Recycling of Lithium-Ion Batteries via Electrochemical Recovery: A Mini-Review
Abstract
:1. Introduction
2. Electrochemical Leaching
3. Electrodeposition
3.1. Lithium Electrodeposition
3.2. Cobalt Recovery
3.3. Electrodeposition of Ni-Co Alloy
3.4. Ni and Co Separation via Electrodeposition
4. Conclusions and Perspectives
- (1)
- The reaction mechanisms behind electrochemical leaching and electrodeposition need further clarification. Advanced characterization techniques, such as neutron scattering and in situ X-ray analysis, should be used for more in-depth investigation.
- (2)
- There is still a lack of efficient methods for selectively leaching or depositing metals. It remains challenging to separate nickel and cobalt via electrochemical methods because of their similar chemical reactivities.
- (3)
- The process requires fine-tuning with precise control over purities. Maintaining purity levels remains a significant hurdle in both the electrochemical leaching process and electrodeposition.
- (4)
- Further advanced research is needed for investigating and controlling the morphology of the obtained metals through electrodeposition.
- (5)
- There is a crucial need for efficient, customized electrochemical methods tailored to various battery chemistries. A comprehensive investigation is required to elucidate the mechanism behind relithiation through lithium electrodeposition, and to develop cathodes that exhibit the desired electrochemical performance.
- (6)
- Electrochemical methods for recycling lithium-ion batteries primarily target cathode materials. However, the pretreatment process involves complexities, such as battery dismantling and electrode delamination. Additional research is required to develop efficient pretreatment methods.
- (7)
- The current electrochemical recycling process is limited to the laboratory scale. Extensive further research is necessary to upscale the process for commercialization. Rigorous testing and validation procedures are essential to showcase the scalability, reliability, cost-effectiveness, and sustainability of the technology.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaffe, S. Vulnerable Links in the Lithium-Ion Battery Supply Chain. Joule 2017, 1, 225–228. [Google Scholar] [CrossRef]
- Dunn, J.B.; Gaines, L.; Kelly, J.C.; James, C.; Gallagher, K.G. The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ. Sci. 2015, 8, 158–168. [Google Scholar] [CrossRef]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Bai, Y.; Muralidharan, N.; Sun, Y.-K.; Passerini, S.; Stanley Whittingham, M.; Belharouak, I. Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport. Mater. Today 2020, 41, 304–315. [Google Scholar] [CrossRef]
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of Lithium-Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv. Energy Mater. 2022, 12, 104789. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Yu, L.; Bai, Y.; Polzin, B.; Belharouak, I. Unlocking the value of recycling scrap from Li-ion battery manufacturing: Challenges and outlook. J. Power Sources 2024, 593, 233955. [Google Scholar] [CrossRef]
- Yu, L.; Bai, Y.; Essehli, R.; Bisht, A.; Belharouak, I. Efficient separation and coprecipitation for simplified cathode recycling. Energy Storage Mater. 2023, 63, 103025. [Google Scholar] [CrossRef]
- Chen, M.; Zheng, Z.; Wang, Q.; Zhang, Y.; Ma, X.; Shen, C.; Xu, D.; Liu, J.; Liu, Y.; Gionet, P.; et al. Closed Loop Recycling of Electric Vehicle Batteries to Enable Ultra-high Quality Cathode Powder. Sci. Rep. 2019, 9, 1654. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Shen, B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J. Hazard. Mater. 2015, 295, 112–118. [Google Scholar] [CrossRef]
- Bai, Y.; Muralidharan, N.; Li, J.; Essehli, R.; Belharouak, I. Sustainable Direct Recycling of Lithium-Ion Batteries via Solvent Recovery of Electrode Materials. ChemSusChem 2020, 13, 5664–5670. [Google Scholar] [CrossRef]
- Buken, O.; Mancini, K.; Sarkar, A. A sustainable approach to cathode delamination using a green solvent. RSC Adv. 2021, 11, 27356–27368. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Guo, C.; Huang, P.; Han, Q.; Wang, F.; Zhang, H.; Liu, H.; Cao, Y.-C.; Yao, Y.; Huang, Y. Rejuvenating LiNi0.5Co0.2Mn0.3O2 cathode directly from battery scraps. eScience 2023, 3, 100091. [Google Scholar] [CrossRef]
- Kang, J.; Senanayake, G.; Sohn, J.; Shin, S.M. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 2010, 100, 168–171. [Google Scholar] [CrossRef]
- Gao, H.; Yan, Q.; Tran, D.; Yu, X.; Liu, H.; Li, M.; Li, W.; Wu, J.; Tang, W.; Gupta, V.; et al. Upcycling of Spent LiNi0.33Co0.33Mn0.33O2 to Single-Crystal Ni-Rich Cathodes Using Lean Precursors. ACS Energy Lett. 2023, 8, 4136–4144. [Google Scholar] [CrossRef]
- Wagh, P.; Islam, S.Z.; Lamichhane, T.N.; Bhave, R.R.; Paranthaman, M.P. Separation of Lithium from Aluminum-Containing Clay Mineral Leachate Solution Using Energy-Efficient Membrane Solvent Extraction. ACS Omega 2023, 8, 46523–46527. [Google Scholar] [CrossRef]
- Kumar, R.; Chakrabortty, S.; Chakrabortty, P.; Nayak, J.; Liu, C.; Ali Khan, M.; Ha, G.-S.; Ho Kim, K.; Son, M.; Roh, H.-S.; et al. Sustainable recovery of high-valued resources from spent lithium-ion batteries: A review of the membrane-integrated hybrid approach. Chem. Eng. J. 2023, 470, 144169. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Prabaharan, G.; Barik, S.P.; Kumar, N.; Kumar, L. Electrochemical process for electrode material of spent lithium ion batteries. Waste Manag. 2017, 68, 527–533. [Google Scholar] [CrossRef]
- Kim, K.; Raymond, D.; Candeago, R.; Su, X. Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control. Nat. Commun. 2021, 12, 6554. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Yang, J.; He, Z.; Zheng, J.; Li, Y. Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries. Energy Storage Mater. 2023, 55, 606–630. [Google Scholar] [CrossRef]
- Xing, Z.; Srinivasan, M. Electrochemical Approach for Lithium Recovery from Spent Lithium-Ion Batteries: Opportunities and Challenges. ACS Sustain. Resour. Manag. 2024, 1, 1326–1339. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Jiang, Y.; Zhou, T.; Zhao, Y.; Chen, X. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries. Waste Manag. 2021, 136, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Zhang, Y.; Dong, P. Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries. J. Clean. Prod. 2018, 180, 64–70. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Y.; Meng, Q.; Dong, P.; Yang, X.; Liu, P.; Li, Q.; Fei, Z. Recycling of spent LiCoO2 materials by electrolytic leaching of cathode electrode plate. J. Environ. Chem. Eng. 2021, 9, 104789. [Google Scholar] [CrossRef]
- Lei, S.; Zhang, Y.; Song, S.; Xu, R.; Sun, W.; Xu, S.; Yang, Y. Strengthening Valuable Metal Recovery from Spent Lithium-Ion Batteries by Environmentally Friendly Reductive Thermal Treatment and Electrochemical Leaching. ACS Sustain. Chem. Eng. 2021, 9, 7053–7062. [Google Scholar] [CrossRef]
- Grima-Carmena, L.; Oyonarte-Andrés, S.; Giner-Sanz, J.J.; García-Gabaldón, M.; Bosch-Mossi, F.; Pérez-Herranz, V. Statistical analysis of the effect of the electrochemical treatment and the acid concentration on the leaching of NMC cathodes from spent Li-ion batteries. J. Environ. Chem. Eng. 2023, 11, 110423. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, Y.; Dong, P.; Liang, F. A novel process for leaching of metals from LiNi1/3Co1/3Mn1/3O2 material of spent lithium ion batteries: Process optimization and kinetics aspects. J. Ind. Eng. Chem. 2018, 61, 133–141. [Google Scholar] [CrossRef]
- Pei, S.; Yan, S.; Chen, X.; Li, J.; Xu, J. Novel electrochemical process for recycling of valuable metals from spent lithium-ion batteries. Waste Manag. 2024, 188, 1–10. [Google Scholar] [CrossRef]
- Adhikari, B.; Chowdhury, N.A.; Diaz, L.A.; Jin, H.; Saha, A.K.; Shi, M.; Klaehn, J.R.; Lister, T.E. Electrochemical leaching of critical materials from lithium-ion batteries: A comparative life cycle assessment. Resour. Conserv. Recycl. 2023, 193, 106973. [Google Scholar] [CrossRef]
- Diaz, L.A.; Strauss, M.L.; Adhikari, B.; Klaehn, J.R.; McNally, J.S.; Lister, T.E. Electrochemical-assisted leaching of active materials from lithium ion batteries. Resour. Conserv. Recycl. 2020, 161, 104900. [Google Scholar] [CrossRef]
- Yang, L.; Gao, Z.; Liu, T.; Huang, M.; Liu, G.; Feng, Y.; Shao, P.; Luo, X. Direct Electrochemical Leaching Method for High-Purity Lithium Recovery from Spent Lithium Batteries. Environ. Sci. Technol. 2023, 57, 4591–4597. [Google Scholar] [CrossRef] [PubMed]
- Gaines, L. Lithium-ion battery recycling processes: Research towards a sustainable course. Sustain. Mater. Technol. 2018, 17, e00068. [Google Scholar] [CrossRef]
- Lee, J.; Yu, S.H.; Kim, C.; Sung, Y.E.; Yoon, J. Highly selective lithium recovery from brine using a lambda-MnO2-Ag battery. Phys. Chem. Chem. Phys. 2013, 15, 7690–7695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Han, Y.; Lai, J.; Wolf, J.; Lei, Z.; Yang, Y.; Shi, F. Direct extraction of lithium from ores by electrochemical leaching. Nat. Commun. 2024, 15, 5066. [Google Scholar] [CrossRef]
- Jang, Y.; Hou, C.-H.; Park, S.; Kwon, K.; Chung, E. Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes. Resour. Conserv. Recycl. 2021, 175, 105837. [Google Scholar] [CrossRef]
- Jang, Y.; Hou, C.H.; Kwon, K.; Kang, J.S.; Chung, E. Selective recovery of lithium and ammonium from spent lithium-ion batteries using intercalation electrodes. Chemosphere 2023, 317, 137865. [Google Scholar] [CrossRef]
- Park, K.; Yu, J.; Coyle, J.; Dai, Q.; Frisco, S.; Zhou, M.; Burrell, A. Direct Cathode Recycling of End-of-Life Li-Ion Batteries Enabled by Redox Mediation. ACS Sustain. Chem. Eng. 2021, 9, 8214–8221. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; He, Z. Electrochemical Relithiation for Direct Regeneration of LiCoO2 Materials from Spent Lithium-Ion Battery Electrodes. ACS Sustain. Chem. Eng. 2020, 8, 11596–11605. [Google Scholar] [CrossRef]
- Yang, T.; Lu, Y.; Li, L.; Ge, D.; Yang, H.; Leng, W.; Zhou, H.; Han, X.; Schmidt, N.; Ellis, M.; et al. An Effective Relithiation Process for Recycling Lithium-Ion Battery Cathode Materials. Adv. Sustain. Syst. 2019, 4, 1900088. [Google Scholar] [CrossRef]
- Wu, C.; Xu, M.; Zhang, C.; Ye, L.; Zhang, K.; Cong, H.; Zhuang, L.; Ai, X.; Yang, H.; Qian, J. Cost-effective recycling of spent LiMn2O4 cathode via a chemical lithiation strategy. Energy Storage Mater. 2023, 55, 154–165. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, C.; Ye, M.; Li, H.; Fu, Z.; Zhang, H.; Wang, G.; Zhang, Y. Closed-Loop Regeneration of a Spent LiFePO4 Cathode by Integrating Oxidative Leaching and Electrochemical Relithiation. ACS Appl. Energy Mater. 2022, 5, 14323–14334. [Google Scholar] [CrossRef]
- Tran, M.K.; Rodrigues, M.-T.F.; Kato, K.; Babu, G.; Ajayan, P.M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 2019, 4, 339–345. [Google Scholar] [CrossRef]
- Freitas, M.B.J.G.; Garcia, E.M. Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J. Power Sources 2007, 171, 953–959. [Google Scholar] [CrossRef]
- Garcia, E.M.; Santos, J.S.; Pereira, E.C.; Freitas, M.B.J.G. Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique. J. Power Sources 2008, 185, 549–553. [Google Scholar] [CrossRef]
- Cheng, J.; Zheng, C.; Xu, K.; Zhu, Y.; Song, Y.; Jing, C. Sequential separation of critical metals from lithium-ion batteries based on deep eutectic solvent and electrodeposition. J. Hazard. Mater. 2023, 465, 133157. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Z.; Luo, F.; Liu, T.; Xi, X.; Wang, Z.; Gao, Z.; Shao, P.; Wu, D.; Luo, X.; et al. One-step nickel-cobalt alloy electrodeposition from spent lithium-ion battery via synergistic pH adjustment and Mn2+ supplementation. Sep. Purif. Technol. 2023, 314, 123581. [Google Scholar] [CrossRef]
- Tawonezvi, T.; Zide, D.; Nomnqa, M.; Petrik, L.; Bladergroen, B.J. Selective electrodeposition of Co-Ni alloys from synthetic quasi LiB NMC 532 cathode sulphate solutions using rotating plate potentiostatic electrowinning. Chem. Eng. J. Adv. 2024, 17, 100579. [Google Scholar] [CrossRef]
- Landa-Castro, M.; Aldana-González, J.; Montes de Oca-Yemha, M.G.; Romero-Romo, M.; Arce-Estrada, E.M.; Palomar-Pardavé, M. Ni–Co alloy electrodeposition from the cathode powder of Ni-MH spent batteries leached with a deep eutectic solvent (reline). J. Alloys Compd. 2020, 830, 154650. [Google Scholar] [CrossRef]
Leaching Items | Operation System | Leaching Agents | Applied Voltage/Current | pH | Leaching Efficiency | Reference |
---|---|---|---|---|---|---|
LIB metal oxide filter cake | Threeelectrode system | H2SO4 solution (0.5–2 M), FeSO4 (10 mM) as a reducing agent | −0.3 V | >1 | Li, Co, Mn, and Ni: >96%, Fe: > 40%, Cu: >70%, Zn: >80%, Al: >30% | [31] |
Reduced NMC cathode | Twoelectrode system | H2SO4 solution (0.5, 1, 1.5, and 2 M) | 0.2–1.0 A | \ | Li: 100%, Ni: 90.59%, Co: 90.53%, and Mn: 66.40% | [26] |
NMC622 cathode | Two-electrode system | K2SO4 solution | 1.0–3.0 V | 9–12 | Li: 95.02% | [32] |
NMC cathode | Twoelectrode system | Malic acid solution | 2.0–10.0 V | <6.6 | Li: 100%, Ni: 99.87%, Co: 99.58%, Mn: 99.82% | [28] |
LiCoO2 (LCO) cathode | Twoelectrode system | Malic acid solution | 2.0–10.0 V | <6.22 | Li: 94.17%, Co: 90.45%, | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Bai, Y.; Belharouak, I. Recycling of Lithium-Ion Batteries via Electrochemical Recovery: A Mini-Review. Batteries 2024, 10, 337. https://doi.org/10.3390/batteries10100337
Yu L, Bai Y, Belharouak I. Recycling of Lithium-Ion Batteries via Electrochemical Recovery: A Mini-Review. Batteries. 2024; 10(10):337. https://doi.org/10.3390/batteries10100337
Chicago/Turabian StyleYu, Lu, Yaocai Bai, and Ilias Belharouak. 2024. "Recycling of Lithium-Ion Batteries via Electrochemical Recovery: A Mini-Review" Batteries 10, no. 10: 337. https://doi.org/10.3390/batteries10100337
APA StyleYu, L., Bai, Y., & Belharouak, I. (2024). Recycling of Lithium-Ion Batteries via Electrochemical Recovery: A Mini-Review. Batteries, 10(10), 337. https://doi.org/10.3390/batteries10100337