Ni3S2@NiMo-LDH Composite for Flexible Hybrid Capacitors
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Ni3S2 Samples
2.3. Preparation of Ni3S2@NiMo-LDH Composite
2.4. Preparation of Activated Carbon Anode Material
2.5. Preparation of PVA-KOH Gel Electrolyte
2.6. Structure Characterization
2.7. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rani, B.J.; Sivanantham, A.; Cho, I.S. Nanostructured Spinel Manganates and Their Composites for Electrochemical Energy Conversion and Storage. Adv. Funct. Mater. 2023, 33, 2303002. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wu, X. Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor. Int. J. Miner. Metall. Mater. 2024, 31, 179–185. [Google Scholar] [CrossRef]
- Lu, C.; Tu, C.; Yang, Y.; Ma, Y.; Zhu, M. Construction of Fe3O4@Fe2P Heterostructures as Electrode Materials for Supercapacitors. Batteries 2023, 9, 326. [Google Scholar] [CrossRef]
- Zhu, S.; Sheng, J.; Chen, Y.; Ni, J.F.; Li, Y. Carbon nanotubes for flexible batteries: Recent progress and future perspective. Natl. Sci. Rev. 2021, 8, nwaa261. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, X. High durable aqueous zinc ion batteries by synergistic effect of V6O13/VO2 electrode materials. J. Energy Chem. 2023, 87, 334–341. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Al Marzooqi, M.; Khan, A.Z.; Yamani, Z.H. Enhanced light-responsive supercapacitor utilizing BiVO4 and date leaves-derived carbon: A leap towards sustainable energy harvesting and storage. J. Power Sources 2024, 602, 234334. [Google Scholar] [CrossRef]
- Liu, R.X.; Liu, W.K.; Chen, J.C.; Bian, X.L.; Fan, K.Q.; Zhao, J.H.; Zhang, X.J. Acrylate Copolymer-Reinforced Hydrogel Electrolyte for Strain Sensors and Flexible Supercapacitors. Batteries 2023, 9, 304. [Google Scholar] [CrossRef]
- Khan, J.; Shakeel, N.; Alam, S.; Alam, F.; Dahshan, A. Sulfurization of Electrode Material: A Promising Window for Supercapacitor Technology. Batter. Supercaps 2024, 7, e202300366. [Google Scholar] [CrossRef]
- Wang, S.; Ma, J.X.; Shi, X.Y.; Zhu, Y.Y.; Wu, Z.S. Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Res. Energy 2022, 1, e9120018. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, J.; Liu, A.; Ma, T. 2D heterostructure comprised of Ni3S2/d-Ti3C2 supported on Ni foam as binder-free electrode for hybrid supercapacitor. J. Alloy. Compd. 2020, 814, 152271. [Google Scholar] [CrossRef]
- Wang, X.W.; Sun, Y.C.; Zhang, W.C.; Wu, X. Flexible CuCo2O4@Ni-Co-S hybrids as electrode materials for high-performance energy storage devices. Chin. Chem. Lett. 2023, 34, 107593. [Google Scholar] [CrossRef]
- Zhu, S.; Li, Y.T.; Zhu, H.Y.; Ni, J.F.; Li, Y. Pencil-Drawing Skin-Mountable Micro-Supercapacitors. Small 2019, 15, 1804037. [Google Scholar] [CrossRef]
- Ali, Z.; Iqbal, M.Z.; Hegazy, H.H. Recent advancements in redox-active transition metal sulfides as battery-grade electrode materials for hybrid supercapacitors. J. Energy Storage 2023, 73, 108857. [Google Scholar] [CrossRef]
- Li, T.S.; Zhao, Z.F.; Su, Z.H.; Lin, S.Y.; Sun, R.; Shang, Y.C. One-step electrodeposited Ni3S2/Co9S8/NiS composite on Ni foam as high-performance electrode for supercapacitors. Dalton Trans. 2023, 52, 6823–6830. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Liu, X.P.; Zhao, H.Y.; Yang, X.B.; Xiao, S.Y.; Liu, N.L.; Zhao, N.N.; Cao, Y.Y.; Yu, X.J.; Li, X.F. Dual-Phase engineering of Ni3S2/NiCo-MOF nanocomposites for enhanced ion storage and electron migration. Chem. Eng. J. 2024, 489, 151069. [Google Scholar] [CrossRef]
- Wu, B.X.; Qian, H.; Nie, Z.W.; Luo, Z.P.; Wu, Z.X.; Liu, P.; He, H.; Wu, J.H.; Chen, S.G.; Zhang, F.F. Ni3S2 nanorods growing directly on Ni foam for all-solid-state asymmetric supercapacitor and efficient overall water splitting. J. Energy Chem. 2020, 46, 178–186. [Google Scholar] [CrossRef]
- Guo, Z.C.; Mu, J.P.; Wang, J.P.; Mu, J.B.; Che, H.W.; Li, F.; Yang, H.; He, L.X.; Wei, F.F. Rational fabrication and optimized design of hierarchical Ni3S2-MOF electrodes for enhanced electrochemical energy storage. J. Energy Storage 2023, 70, 108019. [Google Scholar] [CrossRef]
- Wang, W.Y.; Yang, C.; Han, D.T.; Yu, S.J.; Qi, W.T.; Ling, R.; Liu, G.Q. Ni3S2/Ni2O3 heterojunction anchored on N-doped carbon nanosheet aerogels for dual-ion hybrid supercapacitors. J. Colloid Interface Sci. 2024, 654, 709–718. [Google Scholar] [CrossRef]
- Wang, Y.T.; He, X.F.; He, G.Y.; Meng, C.; Chen, X.M.; Li, F.T. A critical review on nickel sulfide-based electrode materials for supercapacitors. Crit. Rev. Solid State Mat. Sci. 2023, 48, 502–518. [Google Scholar] [CrossRef]
- Li, X.; Ren, J.; Sridhar, D.; Xu, B.B.; Algadi, H.; El-Bahy, Z.M.; Ma, Y.; Li, T.; Guo, Z. Progress of layered double hydroxide-based materials for supercapacitors. Mat. Chem. Front. 2023, 7, 1520–1561. [Google Scholar] [CrossRef]
- Wang, M.D.; Liu, X.Y.; Wu, X. Realizing efficient electrochemical overall water electrolysis through hierarchical CoP@NiCo-LDH nanohybrids. Nano Energy 2023, 114, 108681. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Liu, Y.; Zheng, Z.; Liu, B.; Chen, M.; Guan, G.; Yan, K. Recent advances on transition-metal-based layered double hydroxides nanosheets for electrocatalytic energy conversion. Adv. Sci. 2023, 10, 2207519. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; He, L.; Guo, Z.; Li, M. Ternary metal layered hydroxides: As promising electrode materials for supercapacitors. J. Energy Storage 2023, 72, 108544. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Cheng, W.; Huang, W.; Sun, Y.; Cui, L.; Xu, J.; Liu, J. Nanoflower-like Ag adhered NiMo(OH)x composite arrays on nickel foam for high-performance supercapacitor. J. Energy Storage 2024, 81, 110246. [Google Scholar] [CrossRef]
- Huang, B.J.; Yao, D.C.; Yuan, J.J.; Tao, Y.R.; Yin, Y.X.; He, G.Y.; Chen, H.Q. Hydrangea-like NiMoO4-Ag/rGO as Battery-type electrode for hybrid supercapacitors with superior stability. J. Colloid Interface Sci. 2022, 606, 1652–1661. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.X.; Zhao, S.Q.; Wu, X. Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chin. Chem. Lett. 2024, 35, 109059. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Saeed, G.; Kim, N.H.; Lee, J.H. Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem. Eng. J. 2020, 384, 123357. [Google Scholar] [CrossRef]
- Liang, J.Y.; Qin, S.M.; Luo, S.; Pan, D.; Xu, P.F.; Li, J. Honeycomb porous heterostructures of NiMo layered double hydroxide nanosheets anchored on CoNi metal–organic framework nano-blocks as electrodes for asymmetric supercapacitors. J. Colloid Interface Sci. 2024, 653, 504–516. [Google Scholar] [CrossRef]
- Qian, H.; Wu, B.X.; Nie, Z.W.; Liu, T.T.; Liu, P.; He, H.; Wu, J.H.; Chen, Z.Y.; Chen, S.G. A flexible Ni3S2/Ni@CC electrode for high-performance battery-like supercapacitor and efficient oxygen evolution reaction. Chem. Eng. J. 2021, 420, 127646. [Google Scholar] [CrossRef]
- Shi, R.D.; Yang, J.S.; Zhou, G.B. High-index-faceted and electron density-optimized Ni3S2 in hierarchical NiWO4-Ni3S2@NiO/NF nanofibers for robust alkaline electrocatalytic hydrogen evolution. Chem. Eng. J. 2023, 457, 141188. [Google Scholar] [CrossRef]
- Liu, S.; He, S.W.; Xiang, Y.H.; Peng, X.C.; Xiong, L.Z.; Wu, J.H. Zn-Co-Mo-rGO ultra-thin nanosheets arrays-based electrode materials for asymmetric supercapacitor. Batteries 2023, 9, 158. [Google Scholar] [CrossRef]
- Duan, C.; Wang, L.; Liu, J.; Qu, Y.; Gao, J.; Yang, Y.; Wang, B.; Li, J.; Zheng, L.; Li, M.; et al. 3D Carbon Electrode with Hierarchical Nanostructure Based on NiCoP Core-Layered Double Hydroxide Shell for Supercapacitors and Hydrogen Evolution. ChemElectroChem 2021, 8, 2272–2281. [Google Scholar] [CrossRef]
- Wang, M.D.; Liu, X.Y.; Sun, Y.C.; Wu, X. High-efficiency NiCo layered double hydroxide electrocatalyst. New J. Chem. 2022, 38, 18535–18542. [Google Scholar] [CrossRef]
- Yu, G.; Zhou, J.; Chen, Q.; Huang, Z.; Tao, K.; Han, L. Controllable fabricate hierarchical CoMoO3@Co9S8/Ni3S2 core-shell arrays for high-performance hybrid supercapacitor. Mater. Today Chem. 2023, 30, 101601. [Google Scholar] [CrossRef]
- Wang, S.; Hu, C.H.; Wang, J.H.; Xie, M.Z.; Wu, S.Y.; Zhao, L.H.; Gong, J.X.; Dai, Y.T. Sugar gourd-like NiCo layered double hydroxide@NiMoO4 hierarchical core-shell material for high-performance asymmetric supercapacitors. J. Energy Storage 2023, 73, 109034. [Google Scholar] [CrossRef]
- Xiong, Y.; Yu, F.; Arnold, S.; Wang, L.; Presser, V.; Ren, Y.; Ma, J. Three-dimensional cobalt hydroxide hollow cube/vertical nanosheets with high desalination capacity and long-term performance stability in capacitive deionization. Research 2021, 2021, 9754145. [Google Scholar] [PubMed]
- Shi, M.M.; Zhao, M.S.; Jiao, L.D.; Su, Z.; Li, M.; Song, X.P. Novel Mo-doped nickel sulfide thin sheets decorated with Ni–Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery. J. Power Sources 2021, 509, 230333. [Google Scholar] [CrossRef]
- Cheng, C.; Zou, Y.J.; Xu, F.; Xiang, C.L.; Sui, Q.L.; Zhang, J.; Sun, L.X.; Chen, Z.M. Ultrathin graphene@NiCo2S4@Ni-Mo layered double hydroxide with a 3D hierarchical flowers structure as a high performance positive electrode for hybrid supercapacitor. J. Energy Storage 2022, 52, 105049. [Google Scholar] [CrossRef]
- Liu, J.X.; Wu, X. Nanosheet-assembled MoS2/Ni3S2 microspheres for flexible energy storage devices. J. Solid State Electrochem. 2023, 27, 2571–2577. [Google Scholar] [CrossRef]
- Jiang, D.Y.; Wang, Y.Q.; Du, C.; Xie, M.J.; Chen, J.; Zhang, Y.; Wan, L. Heterostructured Ni2P/NiMo-layered double hydroxide nanoarrays with enriched redox active sites for supercapacitors. J. Alloy. Compd. 2024, 970, 172685. [Google Scholar] [CrossRef]
- He, W.X.; Pang, M.J.; Jiang, S.; Yang, H.; Wang, R.W.; Li, N.; Pan, Q.L.; Li, J.W.; Zhao, J.G. Binder-free MgCo2O4@Ni3S2 core-shell-like composites as advanced battery materials for asymmetric supercapacitors. Synth. Met. 2022, 285, 117021. [Google Scholar] [CrossRef]
Electrode Materials | Current Density (A g−1) | Number of Cycles | Retention Rate (%) |
---|---|---|---|
Ni3S2@NiMo-LDH | 5 | 10,000 | 77% |
Ni3S2 | 5 | 10,000 | 69.8% |
NiMo-LDH | 5 | 10,000 | 40.5% |
Ni3S2@NiMo-LDH//AC (25 °C) | 2 | 10,000 | 84% |
Ni3S2@NiMo-LDH//AC (0 °C) | 2 | 2000 | 100% |
Composite Materials | Specific Capacity (1 A/g) | Energy Density (W h kg−1) | Power Density (W kg−1) | Cycle Number | Capacity Retention Rate | Ref. |
---|---|---|---|---|---|---|
RGO@NiCo2S4@NiMo-LDH//AC | 1346 F g−1 | 59.38 | 808.19 | 10,000 | 80% | [36] |
MoS2/Ni3S2//AC | 1001 F g−1 | 33.75 | 2700 | 10,000 | 78.5% | [37] |
Ni2P/NiMo-LDH//AC | 1620 F g−1 | 63.7 | 1138.3 | 10,000 | 91.7% | [38] |
MgCo2O4 @Ni3S2//AC | 1123 F g−1 | 28.37 | 159.6 | 8000 | 82.9% | [39] |
Ni3S2@NiMo-LDH//AC | 1940 F g−1 | 63.8 | 2701.6 | 10,000 | 89% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Wu, X. Ni3S2@NiMo-LDH Composite for Flexible Hybrid Capacitors. Batteries 2024, 10, 230. https://doi.org/10.3390/batteries10070230
He Q, Wu X. Ni3S2@NiMo-LDH Composite for Flexible Hybrid Capacitors. Batteries. 2024; 10(7):230. https://doi.org/10.3390/batteries10070230
Chicago/Turabian StyleHe, Qi, and Xiang Wu. 2024. "Ni3S2@NiMo-LDH Composite for Flexible Hybrid Capacitors" Batteries 10, no. 7: 230. https://doi.org/10.3390/batteries10070230
APA StyleHe, Q., & Wu, X. (2024). Ni3S2@NiMo-LDH Composite for Flexible Hybrid Capacitors. Batteries, 10(7), 230. https://doi.org/10.3390/batteries10070230