Secondary High-Temperature Treatment of Porous Carbons for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of High-Temperature Treated Porous Carbons (HTCs)
2.3. Material Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.W.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A.; Thommes, M.; et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.N.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Nikitin, A.; Ye, H.H.; Zhou, W.; Fischer, J.E.; Yi, B.; Foley, H.C.; Barsoum, M.W. Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2003, 2, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.J.; Liu, Y.; Yan, J.; Ning, G.Q.; Wang, Q.; Wei, T.; Zhi, L.J.; Wei, F. Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 419–424. [Google Scholar] [CrossRef]
- Pang, Z.Y.; Li, G.S.; Xiong, X.L.; Ji, L.; Xu, Q.; Zou, X.L.; Lu, X.G. Molten salt synthesis of porous carbon and its application in supercapacitors: A review. J. Energy Chem. 2021, 61, 622–640. [Google Scholar] [CrossRef]
- Tian, W.H.; Zhu, J.Y.; Dong, Y.; Zhao, J.; Li, J.; Guo, N.N.; Lin, H.; Zhang, S.; Jia, D.Z. Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings. Carbon 2020, 161, 89–96. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, J.Y.; Qing, Y.; Wang, L.X.; Zhao, J.; Li, J.; Tian, W.H.; Jia, D.Z.; Fan, Z.J. Ultramicroporous carbons puzzled by graphene quantum dots: Integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv. Funct. Mater. 2018, 28, 10. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Han, D.L.; Shang, T.X.; Deng, Y.Q.; Tao, Y.; Lv, W.; Yang, Q.H. Packing activated carbons into dense graphene network by capillarity for high volumetric performance supercapacitors. Adv. Sci. 2019, 6, 8. [Google Scholar] [CrossRef]
- Li, Q.Q.; Jiang, Y.T.; Jiang, Z.M.; Zhu, J.Y.; Gan, X.M.; Qin, F.W.; Tang, T.T.; Luo, W.X.; Guo, N.N.; Liu, Z.; et al. Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte. Carbon 2022, 191, 19–27. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, J.; Fan, Z.J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762. [Google Scholar] [CrossRef]
- Chang, P.P.; Wang, C.Y.; Kinumoto, T.; Tsumura, T.; Chen, M.M.; Toyoda, M. Frame-filling C/C composite for high-performance EDLCs with high withstanding voltage. Carbon 2018, 131, 184–192. [Google Scholar] [CrossRef]
- Leng, C.Y.; Zhao, Z.B.; Song, Y.Z.; Sun, L.L.; Fan, Z.J.; Yang, Y.Z.; Liu, X.G.; Wang, X.Z.; Qiu, J.S. 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density. Nano-Micro Lett. 2021, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Q.; Yu, S.; Xu, K.T.; Zhang, Y.; Zhang, L.M.; Lou, G.B.; Wu, Y.T.; Zhu, E.H.; Chen, H.; Shen, Z.H.; et al. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 2018, 181, 36–45. [Google Scholar] [CrossRef]
- Gomibuchi, E.; Ichikawa, T.; Kimura, K.; Isobe, S.; Nabeta, K.; Fujii, H. Electrode properties of a double layer capacitor of nano-structured graphite produced by ball milling under a hydrogen atmosphere. Carbon 2006, 44, 983–988. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.D.; Hu, W.B.; Qiao, J.L.; Zhang, L.; Zhang, J.J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.R.; Yao, B.; Wei, X.J.; Liu, T.Y.; Kou, T.Y.; Xiao, P.; Zhang, Y.H.; Li, Y. Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 2019, 9, 9. [Google Scholar] [CrossRef]
- Jiang, Y.T.; Li, J.; Jiang, Z.M.; Shi, M.J.; Sheng, R.; Liu, Z.; Zhang, S.; Cao, Y.L.; Wei, T.; Fan, Z.J. Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon 2021, 175, 281–288. [Google Scholar] [CrossRef]
- Pérez, C.R.; Yeon, S.H.; Ségalini, J.; Presser, V.; Taberna, P.L.; Simon, P.; Gogotsi, Y. Structure and electrochemical performance of carbide-derived carbon nanopowders. Adv. Funct. Mater. 2013, 23, 1081–1089. [Google Scholar] [CrossRef]
- Wu, L.Q.; Li, W.W.; Li, P.; Liao, S.T.; Qiu, S.Q.; Chen, M.L.; Guo, Y.F.; Li, Q.; Zhu, C.; Liu, L.W. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite. Small 2014, 10, 1421–1429. [Google Scholar] [CrossRef]
- Zheng, Q.W.; Li, X.M.; Yang, Q.Z.; Li, C.M.; Liu, G.Q.; Wang, Y.C.; Sun, P.C.; Tian, H.M.; Wang, C.H.; Chen, X.L.; et al. High performance solid-state supercapacitors based on highly conductive organogel electrolyte at low temperature. J. Power Sources 2022, 524, 10. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.Y.; Jin, Z.Y.; Qiao, X.R.; Huang, H.C.; Chu, X.; Xiong, D.; Zhang, H.T.; Liu, Y.; Yang, W.Q. Hierarchically divacancy defect building dual-activated porous carbon fibers for high-performance energy-storage devices. Adv. Funct. Mater. 2020, 30, 8. [Google Scholar] [CrossRef]
- Vonlanthen, D.; Lazarev, P.; See, K.A.; Wudl, F.; Heeger, A.J. A stable polyaniline-benzoquinone-hydroquinone supercapacitor. Adv. Mater. 2014, 26, 5095–5100. [Google Scholar] [CrossRef]
- Heon, M.; Lofland, S.; Applegate, J.; Nolte, R.; Cortes, E.; Hettinger, J.D.; Taberna, P.L.; Simon, P.; Huang, P.H.; Brunet, M.; et al. Continuous carbide-derived carbon films with high volumetric capacitance. Energy Environ. Sci. 2011, 4, 135–138. [Google Scholar] [CrossRef]
- Wu, J.Y.; Zhang, X.; Ju, Z.Y.; Wang, L.; Hui, Z.Y.; Mayilvahanan, K.; Takeuchi, K.J.; Marschilok, A.C.; West, A.C.; Takeuchi, E.S.; et al. From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Adv. Mater. 2021, 33, 16. [Google Scholar] [CrossRef]
- Liu, H.Y.; Xu, T.; Cai, C.Y.; Liu, K.; Liu, W.; Zhang, M.; Du, H.S.; Si, C.L.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 12. [Google Scholar] [CrossRef]
- Zornitta, R.L.; Barcelos, K.M.; Nogueira, F.G.E.; Ruotolo, L.A.M. Understanding the mechanism of carbonization and KOH activation of polyaniline leading to enhanced electrosorption performance. Carbon 2020, 156, 346–358. [Google Scholar] [CrossRef]
- Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763. [Google Scholar] [CrossRef]
- Huang, C.; Tang, Q.L.; Feng, Q.S.; Li, Y.H.; Xu, Y.L.; Zhang, Y.; Hu, A.; Zhang, S.Y.; Deng, W.N.; Chen, X.H. Achieving ultrahigh volumetric performance of graphene composite films by an outer-inner dual space utilizing strategy. J. Mater. Chem. A 2020, 8, 9661–9669. [Google Scholar] [CrossRef]
- Shao, H.; Wu, Y.C.; Lin, Z.F.; Taberna, P.L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039. [Google Scholar] [CrossRef]
- Wang, Y.G.; Song, Y.F.; Xia, Y.Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Pan, B.Y.G.; Bai, L.; Hu, C.M.; Wang, X.P.; Li, W.S.; Zhao, F.G. Graphene-indanthrone donor-π-acceptor heterojunctions for high-performance flexible supercapacitors. Adv. Energy Mater. 2020, 10, 8. [Google Scholar] [CrossRef]
- Sevilla, M.; Ferrero, G.A.; Diez, N.; Fuertes, A.B. One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon 2018, 131, 193–200. [Google Scholar] [CrossRef]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 10. [Google Scholar] [CrossRef]
- Xu, L.; Shi, R.Y.; Li, H.F.; Han, C.P.; Wu, M.Y.; Wong, C.P.; Kang, F.Y.; Li, B.H. Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon 2018, 127, 459–468. [Google Scholar] [CrossRef]
- Yang, X.W.; Cheng, C.; Wang, Y.F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537. [Google Scholar] [CrossRef]
- Wang, C.J.; Liu, F.; Chen, J.S.; Yuan, Z.W.; Liu, C.; Zhang, X.S.; Xu, M.Y.; Wei, L.; Chen, Y. A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 2020, 32, 448–457. [Google Scholar] [CrossRef]
- Yang, B.J.; Chen, J.T.; Lei, S.L.; Guo, R.S.; Li, H.X.; Shi, S.Q.; Yan, X.B. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 2018, 8, 11. [Google Scholar] [CrossRef]
- Peng, L.; Hung, C.T.; Wang, S.W.; Zhang, X.M.; Zhu, X.H.; Zhao, Z.W.; Wang, C.Y.; Tang, Y.; Li, W.; Zhao, D.Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080. [Google Scholar] [CrossRef]
- Sutarsis; Patra, J.; Su, C.Y.; Li, J.; Bresser, D.; Passerini, S.; Chang, J.K. Manipulation of nitrogen-heteroatom configuration for enhanced charge-storage performance and reliability of nanoporous carbon electrodes. ACS Appl. Mater. Interfaces 2020, 12, 32797–32805. [Google Scholar] [CrossRef]
- Liang, Y.R.; Liang, F.X.; Zhong, H.; Li, Z.H.; Fu, R.W.; Wu, D.C. An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors. J. Mater. Chem. A 2013, 1, 7000–7005. [Google Scholar] [CrossRef]
- Yang, I.; Yoo, J.; Kwon, D.; Choi, D.; Kim, M.S.; Jung, J.C. Improvement of a commercial activated carbon for organic electric double-layer capacitors using a consecutive doping method. Carbon 2020, 160, 45–53. [Google Scholar] [CrossRef]
- Wu, X.; Liu, R.; Zhao, J.; Fan, Z. Advanced carbon materials with different spatial dimensions for supercapacitors. Nano Mater. Sci. 2021, 3, 241–247. [Google Scholar] [CrossRef]
- Fan, Z.J.; Wang, K.; Wei, T.; Yan, J.; Song, L.P.; Shao, B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 2010, 48, 1686–1689. [Google Scholar] [CrossRef]
- Hsu, H.L.; Miah, M.; Saha, S.K.; Chen, J.H.; Chen, L.C.; Hsu, S.Y. Three-dimensional bundle-like multiwalled carbon nanotubes composite for supercapacitor electrode application. Mater. Today Chem. 2021, 22, 10. [Google Scholar] [CrossRef]
- Guo, W.; Yu, C.; Li, S.F.; Qiu, J.S. Toward commercial-level mass-loading electrodes for supercapacitors: Opportunities, challenges and perspectives. Energy Environ. Sci. 2021, 14, 576–601. [Google Scholar] [CrossRef]
- Guo, J.B.; Li, L.; Luo, J.; Gong, W.N.; Pan, R.; He, B.; Xu, S.H.; Liu, M.N.; Wang, Y.J.; Zhang, B.H.; et al. Polypyrrole-assisted nitrogen doping strategy to boost vanadium dioxide performance for wearable nonpolarity supercapacitor and aqueous Zinc-Ion battery. Adv. Energy Mater. 2022, 12, 12. [Google Scholar] [CrossRef]
- Raj, C.J.; Manikandan, R.; Thondaiman, P.; Sivakumar, P.; Savariraj, A.D.; Cho, W.J.; Kim, B.C.; Jung, H. Sonoelectrochemical exfoliation of graphene in various electrolytic environments and their structural and electrochemical properties. Carbon 2021, 184, 266–276. [Google Scholar] [CrossRef]
- Li, F.F.; Wang, X.L.; Sun, R.C. A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels. J. Mater. Chem. A 2017, 5, 20643–20650. [Google Scholar] [CrossRef]
- Long, S.S.; Feng, Y.C.; He, F.L.; Zhao, J.Z.; Bai, T.; Lin, H.B.; Cai, W.L.; Mao, C.W.; Chen, Y.H.; Gan, L.H.; et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 2021, 85, 11. [Google Scholar] [CrossRef]
- Xie, K.; Qin, X.T.; Wang, X.Z.; Wang, Y.N.; Tao, H.S.; Wu, Q.; Yang, L.J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347–352. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Ma, W.X.; Zhu, H.; Meng, H.X.; Wang, C.J.; Ma, F.Q.; Hu, Z.A. Graphene covalently functionalized with 2,6-diaminoanthraquinone (DQ) as a high performance electrode material for supercapacitors. New J. Chem. 2020, 44, 16821–16830. [Google Scholar] [CrossRef]
- Tian, M.; Wu, J.W.; Li, R.H.; Chen, Y.L.; Long, D.H. Fabricating a high-energy-density supercapacitor with asymmetric aqueous redox additive electrolytes and free-standing activated-carbon-felt electrodes. Chem. Eng. J. 2019, 363, 183–191. [Google Scholar] [CrossRef]
- Isikli, S.; Díaz, R. Substrate-dependent performance of supercapacitors based on an organic redox couple impregnated on carbon. J. Power Sources 2012, 206, 53–58. [Google Scholar] [CrossRef]
- Xiong, C.L.; Zou, Y.B.; Peng, Z.Y.; Zhong, W.B. Synthesis of morphology-tunable electroactive biomass/graphene composites using metal ions for supercapacitors. Nanoscale 2019, 11, 7304–7316. [Google Scholar] [CrossRef]
- An, N.; An, Y.F.; Hu, Z.G.; Guo, B.S.; Yang, Y.Y.; Lei, Z.Q. Graphene hydrogels non-covalently functionalized with alizarin: An ideal electrode material for symmetric supercapacitors. J. Mater. Chem. A 2015, 3, 22239–22246. [Google Scholar] [CrossRef]
- Jaidev; Ramaprabhu, S. Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J. Mater. Chem. 2012, 22, 18775–18783. [Google Scholar] [CrossRef]
- Tian, W.Q.; Gao, Q.M.; Tan, Y.L.; Yang, K.; Zhu, L.H.; Yang, C.X.; Zhang, H. Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 2015, 3, 5656–5664. [Google Scholar] [CrossRef]
- Chao, Y.Z.; Chen, S.B.; Xiao, Y.C.; Hu, X.J.; Lu, Y.; Chen, H.Q.; Xin, S.X.; Bai, Y.X. Ordinary filter paper-derived hierarchical pore structure carbon materials for supercapacitor. J. Energy Storage 2021, 35, 7. [Google Scholar] [CrossRef]
- Sankari, M.S.; Vivekanandhan, S. Jatropha oil cake based activated carbon for symmetric supercapacitor application: A comparative study on conventional and hydrothermal carbonization processes. ChemistrySelect 2020, 5, 1375–1384. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.F.; Wang, X.T.; Zhang, J.Y.; Yang, Y.K. One-pot solvothermal incorporation of graphene into chain-engineered polyquinones for metal-free supercapacitors. Chem. Commun. 2020, 56, 11191–11194. [Google Scholar] [CrossRef]
- Xue, Q.; Gan, H.B.; Huang, Y.; Zhu, M.S.; Pei, Z.X.; Li, H.F.; Deng, S.Z.; Liu, F.; Zhi, C.Y. Boron element nanowires electrode for supercapacitors. Adv. Energy Mater. 2018, 8, 8. [Google Scholar] [CrossRef]
- Xu, Y.X.; Lin, Z.Y.; Zhong, X.; Huang, X.Q.; Weiss, N.O.; Huang, Y.; Duan, X.F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 8. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, W.; Wang, G.; Qiu, Z.; Li, Q.; Xu, Z.; Li, Z.; Qi, B.; Cao, K.; Chi, C.; Wei, T.; et al. Secondary High-Temperature Treatment of Porous Carbons for High-Performance Supercapacitors. Batteries 2024, 10, 5. https://doi.org/10.3390/batteries10010005
Chi W, Wang G, Qiu Z, Li Q, Xu Z, Li Z, Qi B, Cao K, Chi C, Wei T, et al. Secondary High-Temperature Treatment of Porous Carbons for High-Performance Supercapacitors. Batteries. 2024; 10(1):5. https://doi.org/10.3390/batteries10010005
Chicago/Turabian StyleChi, Weihao, Guanwen Wang, Zhipeng Qiu, Qiqi Li, Zheng Xu, Zhiyuan Li, Bin Qi, Ke Cao, Chunlei Chi, Tong Wei, and et al. 2024. "Secondary High-Temperature Treatment of Porous Carbons for High-Performance Supercapacitors" Batteries 10, no. 1: 5. https://doi.org/10.3390/batteries10010005
APA StyleChi, W., Wang, G., Qiu, Z., Li, Q., Xu, Z., Li, Z., Qi, B., Cao, K., Chi, C., Wei, T., & Fan, Z. (2024). Secondary High-Temperature Treatment of Porous Carbons for High-Performance Supercapacitors. Batteries, 10(1), 5. https://doi.org/10.3390/batteries10010005