Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles
Abstract
1. Introduction
2. The Model
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Khomskii, D.I. Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 2006, 306, 1–8. [Google Scholar] [CrossRef][Green Version]
- Lorenz, B. Hexagonal Manganites-(RMnO3): Class (I) Multiferroics with Strong Coupling of Magnetism and Ferroelectricity. ISRN Cond. Matter Phys. 2013, 2013, 497073. [Google Scholar] [CrossRef][Green Version]
- Single-Phase Type-II Multiferroics: Frustrated Magnetism-Triggered Ferroelectricity. In Book Multiferroic Materials; Wang, J., Ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Dzyaloshinskii, I.E. On the magneto-electrical effects in antiferromagnets. Sov. Phys. JETP 1960, 10, 628–629. [Google Scholar]
- Astrov, D.N. The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP 1960, 11, 708–709. [Google Scholar]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef]
- Puhan, A.; Bhushan, B.; Nayak, A.K.; Rout, D. Fundamentals and Properties of Multifunctional Nanomaterials; Thomas, S., Kalarikkal, N., Abraham, A.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 12; pp. 275–293. [Google Scholar]
- Dhir, G.; Lotey, G.S.; Uniyal, P.; Verma, N.K. Size-dependent magnetic and dielectric properties of Tb-doped BiFeO3 nanoparticles. J. Mater. Sci. Mater. Electr. 2013, 24, 4386. [Google Scholar] [CrossRef]
- Xing, Q.X.; Han, Z.; Zhao, S. Crystal structure and magnetism of BiFeO3 nanoparticles regulated by rare-earth Tb substitution. J. Mater. Sci. Mater. Electr. 2017, 28, 295. [Google Scholar] [CrossRef]
- Mazumder, R.; Ghosh, S.; Mondal, P.; Bhattacharya, D.; Dasgupta, S.; Das, D.; Sen, A.; Tyagi, A.K.; Sivakumar, M.; Takami, J.; et al. Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3. J. Appl. Phys. 2006, 100, 033908. [Google Scholar] [CrossRef]
- Mazumder, R.; Devi, P.S.; Bhattacharya, D.; Choudhury, P.; Sen, A.; Raja, M. Ferromagnetism in nanoscale BiFeO3. Appl. Phys. Lett. 2007, 91, 062510. [Google Scholar] [CrossRef][Green Version]
- Tae-Jin Park, T.-J.; Papaefthymiou, G.C.; Viescas, A.J.; Moodenbaugh, A.R.; Wong, S.S. Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO3 Nanoparticles. Nano Lett. 2007, 7, 766–772. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Kelly, S.D.; Palkar, V.R.; Fan, L.; Segre, C.U. Investigation of size effects in magnetoelectric BiFeO3. Phys. Scripta. 2005, 2005, 709. [Google Scholar] [CrossRef]
- Yang, C.-H.; Kan, D.; Takeuchi, I.; Nagaraj, V.; Seidel, J. Doping BiFeO3: Approaches and enhanced functionality. Phys. Chem. Chem. Phys. 2012, 14, 15953. [Google Scholar] [CrossRef]
- Muneeswaran, M.; Dhanalakshmi, R.; Giridharan, N. Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3. J. Mater. Sci. Mater. Electr. 2015, 26, 3827. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, W.; Chan, Y.; Leung, C.; Mak, C.; Ploss, B. Studies of Rare-Earth-Doped BiFeO3 Ceramics. Int. J. Appl. Ceram. Techn. 2011, 8, 1246. [Google Scholar] [CrossRef]
- Gervits, N.E.; Tkachev, A.V.; Zhurenko, S.V.; Gunbin, A.V.; Gippius, A.A.; Makarova, A.O.; Pokatilov, V.S. Emergence of collinear magnetic structure in Tb-doped BiFeO3. J. Magn. Magn. Mater. 2011, 563, 170031. [Google Scholar] [CrossRef]
- Dhir, G.; Uniyal, P.; Verma, N.K. Effect of partice size on the MF properties of Tb-doped BiFeO3 nanoparticles. J. Supercond. Nov. Magn. 2016, 29, 2621. [Google Scholar] [CrossRef]
- Lotey, G.S.; Verma, N.K. Magnetoelectric coupling in multiferroic Tb-doped BiFeO3. Mater. Lett. 2013, 111, 55. [Google Scholar] [CrossRef]
- Chen, X.; Hu, G.; Wu, W.; Yang, C.; Wang, X.; Fan, S. Large Piezoelectric Coefficient in Tb-Doped BiFeO3 Films. J. Am. Ceram. Soc. 2010, 93, 948. [Google Scholar] [CrossRef]
- Dong, G.; Tan, G.; Luo, Y.; Liu, W.; Ren, H.; Xia, A. Investigation of Tb-doping on structural transition and multiferroic properties of BiFeO3 thin films. Ceram. Int. 2014, 40, 6413. [Google Scholar] [CrossRef]
- Wang, Y.; Nan, C.-W. Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 2008, 103, 024103. [Google Scholar] [CrossRef]
- Yi, M.L.; Wang, C.B.; Li, L.; Wang, J.M.; Shen, Q.; Zhang, L.M. Influence of Tb doping on structure and multiferroic properties of BiFeO3 films prepared by pulsed laser deposition. Appl. Surf. Sci. 2015, 344, 47–51. [Google Scholar] [CrossRef]
- Zhai, X.; Deng, H.; Yang, P.; Chu, J. Effect of Tb-doping on structural, magnetic and optical properties of BiFeO3 films prepared by chemical solution deposition. Mater. Lett. 2015, 158, 266. [Google Scholar] [CrossRef]
- Bielecki, J.; Svedlindh, P.; Tibebu, D.T.; Cai, S.; Eriksson, S.-G.; Borjesson, L.; Knee, C.S. Structural and Magnetic Properties of Isovalently Substituted Multiferroic BiFeO3: Insights From Raman Spectroscopy. Phys. Rev. B 2012, 86, 184422. [Google Scholar] [CrossRef][Green Version]
- Nayek, C.; Al-Akhras, M.; Obaidat, I. Tuning of the optical band-gap of rare earth doped BiFeO3 submicron particles for solar cell applications. In Proceedings of the 2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), Al Ain, United Arab Emirates, 25–28 February 2018. [Google Scholar]
- Li, Z.; Cheng, L.; Zhang, K.; Wang, Z. Enhanced photocatalytic performance by Y-doped BiFeO3 particles derived from MOFs precursor based on band gap reduction and oxygen vacancies. Appl. Organomech. Chem. 2021, 35, e6113. [Google Scholar]
- Haruna, A.; Abdulkadir, I.; Idris, S.O. Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes. Heliyon 2020, 6, e03237. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mukherjee, A.; Hossain, S.M.; Pal, M.; Basu, S. Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles. Appl. Nanosci. 2012, 2, 305. [Google Scholar] [CrossRef][Green Version]
- Sosnowska, I.; Peterlin-Neumaier, T.; Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C 1982, 15, 4835. [Google Scholar] [CrossRef]
- Wang, N.; Luo, X.; Han, L.; Zhang, Z.; Zhang, R.; Olin, H.; Yang, Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Lett. 2020, 12, 81. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Blinc, R.; Zeks, B. Soft Modes in Ferroelectrics and Antferroelectrics; North-Holland: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Kovachev, S.; Wesselinowa, J.M. Electric field control of phonon properties in multiferroic BiFeO3 and hexagonal RMnO3. Solid State Commun. 2009, 149, 859–861. [Google Scholar] [CrossRef]
- Bonfim, O.F.A.; Gehring, G.A. Magnetoelectric effect in antiferromagnetic crystals. Adv. Phys. 1980, 29, 731. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, Q.; Shen, W.Z. A possible coupling mechanism between magnetism and dielectric properties in EuTiO3 within the framework of the transverse-field Ising model. Phys. Lett. A 2004, 330, 358–364. [Google Scholar] [CrossRef]
- Katsufuji, T.; Mori, S.; Masaki, M.; Moritomo, Y.; Yamamoto, N.; Takagi, H. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 2001, 64, 104419. [Google Scholar] [CrossRef]
- Tserkovnikov, Y.A. Decoupling of chains of equations for two-time Green’s functions. Theor. Math. Phys. 1971, 7, 511. [Google Scholar] [CrossRef]
- Nagayev, E.I. Spin Polaron Theory for Magnetic Semiconductors with Narrow Bands. Phys. Stat. Sol. B 1974, 65, 11. [Google Scholar] [CrossRef]
- Apostolov, A.T.; Apostolova, I.N.; Wesselinowa, J.M. Magnetic field effect on the dielectric properties of rare earth doped multiferroic BiFeO3. J. Magn. Magn. Mater. 2020, 513, 167101. [Google Scholar] [CrossRef]
- Mangin, S.; Montaigne, F.; Bellouard, C.; Fritzsche, H. Study of magnetic configurations in exchange-coupled bilayers by polarized neutron reflectometry. Appl. Phys. A 2002, 74, S631. [Google Scholar] [CrossRef]
- Wesselinowa, J.M. Size and anisotropy effects on magnetic properties of antiferromagnetic nanoparticles. J. Magn. Magn. Mater. 2010, 322, 234. [Google Scholar] [CrossRef]
- Lotey, G.S.; Verma, N.K. Multiferroic properties of Tb-doped BiFeO3 nanowires. J. Nanopart. Res. 2013, 15, 1553. [Google Scholar] [CrossRef]
- Puhan, A.; Bhushan, B.; Meena, S.S.; Nayak, A.K.; Rout, D. Surface engineered Tb and Co co-doped BiFeO3 nanoparticles for enhanced photocatalytic and magnetic properties. J. Mater. Sci. Mater. Electr. 2021, 32, 7956. [Google Scholar] [CrossRef]
- Reddy, V.A.; Pathak, N.P.; Nath, R. Enhanced magnetoelectric coupling in transition-metal-doped BiFeO3 thin films. Solid State Commun. 2013, 171, 40–45. [Google Scholar]
- Guo, K.; Zhang, R.; He, T.; Kong, H.; Deng, C. Multiferroic and in-plane magnetoelectric coupling properties of BiFeO3 nano-films with substitution of rare earth ions La3+ and Nd3+. J. Rare Earths 2016, 34, 1228–1234. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, S.; Xiao, H.Y.; Singh, D.J.; Zhang, K.H.L.; Liu, Z.J.; Zua, X.T.; Lic, S. Orbital controlled band gap engineering of tetragonal BiFeO3 for optoelectronic application. J. Mater. Chem. C 2018, 6, 1239. [Google Scholar] [CrossRef]
- Clark, S.J.; Robertson, J. Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 2007, 90, 132903. [Google Scholar] [CrossRef][Green Version]
- Mocherla, P.; Karthik, C.; Ubic, R.; Rao, M.S.R.; Sudakar, C. Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects. Appl. Phys. Lett. 2013, 103, 022910. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, M. Band gap tuning and optical properties of BiFeO3 nanoparticles. Mater. Today Proc. 2020, 28, 168. [Google Scholar] [CrossRef]
- Micard, Q.; Margueron, S.; Bartasyte, A.; Condorelli, G.G.; Malandrino, G. Dy-Doped BiFeO3 thin films: Piezoelectric and bandgap tuning. Mater. Adv. 2022, 3, 3446. [Google Scholar] [CrossRef]
- Irfan, S.; Shen, Y.; Rizwan, S.; Wang, H.; Khan, S.B.; Nan, C.W. Band-Gap Engineering and Enhanced Photocatalytic Activity of Sm and Mn Doped BiFeO3 Nanoparticles. J. Am. Ceram. Soc. 2017, 100, 31. [Google Scholar] [CrossRef]
- Hasan, M.; Basith, M.A.; Zubair, M.A.; Hossain, M.S.; Mahbub, R.; Hakim, M.A.; Islam, M.F. Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn. J. Alloys Compd. 2016, 687, 701. [Google Scholar] [CrossRef][Green Version]
- Wrzesinska, A.; Khort, A.; Bobowska, I.; Busiakiewicz, A.; Wypych-Puszkarz, A. Influence of the La3+, Eu3+, and Er3+ Doping on Structural, Optical, and Electrical Properties of BiFeO3 Nanoparticles Synthesized by Microwave-Assisted Solution Combustion Method. J. Nanomater. 2019, 2019, 5394325. [Google Scholar] [CrossRef][Green Version]
- Singh, E.C.; Singh, H.H.; Sharma, H.B. Effect of Rare Earth Elements Doping On Dielectric and Magnetic Properties of BiFeO3 Nanoparticles. AIP Conf. Proc. 2020, 2265, 030140. [Google Scholar]
- Golda, R.A.; Marikani, A.; Alex, E.J. Enhancement of dielectric, ferromagnetic and electrochemical properties of BiFeO3 nanostructured films through rare earth metal doping. Ceram. Int. 2020, 46, 1962–1973. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolova, I.; Apostolov, A.; Wesselinowa, J. Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles. Magnetochemistry 2023, 9, 142. https://doi.org/10.3390/magnetochemistry9060142
Apostolova I, Apostolov A, Wesselinowa J. Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles. Magnetochemistry. 2023; 9(6):142. https://doi.org/10.3390/magnetochemistry9060142
Chicago/Turabian StyleApostolova, Iliana, Angel Apostolov, and Julia Wesselinowa. 2023. "Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles" Magnetochemistry 9, no. 6: 142. https://doi.org/10.3390/magnetochemistry9060142
APA StyleApostolova, I., Apostolov, A., & Wesselinowa, J. (2023). Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles. Magnetochemistry, 9(6), 142. https://doi.org/10.3390/magnetochemistry9060142