | 100 | 10 | 90 | 35 | 50 | 25–40 | 7 | 85 | – | – | ~1.8 | |||
NMC 111 | 320 | 140 | 280 | 160 | 400 | 100 | 10 | 90 | 35 | 50 | 25–40 | 7 | 85 | – | – | ~1.8 | |||
NMC 955 | 320 | 140 | 280 | 160 | 400 | 100 | 10 | 90 | 35 | 50 | 25–40 | 7 | 85 | – | – | ~1.8 | |||
NMC 532 | 320 | 140 | 280 | 160 | 400 | 100 | 10 | 90 | 35 | 50 | 25–40 | 7 | 85 | – | – | ~1.8 | |||
[65] | Li-ion (LFP) | EV | 50 | 350 | 140 | 280 | 142.9 | 400 | 90 | 10 | 100 | 100 | 40 | 30 | 6.5 | 80 | 70 | 60 | USD 900/ton |
[66] | Li-ion (NCA) | EV | 70 | 420 | 160 | 320 | 166.7 | 480 | 100 | 15 | 95 | 130 | 50 | 35 | 7.2 | 92 | 88 | 83 | USD 1100/ton |
[67] | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | USD 33.79 /kWh |
[68] | NMC | EV | 1.5 | 100 | 40 | 80 | 15 | 30 | 24 | 30 | 80 | 25 | 30 | 30–45 | 6.5 | 88 | 90 | 91 | ~2.2 |
LFP | EV | 1.5 | 100 | 40 | 80 | 15 | 30 | 24 | 30 | 80 | 25 | 30 | 30–45 | 6.5 | 88 | 90 | 91 | ~2.2 | |
LMO | EV | 1.5 | 100 | 40 | 80 | 15 | 30 | 24 | 30 | 80 | 25 | 30 | 30–45 | 6.5 | 88 | 90 | 91 | ~2.2 | |
[69] | LFP-G | EV | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 49–60 | NA | NA | NA |
NMC-G | EV | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ||
NCA-G | EV | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ||
Li-S | EV | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ||
Li-Air | EV | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ||
[70] | ALB | EV | - | - | - | - | - | - | - | - | - | 4–17 | - | - | - | 97.5 | - | - | - |
[71] | NCA | EV / HEV | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
NCM 111 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |||
NCM 523 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |||
NCM 622 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |||
NCM 811 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |||
[72] | Li-Iron Phosphate | EV / HEV | 5.1 | 51.2 | 50 | 100 | 44–60 | 48 | 16 | 10 | 90 | 35 | 60 | 0–55 | 7 | 85 | NA | NA | ~1.8 |
LMO | 24 | 3.9 | 60 | 120 | 200 | 96 | 20 | 90 | 40 | 60 | 25–45 | 7 | 88 | 90 | 91 | ~2.0 | |||
LMO blend | 30 | 3.7 | 70 | 140 | 220 | 96 | 20 | 90 | 45 | 65 | 25–45 | 7 | 90 | 92 | 93 | ~2.2 | |||
NMC 111 | 33 | 3.7 | 94 | 188 | 250 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | 92 | 95 | 96 | ~2.5 | |||
NMC 532 | 39 | 3.65 | 56.3 | 112.6 | 300 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | 93 | 96 | 97 | ~2.6 | |||
NMC 622 | 65 | 3.75 | 120 | 240 | 350 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | 94 | 97 | 98 | ~2.7 | |||
NMC 811 | 93.4 | 3.7 | 145 | 290 | 400 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | 95 | 98 | 99 | ~2.8 | |||
Li-Ni-Co-AlO3 | 60 | 3.6 | 100 | 200 | 300 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | 94 | 97 | 98 | ~2.7 | |||
Advanced and beyond li-ion | 100 | 3.8 | 150 | 300 | 450 | 96 | 20 | 90 | 45 | 60 | 25–45 | 7 | 96 | 99 | 99 | ~3.0 | |||
[73] | NCA | EV / HEV | 24–93 | NA | NA | NA | NA | 295–1009 | 192–10,368 | NA | NA | NA | NA | NA | NA | 90 | 98 | 98 | USD 10.55–21.9 /kWh |
NMC 622 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | USD 3.51–14.86 /kWh | ||||||||
NMC 811 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | USD 1.43–12.77 /kWh | ||||||||
LFP | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | USD 0–10.77 /kWh | ||||||||
LMO | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | USD 0–9.15 /kWh | ||||||||
[74] | Li-ion | EV | NA | 3.2 | 0.5 | NA | 50 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | CNY 0.45 /Wh |
[75] | NiMH | HEV | NA | 14.37 | 1.8 | 2.2 | 3.3 | NA | NA | 80 | 100 | 110 | 90 | NA | NA | NA | NA | NA | NA |
[76] | Li-ion (LTO) | HEV | 45 | 360 | 130 | 260 | 125 | 370 | 85 | 25 | 85 | 110 | 42 | 28 | 6.9 | 78 | 68 | 58 | USD 950/ton |
Ref | C | H | N | O | Al | Cu | Fe | Sn | Zn | Ag | Au | Pd | Dy | Nd | Li | Ni | Co | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[54] | * | * | * | * | * | * | * | * | * | * | * | * | * | |||||
[56] | * | * | * | * | * | * | ||||||||||||
[57] | * | * | * | * | * | * | * | |||||||||||
[58] | * | * | * | |||||||||||||||
[59] | * | * | * | * | * | * | * | |||||||||||
[60] | * | * | * | * | * | |||||||||||||
[62] | * | * | * | * | ||||||||||||||
[63] | * | * | * | * | * | * | * | |||||||||||
[64] | * | * | * | * | * | * | * | |||||||||||
[67] | * | * | * | * | * | * | * | |||||||||||
[68] | * | * | * | * | * | |||||||||||||
[69] | * | * | * | * | * | |||||||||||||
[70] | * | * | * | * | * | * | * | * | ||||||||||
[71] | * | * | * | * | ||||||||||||||
[72] | * | * | * | * | * | * | * | * |
Ref. | Al | Cu | Fe | Li | Ni | Co | Mn |
---|---|---|---|---|---|---|---|
[57] | 0.02 | NA | NA | 0.01 | 0.11 | 0.21 | NA |
NA | NA | NA | 0.17 | 0.11 | 0.002 | NA | |
[58] | 0.42 | 0.48 | NA | 0.34 | 0.49 | 0.2 | 0.15 |
[59] | NA | NA | NA | NA | 1.06 | 1.06 | 0.97 |
[60] | 0.304 | 0.426 | 0.963 | 0.119 | 0.071 | 0.01 | NA |
0.075 | 0.075 | 1.105 | 0.104 | NA | NA | 1.37 | |
0.457 | 0.571 | 2.53 | 0.084 | NA | NA | NA | |
0.263 | 0.390 | 0.866 | 0.139 | 0.367 | 0.394 | 0.392 | |
0.263 | 0.390 | 0.866 | 0.126 | 0.2 | 0.214 | 0.641 | |
0.263 | 0.390 | 0.866 | 0.111 | 0.088 | 0.094 | 0.75 | |
0.379 | 0.758 | NA | 0.112 | 0.759 | 0.143 | NA | |
[64] | NA | 0.76 | NA | 0.1 | 0.67 | 0.13 | NA |
NA | 0.96 | NA | 0.11 | 0.07 | 0.07 | NA | |
NA | 0.9 | NA | 0.1 | NA | NA | NA | |
NA | 0.77 | NA | 0.11 | 0.75 | 0.09 | NA | |
NA | 0.76 | NA | 0.13 | 0.61 | 0.19 | NA | |
NA | 0.82 | NA | 0.15 | 0.4 | 0.4 | NA | |
NA | 0.76 | NA | 0.1 | 0.7 | 0.04 | NA | |
NA | 0.8 | NA | 0.14 | 0.59 | 0.23 | NA | |
[68] | 0.25 | 0.38 | NA | 0.06 | 0.46 | 0.47 | 0.44 |
0.3 | 0.39 | 0.47 | 0.06 | NA | NA | NA | |
0.05 | 0.05 | NA | 0.07 | NA | NA | 0.98 | |
[69] | NA | NA | NA | 0.176 | NA | NA | NA |
NA | NA | NA | 0.113 | NA | NA | NA | |
NA | NA | NA | 0.239 | NA | NA | NA | |
NA | NA | NA | 0.410 | NA | NA | NA | |
NA | NA | NA | 0.138 | NA | NA | NA | |
[70] | 0.003 | NA | NA | 0.29 | 0.56 | 0.57 | 1.26 |
[71] | NA | NA | NA | 0.112 | 0.759 | 0.143 | 0 |
NA | NA | NA | 0.139 | 0.392 | 0.394 | 0.367 | |
NA | NA | NA | 0.134 | 0.564 | 0.263 | 0.316 | |
NA | NA | NA | 0.126 | 0.641 | 0.214 | 0.2 | |
NA | NA | NA | 0.111 | 0.75 | 0.094 | 0.088 | |
[72] | NA | 0.9 | NA | 0.1 | NA | NA | NA |
NA | 0.96 | NA | 0.1 | NA | NA | NA | |
NA | 0.96 | NA | 0.11 | 0.07 | 0.07 | NA | |
NA | 0.82 | NA | 0.15 | 0.4 | 0.4 | NA | |
NA | 0.8 | NA | 0.14 | 0.59 | 0.23 | NA | |
NA | 0.76 | NA | 0.13 | 0.61 | 0.19 | NA | |
NA | 0.77 | NA | 0.11 | 0.75 | 0.09 | NA | |
NA | 0.76 | NA | 0.1 | 0.67 | 0.13 | NA | |
NA | 0.6 | NA | 0.22 | NA | NA | NA |
Ref. | Al | Cu | Fe | Li | Ni | Co | Mn |
---|---|---|---|---|---|---|---|
[58] | NA | NA | NA | NA | 208,000 (IDR/kg) | 832,000 (IDR/kg) | 48,000 (IDR/kg) |
[59] | 2.6 (USD/kg) | 9.1 (USD/kg) | 0.435 (USD/kg) | 70.29 (USD/kg) | 13 (USD/kg) | 49 (USD/kg) | 0.0052 (USD/kg) |
[67] | 2658 (USD/Ton) | 9688 (USD/Ton) | 90.5 (USD/Ton) | 30,930 (USD/Ton) | 20,171 (USD/Ton) | 61,550 (USD/Ton) | 5.4 (USD/Ton) |
Policy Framework | Region | Key Features | Enforcement Level | Impact on Recycling | Ref. |
---|---|---|---|---|---|
EU Battery Regulation (2023) | European Union | Mandatory recycling targets, recycled content requirements, battery passport | High | Significant progress in recovery and traceability | [95] |
Critical Materials Strategy | United States | R&D funding, subsidies for domestic recycling, no mandatory targets | Moderate | Growing investment but limited enforcement | [96] |
Producer Responsibility Laws | China | Mandatory take-back and recycling by manufacturers, government oversight | High | Rapid infrastructure development and enforcement | [97] |
Voluntary Initiatives | Japan, Republic of Korea | Industry-led recycling, limited government mandate | Low–Moderate | Gradual adoption, pilot-scale programs | [98,99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safarzadeh, H.; Di Maria, F. Progress, Challenges and Opportunities in Recycling Electric Vehicle Batteries: A Systematic Review Article. Batteries 2025, 11, 230. https://doi.org/10.3390/batteries11060230
Safarzadeh H, Di Maria F. Progress, Challenges and Opportunities in Recycling Electric Vehicle Batteries: A Systematic Review Article. Batteries. 2025; 11(6):230. https://doi.org/10.3390/batteries11060230
Chicago/Turabian StyleSafarzadeh, Hamid, and Francesco Di Maria. 2025. "Progress, Challenges and Opportunities in Recycling Electric Vehicle Batteries: A Systematic Review Article" Batteries 11, no. 6: 230. https://doi.org/10.3390/batteries11060230
APA StyleSafarzadeh, H., & Di Maria, F. (2025). Progress, Challenges and Opportunities in Recycling Electric Vehicle Batteries: A Systematic Review Article. Batteries, 11(6), 230. https://doi.org/10.3390/batteries11060230