Research on the Surfactant-Assisted Synthesis of MnZn Ferrite Precursor Powders
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material Preparation
2.2. Characterization
2.2.1. Zeta Potential Analysis Method
2.2.2. BET Analysis Method
2.2.3. XRD Analysis Method
2.2.4. FTIR Spectroscopy Analysis Method
2.2.5. Raman Spectroscopy Analysis Method
2.2.6. SEM Analysis Method
2.2.7. TEM Analysis Method
2.2.8. VSM Analysis Method
3. Results and Discussion
3.1. Analysis of Precursor Sol Solutions
3.1.1. Zeta Potential Analysis
3.1.2. TEM Analysis
3.2. Analysis of Precursor Powders
3.2.1. XRD and BET Analysis
3.2.2. FTIR Spectroscopy Analysis
3.2.3. Raman Spectroscopy Analysis
3.2.4. SEM Analysis
3.2.5. TEM Analysis
3.2.6. Magnetic Properties Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsakaloudi, V.; Zaspalis, V. Synthesis of a low loss Mn–Zn ferrite for power applications. J. Magn. Magn. Mater. 2016, 400, 307–310. [Google Scholar] [CrossRef]
- Wang, S.-F.; Chiang, Y.-J.; Hsu, Y.-F.; Chen, C.-H. Effects of additives on the loss characteristics of Mn–Zn ferrite. J. Magn. Magn. Mater. 2014, 365, 119–125. [Google Scholar] [CrossRef]
- Zapata, A.; Herrera, G. Effect of zinc concentration on the microstructure and relaxation frequency of Mn–Zn ferrites synthesized by solid state reaction. Ceram. Int. 2013, 39, 7853–7860. [Google Scholar] [CrossRef]
- Kadu, A.V.; Jagtap, S.V.; Chaudhari, G.N. Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mn0.4Fe2O4 nanomaterials. Curr. Appl. Phys. 2009, 9, 1246–1251. [Google Scholar] [CrossRef]
- Lu, H.; Hong, R.; Li, H. Influence of surfactants on co-precipitation synthesis of strontium ferrite. J. Alloys Compd. 2011, 509, 10127–10131. [Google Scholar] [CrossRef]
- Du, Y.; Gao, H.; Liu, X.; Wang, J.; Xu, P.; Han, X. Solvent-free synthesis of hexagonal barium ferrite (BaFe12O19) particles. J. Mater. Sci. 2010, 45, 2442–2448. [Google Scholar] [CrossRef]
- Alamolhoda, S.; Mirkazemi, S.; Shahjooyi, T.; Benvidi, N. Effect of Cetyl trimethylammonium bromide (CTAB) amount on phase constituents and magnetic properties of nano-sized NiFe2O4 powders synthesized by sol–gel auto-combustion method. J. Alloys Compd. 2015, 638, 121–126. [Google Scholar] [CrossRef]
- Baykal, A.; Kasapoğlu, N.; Köseoğlu, Y.; Toprak, M.S.; Bayrakdar, H. CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J. Alloys Compd. 2008, 464, 514–518. [Google Scholar] [CrossRef]
- Vadivel, M.; Babu, R.R.; Ramamurthi, K.; Arivanandhan, M. CTAB cationic surfactant assisted synthesis of CoFe2O4 magnetic nanoparticles. Ceram. Int. 2016, 42, 19320–19328. [Google Scholar] [CrossRef]
- Zhang, H.; Fei, H.; Zhang, X.; Suo, Q.; Peng, H.; Wang, X. Effect of PEG6000 on magnetic properties of the Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 2017, 439, 245–250. [Google Scholar] [CrossRef]
- Liu, F.; Yu, X.; Duan, J.; Hua, H.; Yu, C.; Gao, Y.; Yan, H.; Pan, J.; Yun, L. Synthesis carbon-encapsulated NiZn ferrite nanocomposites by in-situ starch coating route combined with hydrogen thermal reduction. Mater. Chem. Phys. 2015, 158, 121–126. [Google Scholar] [CrossRef]
- Rahimi, M.; Kameli, P.; Ranjbar, M.; Salamati, H. The effect of polyvinyl alcohol (PVA) coating on structural, magnetic properties and spin dynamics of Ni0.3Zn0.7Fe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 2013, 347, 139–145. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, J.; Han, Y.; Liu, T.; Zhang, H.; Song, K.; Zhang, C. Preparation and characterization of Mn–Zn ferrites via nano-in-situ composite method. Solid State Sci. 2019, 98, 106006. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, J.; Zhao, S.; Zhang, H.; Yin, F.; Han, Y.; Liu, T. Microstructure and magnetic properties of MnZn ferrite powders prepared by nano-in-situ composite method. J. Alloys Compd. 2020, 835, 155285. [Google Scholar] [CrossRef]
- Fan, J. Research progress of nano-in-situ composite high-performance fine-grained tungsten matrix composites. In Proceedings of the National Conference on Powder Metallurgy and Cross-Strait Seminar on Powder Metallurgy Technology, Wuhan, China, 9–12 September 2015; pp. 328–334. [Google Scholar]
- Han, Y.; Fan, J.; Liu, T.; Cheng, H.; Tian, J. The effects of ball-milling treatment on the densification behavior of ultra-fine tungsten powder. Int. J. Refract. Met. Hard Mater. 2011, 29, 743–750. [Google Scholar] [CrossRef]
- Lv, Y.; Fan, J.; Han, Y.; Liu, T.; Li, P.; Yan, H. The influence of modification route on the properties of W-0.3 wt% Y2O3 powder and alloy prepared by nano-in-situ composite method. J. Alloys Compd. 2019, 774, 1140–1150. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, J.; Liu, T.; Han, Y.; Zhang, H. Calcination induced phase transformation in MnZn ferrite powders. J. Alloys Compd. 2020, 814, 152307. [Google Scholar] [CrossRef]
- Anu, K.; Hemalatha, J. Magnetic and electrical conductivity studies of zinc doped cobalt ferrite nanofluids. J. Mol. Liq. 2019, 284, 445–453. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; Li, Y.-G.; Tian, B.-Z.; Zhao, D.-Y.; Jiang, Z.-Y. Synthesis and electrochemical properties of semicrystalline gyroidal mesoporous MnO2. Chin. J. Chem. 2006, 24, 835–839. [Google Scholar] [CrossRef]
- Kotsikau, D.; Ivanovskaya, M.; Pankov, V.; Fedotova, Y. Structure and magnetic properties of manganese–zinc-ferrites prepared by spray pyrolysis method. Solid State Sci. 2015, 39, 69–73. [Google Scholar] [CrossRef]
- Mohamed, R.; Rashad, M.; Haraz, F.; Sigmund, W. Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method. J. Magn. Magn. Mater. 2010, 322, 2058–2064. [Google Scholar] [CrossRef]
- Ayyappan, S.; Panneerselvam, G.; Antony, M.; Philip, J. High temperature stability of surfactant capped CoFe2O4 nanoparticles. Mater. Chem. Phys. 2011, 130, 1300–1306. [Google Scholar] [CrossRef]
- Wu, N.; Fu, L.; Su, M.; Aslam, M.; Wong, K.C.; Dravid, V.P. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 2004, 4, 383–386. [Google Scholar] [CrossRef]
- Chandekar, K.V.; Kant, K.M. Relaxation phenomenon and relaxivity of cetrimonium bromide (CTAB) coated CoFe2O4 nanoplatelets. Phys. B Condens. Matter 2018, 545, 536–548. [Google Scholar] [CrossRef]
- He, S. Study effects of metal cations on oxygen acid structure with fourier tranform infrared—Raman spectroscopy. China Meas. Test 2014, 40, 40–42. [Google Scholar]
- Shanghai Institute of Organic Chemistry of CAS. Chemistry Database[DB/OL]. [1978–2019]. Available online: https://organchem.csdb.cn (accessed on 25 May 2023).
- Zhang, L.; He, R.; Gu, H.-C. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 2006, 253, 2611–2617. [Google Scholar] [CrossRef]
- Mallesh, S.; Sunny, A.; Vasundhara, M.; Srinivas, V. Structure and magnetic properties of ZnO coated MnZn ferrite nanoparticles. J. Magn. Magn. Mater. 2016, 418, 112–117. [Google Scholar] [CrossRef]
- Thota, S.; Kashyap, S.C.; Sharma, S.K.; Reddy, V. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn. J. Phys. Chem. Solids 2016, 91, 136–144. [Google Scholar] [CrossRef]
- Albayrak, C.; Soylu, A.M.; Dag, O.M. Lyotropic Liquid-Crystalline Mesophases of [Zn(H2O)6](NO3)2-C12EO10-CTAB-H2O and [Zn(H2O)6](NO3)2-C12EO10-SDS-H2O systems. Langmuir 2008, 24, 10592–10595. [Google Scholar] [CrossRef]
- Won, J.M.; Choi, S.H.; Hong, Y.J.; Ko, Y.N.; Kang, Y.C. Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery. Sci. Rep. 2014, 4, 5857. [Google Scholar] [CrossRef]
- Rotjanasuworapong, K.; Lerdwijitjarud, W.; Sirivat, A. Synthesis and Characterization of Fe0.8Mn0.2Fe2O4 Ferrite Nanoparticle with High Saturation Magnetization via the Surfactant Assisted Co-Precipitation. Nanomaterials 2021, 11, 876. [Google Scholar] [CrossRef] [PubMed]
Samples | P-None | P-0.1SDS | P-0.1CTAB | P-0.1PEG |
---|---|---|---|---|
Zeta potential (mV) | 5.24 | −9.57 | 10.7 | 5.89 |
Samples | P-None | P-0.1SDS | P-0.1CTAB | P-0.1PEG |
---|---|---|---|---|
Specific surface area (m2/g) | 28.22 | 96.32 | 129.07 | 91.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zhao, W.; Liu, J.; Fan, J. Research on the Surfactant-Assisted Synthesis of MnZn Ferrite Precursor Powders. Magnetochemistry 2023, 9, 146. https://doi.org/10.3390/magnetochemistry9060146
Xu Z, Zhao W, Liu J, Fan J. Research on the Surfactant-Assisted Synthesis of MnZn Ferrite Precursor Powders. Magnetochemistry. 2023; 9(6):146. https://doi.org/10.3390/magnetochemistry9060146
Chicago/Turabian StyleXu, Zhanyuan, Wei Zhao, Jiefu Liu, and Jinglian Fan. 2023. "Research on the Surfactant-Assisted Synthesis of MnZn Ferrite Precursor Powders" Magnetochemistry 9, no. 6: 146. https://doi.org/10.3390/magnetochemistry9060146
APA StyleXu, Z., Zhao, W., Liu, J., & Fan, J. (2023). Research on the Surfactant-Assisted Synthesis of MnZn Ferrite Precursor Powders. Magnetochemistry, 9(6), 146. https://doi.org/10.3390/magnetochemistry9060146