Microstructure and Magnetic Property Evolution Induced by Heat Treatment in Fe-Si/SiO2 Soft Magnetic Composites
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Evolution of the Core–Shell Heterostructure within the Fe–Si/SiO2 SMCs
3.2. Effects of Heat-Treatment Temperature on the Magnetic Properties of Fe–Si/SiO2 SMCs
3.3. Effects of Heat-Treatment Time on the Magnetic Properties of Fe–Si/SiO2 SMCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Cai, H.; Kang, Y.; Ying, Y.; Yu, J.; Zheng, J.; Qiao, L.; Jiang, Y.; Che, S. High permeability and low loss bioinspired soft magnetic composites with nacre-like structure for high frequency applications. Acta Mater. 2019, 167, 267–274. [Google Scholar] [CrossRef]
- Tian, M.; Xu, J.; Yang, S.; Wang, J.; Yang, T.; Li, G.; Chen, Q.; Liu, X. Effects of heat treatment and compaction pressure on the microstructure and magnetic properties of core-shell structured FeSiBNbCu/SiO2 soft magnetic composites. J. Alloys Compd. 2022, 923, 166394. [Google Scholar] [CrossRef]
- Wu, C.; Huang, M.; Luo, D.; Jiang, Y.; Yan, M. SiO2 nanoparticles enhanced silicone resin as the matrix for Fe soft magnetic composites with improved magnetic, mechanical and thermal properties. J. Alloys Compd. 2018, 741, 35–43. [Google Scholar] [CrossRef]
- Peng, Y.; Yi, Y.; Li, L.; Yi, J.; Nie, J.; Bao, C. Iron-based soft magnetic composites with Al2O3 insulation coating produced using sol–gel method. Mater. Des. 2016, 109, 390–395. [Google Scholar] [CrossRef]
- Geng, K.; Xie, Y.; Xu, L.; Yan, B. Structure and magnetic properties of ZrO2-coated Fe powders and Fe/ZrO2 soft magnetic com-posites. Adv. Powder Technol. 2017, 28, 2015–2022. [Google Scholar] [CrossRef]
- Wang, R.; He, Y.; Kong, H.; Wang, J.; Wu, Z.; Wang, H. Influence of sintering temperature on heterogeneous-interface structural evolution and magnetic properties of Fe–Si soft magnetic powder cores. Ceram. Int. 2022, 48, 29854–29861. [Google Scholar] [CrossRef]
- Rakshit, R.; Das, A.K. A review on cutting of industrial ceramic materials. Precis. Eng. 2019, 59, 90–109. [Google Scholar] [CrossRef]
- Zheng, J.; Zheng, H.; Lei, J.; Qiao, L.; Ying, Y.; Cai, W.; Li, W.; Yu, J.; Liu, Y.; Huang, X.; et al. Structure and magnetic properties of Fe-based soft magnetic composites with an Li–Al–O insulation layer obtained by hydrothermal synthesis. J. Alloys Compd. 2019, 816, 152617. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Liu, X.; Shi, S.; Li, H.; Liu, X. Ultra-low core loss FeSiAl-based soft magnetic composites with ultra-thin MoO3 composite insulating layer. Ceram. Int. 2022, 48, 29705–29714. [Google Scholar] [CrossRef]
- Wu, Z.; Xian, C.; Jia, J.; Liao, X.; Kong, H.; Xu, K. Formation Process of the Integrated Core (Fe-6.5wt.% Si)@Shell(SiO2) Structure Obtained via Fluidized Bed Chemical Vapor Deposition. Metals 2020, 10, 520. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Han, Y.; Li, P.; Sun, Z.; Zhou, Q. Micro/nano composited tungsten material and its high thermal loading behavior. J. Nucl. Mater. 2014, 455, 717–723. [Google Scholar] [CrossRef]
- Huang, X.; Ding, S.; Wang, Z.; Wang, L.; Liu, M.; Wang, Z.; Liang, X.; Liu, W. Effects of annealing temperature on the structure characteristics of Fe83Si6B6Cu1Nb1P1.5C1.5 amorphous ribbons. J. Non-Cryst. Solids 2022, 580, 121388. [Google Scholar] [CrossRef]
- Wang, G.-Q.; Chen, M.-S.; Li, H.-B.; Lin, Y.C.; Zheng, W.-D.; Ma, Y.-Y. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solu-tion-treated Ni-based superalloy by two-stage heat treatment. J. Mater. Sci. Technol. 2021, 77, 47–57. [Google Scholar] [CrossRef]
- Tan, G.-L.; Tang, D.; Dastan, D.; Jafari, A.; Silva, J.P.; Yin, X.-T. Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique. Mater. Sci. Semicond. Process. 2020, 122, 105506. [Google Scholar] [CrossRef]
- Lee, S.-H.; Choi, J.S.; Yoon, D.Y. The Dependence of Abnormal Grain Growth on Initial Grain Size in 316 L Stainless Steel. Int. J. Mater. Res. 2001, 92, 655–662. [Google Scholar] [CrossRef]
- Yang, H.; Wu, L.; Jiang, B.; Liu, W.; Song, J.; Huang, G.; Zhang, D.; Pan, F. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries. J. Mater. Sci. Technol. 2020, 62, 128–138. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Sabah, F.A.; Abdulgafour, H.; Alsadig, A.; Sulieman, A.; Alkhoaryef, M. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results Phys. 2019, 13, 102159. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Effect of warm compaction on the magnetic and electrical properties of Fe-based soft magnetic composites. J. Magn. Magn. Mater. 2007, 313, 182–186. [Google Scholar] [CrossRef]
- Fulop, G.; Dias, M.; Sandim, H.; Bormio-Nunes, C. High saturation magnetic induction and low magnetostriction of a novel ferritic Fe-Ti alloy compared to a non-oriented silicon steel. J. Magn. Magn. Mater. 2021, 527, 167702. [Google Scholar] [CrossRef]
- Bertotti, G. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers; Gulf Professional Publishing: Houston, TX, USA, 1998. [Google Scholar]
- Huang, J.; Xu, G.; Liang, Y.; Hu, G.; Chang, P. Improving coal permeability using microwave heating technology—A review. Fuel 2020, 266, 117022. [Google Scholar] [CrossRef]
- Landgraf, F.; Emura, M. Losses and permeability improvement by stress relieving fully processed electrical steels with previous small deformations. J. Magn. Magn. Mater. 2001, 242–245, 152–156. [Google Scholar] [CrossRef]
- Qian, L.; Peng, J.; Xiang, Z.; Pan, Y.; Lu, W. Effect of annealing on magnetic properties of Fe/Fe3O4 soft magnetic composites prepared by in-situ oxidation and hydrogen reduction methods. J. Alloys Compd. 2018, 778, 712–720. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, S.; Yim, H.; Kang, K.H.; Yoon, C.S. High saturation magnetic flux density of Novel nanocrystalline core annealed under magnetic field. J. Alloys Compd. 2020, 826, 154136. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, R.; He, Y.; Kong, H.; Li, S.; Wu, Z. Effects of axial pressure on the evolution of core–shell heterogeneous structures and magnetic properties of Fe–Si soft magnetic powder cores during hot-press sintering. RSC Adv. 2022, 12, 19875–19884. [Google Scholar] [CrossRef]
- Dong, B.; Qin, W.; Su, Y.; Wang, X. Magnetic properties of FeSiCr@MgO soft magnetic composites prepared by magnesium acetate pyrolysis for high-frequency applications. J. Magn. Magn. Mater. 2021, 539, 168350. [Google Scholar] [CrossRef]
- Kollára, A.; Olekšáková, D.; Vojtek, V.; Füzer, J.; Fáberová, M.; Bureš, R. Steinmetz law for ac mag-netized iron-phenolformaldehyde resin soft magnetic composites. J. Magn. Magn. Mater. 2017, 424, 245–250. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, J.; Chen, W.; Chen, D.; Sun, H.; Xue, Z.; Wang, C. Crystal-like microstructural Finemet/FeSi compound powder core with excellent soft magnetic properties and its loss separation analysis. Mater. Des. 2020, 192, 108769. [Google Scholar] [CrossRef]
Heat-Treatment Temperature (K) | Permeability (300 kHz) | Saturation Magnetization (emu/g) | Coercivity (Oe) | Resistivity (mΩ·cm) | Total Loss at 10 mT and 100 kHz (kW/m3) |
---|---|---|---|---|---|
Before heat treatment | 40.5 | 184.0 | 7.6 | 1.08 | 1131.3 |
823 | 37.7 | 188.9 | 5.1 | 1.05 | 949.3 |
873 | 38.5 | 189.8 | 5.0 | 1.04 | 867.1 |
923 | 39.4 | 191.2 | 4.9 | 1.04 | 779.3 |
973 | 38.8 | 190.9 | 6.3 | 1.02 | 710.0 |
1023 | 15.8 | 194.5 | 6.4 | 0.74 | 1043.4 |
Heat-Treatment Time (min) | Permeability (300 kHz) | Saturation Magnetization (emu/g) | Coercivity (Oe) | Resistivity (mΩ·cm) | Hysteresis Loss at 10 mT and 100 kHz (kW/m3) |
---|---|---|---|---|---|
Before heat treatment | 35.1 | 184.0 | 7.6 | 1.08 | 821.2 |
30 | 36.1 | 190.4 | 5.9 | 1.04 | 626.5 |
60 | 39.4 | 191.2 | 4.9 | 1.04 | 344.3 |
90 | 36.5 | 193.9 | 5.1 | 1.03 | 489.2 |
120 | 12.1 | 195.3 | 8.3 | 0.85 | 520.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Ju, N.; Wang, J.; Zou, R.; Lin, S.; Yang, M. Microstructure and Magnetic Property Evolution Induced by Heat Treatment in Fe-Si/SiO2 Soft Magnetic Composites. Magnetochemistry 2023, 9, 169. https://doi.org/10.3390/magnetochemistry9070169
Li S, Ju N, Wang J, Zou R, Lin S, Yang M. Microstructure and Magnetic Property Evolution Induced by Heat Treatment in Fe-Si/SiO2 Soft Magnetic Composites. Magnetochemistry. 2023; 9(7):169. https://doi.org/10.3390/magnetochemistry9070169
Chicago/Turabian StyleLi, Shaogang, Nachuan Ju, Jinyang Wang, Rongyu Zou, Shaochuan Lin, and Minghui Yang. 2023. "Microstructure and Magnetic Property Evolution Induced by Heat Treatment in Fe-Si/SiO2 Soft Magnetic Composites" Magnetochemistry 9, no. 7: 169. https://doi.org/10.3390/magnetochemistry9070169
APA StyleLi, S., Ju, N., Wang, J., Zou, R., Lin, S., & Yang, M. (2023). Microstructure and Magnetic Property Evolution Induced by Heat Treatment in Fe-Si/SiO2 Soft Magnetic Composites. Magnetochemistry, 9(7), 169. https://doi.org/10.3390/magnetochemistry9070169