Slow Magnetic Relaxation and Luminescence Properties in Tetra β-Diketonate Lanthanide(III) Complexes
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Physical Measurements
2.2. X-ray Crystal Structure Analysis
2.3. Magnetic Measurements
2.4. Luminescence Measurements
2.5. Syntheses of the Complexes
2.5.1. [Ln(btfa)3(H2O)2]
2.5.2. HAcr[Nd(btfa)4]·EtOH (1)
2.5.3. HAcr[Dy(btfa)4] (2)
2.5.4. HAcr[Yb(btfa)4] (3)
3. Results and Discussion
3.1. Description of the Crystal Structures
3.2. Magnetic Properties
3.2.1. DC Magnetic Susceptibility Studies
3.2.2. Ac Magnetic Susceptibility Studies
3.3. Luminescence Properties
3.3.1. HAcr[Nd(btfa)4]·EtOH 1
3.3.2. HAcr[Dy(btfa)4] 2
3.3.3. HAcr[Yb(btfa)4] 3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.Y.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. J. Am. Chem. Soc. 2003, 125, 8694–8695. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, P. Lanthanide Single Molecule Magnets; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Feltham, H.L.C.; Brooker, S. Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion. Coord. Chem. Rev. 2014, 276, 1–33. [Google Scholar] [CrossRef]
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef]
- Zabala-Lekuona, A.; Seco, J.M.; Colacio, E. Single-Molecule Magnets: From Mn12-ac to dysprosium metallocenes, a travel in time. Coord. Chem. Rev. 2021, 441, 213984. [Google Scholar] [CrossRef]
- Borah, A.; Murugavel, R. Magnetic relaxation in single-ion magnets formed by less-studied lanthanide ions Ce(III), Nd(III), Gd(III), Ho(III), Tm(II/III) and Yb(III). Coord. Chem. Rev. 2022, 453, 214288. [Google Scholar] [CrossRef]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. Angew. Chem. Int. Ed. 2017, 56, 11445–11449. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef]
- Guo, F.-S.; Day, B.; Chen, Y.-C.; Tong, M.L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Kitagawa, Y.; Nakanish, T. Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes. NPG Asia Mater. 2018, 10, 52–70. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G. On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 2015, 293–294, 19–47. [Google Scholar] [CrossRef]
- De Sá, G.F.; Malta, O.L.; de Mello Donegá, C.; Simas, A.M.; Longo, R.L.; Santa-Cruz, P.A. Spectroscopic Properties and Design of Highly Luminescent Lanthanide Coordination Complexes. Coord. Chem. Rev. 2000, 196, 165–195. [Google Scholar] [CrossRef]
- Huang, G.; Calvez, G.; Suffren, Y.; Daiguebonne, C.; Freslon, S.; Guillou, O.; Bernot, K. Closing the Circle of the Lanthanide-Murexide Series: Single-Molecule Magnet Behavior and Near-Infrared Emission of the NdIII Derivative. Magnetochemistry 2018, 4, 44. [Google Scholar] [CrossRef]
- Casanovas, B.; Font-Bardía, M.; Speed, S.; El Fallah, M.S.; Vicente, R. Field Induced SMM and Visible/NIR-luminescence behaviour for dinuclear Ln(III) complexes with 2-fluorobenzoate. Eur. J. Inorg. Chem. 2018, 2018, 1928–1937. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Wang, W.-M.; Gao, H.-L.; Cui, J.-Z. Near-infrared luminescence and SMM behaviors of a family of dinuclear lanthanide 8-quinolinolate complexes. RSC Adv. 2016, 6, 34165–34174. [Google Scholar]
- Bala, S.; Bishwas, M.S.; Pramanik, B.; Khanra, S.; Fromm, K.M.; Poddar, P.; Mondal, R. Construction of Polynuclear Lanthanide (Ln = DyIII, TbIII, and NdIII) Cage Complexes Using Pyridine−Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior. Inorg. Chem. 2015, 54, 8197–8206. [Google Scholar] [CrossRef]
- Galán, L.A.; Wada, S.; Cameron, L.; Sobolev, A.N.; Hasegawa, Y.; Zysman-Colman, E.; Ogden, M.I.; Massi, M. Photophysical investigation of near infrared emitting lanthanoid complexes incorporating tris(2-naphthoyl)methane as a new antenna ligand. Dalton Trans. 2019, 48, 3768–3776. [Google Scholar] [CrossRef]
- Yang, C.; Fu, L.M.; Wang, Y.; Zhang, J.P.; Wong, W.T.; Ai, X.-C.; Qiao, F.Y.; Zou, B.S.; Gui, L.-L. A Highly Luminescent Europium Complex Showing Visible-Light-Sensitized Red Emission: Direct Observation of the Singlet Pathway. Angew. Chem. Int. Ed. 2004, 116, 5120–5123. [Google Scholar] [CrossRef]
- Imbert, D.; Cantuel, M.; Bunzli, J.-C.G.; Bernardinelli, G.; Piguet, C. Extending Lifetimes of Lanthanide-Based Near-Infrared Emitters (Nd, Yb) in the Millisecond Range through Cr(III) Sensitization in Discrete Bimetallic Edifices. J. Am. Chem. Soc. 2003, 125, 15698–15699. [Google Scholar] [CrossRef]
- Beeby, A.; Burton-Pye, B.P.; Faulkner, S.; Motson, G.R.; Jeffery, J.C.; McCleverty, J.A.; Ward, M.D. Synthesis and near-IR luminescence properties of neodymium(iii) and ytterbium(iii) complexes with poly(pyrazolyl)borate ligands. J. Chem. Soc. Dalton Trans. 2002, 9, 1923–1928. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Li, H.; Yan, P.; Hou, G.; Li, G. NIR luminescence of 2-(2,2,2-trifluoroethyl)-1-indone (TFI) neodymium and ytterbium complexes. J. Lumin. 2014, 146, 205–210. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Luo, Y.; Wu, W.; Tian, X.; Zhang, Q.; Chen, B. NIR luminescence of a visible-light-sensitized neodymium complex with large experimental fluorescence branching ratio for 4F3/2→4I11/2 in PMMA. J. Mater. Res. 2011, 26, 1517–1523. [Google Scholar] [CrossRef]
- Bennett, S.D.; Pope, S.J.A.; Ward, B.D. Near-IR luminescent neodymium complexes: Spectroscopic probes for hydroamination catalysis. Chem. Commun. 2013, 49, 6072–6074. [Google Scholar] [CrossRef]
- Shavaleev, N.M.; Scopelliti, R.; Gumy, F.; Bünzli, J.-C.G. Near-Infrared Luminescence of Nine-Coordinate Neodymium Complexes with Benzimidazole-Substituted 8-Hydroxyquinolines. Inorg. Chem. 2008, 47, 9055–9068. [Google Scholar] [CrossRef]
- Comby, S.; Bünzli, J.-C.G. Lanthanide near-infrared luminescence in molecular probes and devices. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2007; Volume 37, pp. 217–470. [Google Scholar]
- Hasegawa, Y.; Nakanishi, T. Luminescent lanthanide coordination polymers for photonic applications. RSC Adv. 2015, 5, 338–353. [Google Scholar] [CrossRef]
- Hasegawa, Y. Photofunctional Lanthanoid Complexes, Coordination Polymers, and Nanocrystals for Future Photonic Applications. Bull. Chem. Soc. Jpn. 2014, 87, 1029–1057. [Google Scholar] [CrossRef]
- Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018, 47, 2431–2453. [Google Scholar] [CrossRef] [PubMed]
- Eliseeva, S.V.; Bünzli, J.-C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G. Luminescence bioimaging with lanthanide complexes. In Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials; De Bettencourt-Dias, A., Ed.; John Wiley & Sons: Chichester, UK, 2014; Chapter 4; pp. 125–196. [Google Scholar]
- Ding, Y.; Wang, Y.; Li, H.; Duan, Z.; Zhang, H.; Zheng, Y. Photostable and efficient red-emitters based on zeolite L crystals. J. Mater. Chem. 2011, 21, 14755–14759. [Google Scholar] [CrossRef]
- Ilmi, R.; Kanslz, S.; Dege, N.; Khan, M.S. Synthesis, structure, Hirshfeld surface analysis and photophysical studies of red emitting europium acetylacetonate complex incorporating a phenanthroline derivative. J. Photochem. Photobiol. A 2019, 377, 268–281. [Google Scholar] [CrossRef]
- Da Rosa, P.P.F.; Kitagawa, Y.; Hasegawa, Y. Luminescent lanthanide complex with seven-coordination geometry. Coord. Chem. Rev. 2020, 406, 213153. [Google Scholar] [CrossRef]
- Ahmed, Z.; Iftikhar, K. Red, orange-red and near-infrared light emitting ternary lanthanide tris β-diketonate complexes with distorted C4v geometrical structures. Dalton Trans. 2019, 48, 4973–4986. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Yan, P.; Chen, P.; Hou, G.; Li, G. Synthesis, Crystal Structure, and Luminescent Properties of 2-(2,2,2-Trifluoroethyl)-1-indone Lanthanide Complexes. Inorg. Chem. 2012, 51, 5050–5057. [Google Scholar] [CrossRef]
- Ilmi, R.; Khan, M.S.; Li, Z.; Zhou, L.; Wong, W.-Y.; Marken, F.; Raithby, P.R. Utilization of Ternary Europium Complex for Organic Electroluminescent Devices and as a Sensitizer to Improve Electroluminescence of Red-Emitting Iridium Complex. Inorg. Chem. 2019, 58, 8316–8331. [Google Scholar] [CrossRef]
- Long, J.; Guari, Y.; Ferreira, R.A.S.; Carlos, L.D.; Larionova, J. Recent advances in luminescent lanthanide based Single-Molecule Magnets. Coord. Chem. Rev. 2018, 363, 57–70. [Google Scholar] [CrossRef]
- Vicente, R.; Tubau, À.; Speed, S.; Mautner, F.A.; Bierbaumer, F.; Fischer, R.C.; Massoud, S.S. Slow magnetic relaxation and luminescence properties in neodymium(III) 4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dionato complexes incorporating bipyridyl ligands. New J. Chem. 2021, 45, 14713–14723. [Google Scholar] [CrossRef]
- Wu, Z.; Tian, Y.-M.; Chen, P.; Sun, W.-B.; Wang, B.-W.; Gao, S. A series of counter cation-dependent tetra β-diketonate mononuclear lanthanide(iii) single-molecule magnets and immobilization on pre-functionalised GaN substrates by anion exchange reaction. J. Mater. Chem. C 2021, 9, 6911–6922. [Google Scholar]
- Visconti, M.; Maggini, S.; Ciani, G.; Mercandelli, P.; Del Secco, B.; Prodi, L.; Sgarzi, M.; Zaccheroni, N.; Carlucci, L. New Lanthanide Metalloligands and Their Use for the Assembly of Ln–Ag Bimetallic Coordination Frameworks: Stepwise Modular Synthesis, Structural Characterization, and Optical Properties. Cryst. Growth Des. 2019, 19, 5376–5389. [Google Scholar] [CrossRef]
- Akerboom, S.; Meijer, M.S.; Siegler, M.A.; Fu, W.T.; Bouwman, E. Structure, photo- and triboluminescence of the lanthanoid dibenzoylmethanates: HNEt3[Ln(dbm)4]. J. Lumin. 2014, 145, 278–282. [Google Scholar] [CrossRef]
- Pointillart, F.; Maury, O.; Le Gal, Y.; Golhen, S.; Cador, O.; Ouahab, L. 4-(2-Tetrathiafulvalenyl-ethenyl)pyridine (TTF−CH═CH−Py) Radical Cation Salts Containing Poly(β-diketonate) Rare Earth Complexes: Synthesis, Crystal Structure, Photoluminescent and Magnetic Properties. Inorg. Chem. 2009, 48, 7421–7429. [Google Scholar] [CrossRef]
- Navarro, Y.; Guedes, G.P.; Cano, J.; Oon, P.; Iglesias, M.J.; Lloret, F.; Lopez-Ortiz, F. Synthesis, structural characterization and electrochemical and magnetic studies of M(hfac)2 (M = CuII, CoII) and Nd(hfac)3 complexes of 4-amino-TEMPO. Dalton Trans. 2020, 49, 6280–6294. [Google Scholar] [CrossRef]
- Speed, S.; Pointillart, F.; Mulatier, J.-C.; Guy, L.; Golhen, S.; Cador, O.; le Guennic, B.; Riobe, F.; Maury, O.; Ouahab, L. Photophysical and Magnetic Properties in Complexes Containing 3d/4f Elements and Chiral Phenanthroline-Based Helicate-Like Ligands. Eur. J. Inorg. Chem. 2017, 2017, 2100–2111. [Google Scholar] [CrossRef]
- Cary, S.K.; Livshits, M.; Cross, J.N.; Ferrier, M.G.; Mocko, V.; Stein, B.W.; Korimor, S.A.; Scott, B.L.; Rack, J.J. Advancing Understanding of the +4 Metal Extractant Thenoyltrifluoroacetonate (TTA−); Synthesis and Structure of MIVTTA4 (MIV = Zr, Hf, Ce, Th, U, Np, Pu) and MIII(TTA)4− (MIII = Ce, Nd, Sm, Yb). Inorg. Chem. 2018, 57, 3782–3797. [Google Scholar] [CrossRef]
- Li, X.; Hu, M.; Yin, Z.; Zhu, C.; Liu, C.-M.; Xiao, H.-P.; Feng, S. Enhanced single-ion magnetic and ferroelectric properties of mononuclear Dy(iii) enantiomeric pairs through the coordination role of chiral ligands. Chem. Commun. 2017, 53, 3998–4001. [Google Scholar] [CrossRef] [PubMed]
- Bruker APEX. SAINT, version 8.37A; Bruker AXS Inc.: Madison, WI, USA, 2015. [Google Scholar]
- Sheldrick, G.M. SADABS, Version 2; University of Goettingen: Goettingen, Germany, 2001.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, T.; van de Streek, J.J. Mercury: Visualization and analysis of crystal structures. Appl. Cryst. 2006, 39, 453–457. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON, a Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 1999. [Google Scholar]
- Jordan, R.B. Lanthanide Contraction: What is Normal? Inorg. Chem. 2023, 62, 3715–3721. [Google Scholar] [CrossRef] [PubMed]
- Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. Shape Program, Version 2; Universitat de Barcelona: Barcelona, Spain, 2010.
- Alemany, P.; Casanova, D.; Alvarez, S.; Dryzun, C.; Avnir, D. Continuous Symmetry Measures: A New Tool in Quantum Chemistry. Rev. Comput. Chem. 2017, 30, 289–352. [Google Scholar] [CrossRef]
- Atwood, D.A. (Ed.) The Rare Earth Elements: Fundamentals and Applications, 2nd ed.; John Wiley & Sons Ltd.: Singapore, Singapore, 2012. [Google Scholar]
- Zhu, W.-H.; Xiong, X.; Gao, S.; Li, S.; Zhang, Y.; Wang, J.; Zhang, C.; Powell, A.K.; Gao, S. A family of one-dimensional lanthanide complexes bridged by two distinct carboxylate ligands with the Dy analogue displaying magnetic relaxation behavior. Dalton Trans. 2017, 46, 14114–14121. [Google Scholar] [CrossRef]
- Aubin, S.M.J.; Sun, Z.; Pardi, L.; Krzystek, J.; Folting, K.; Brunel, L.-C.; Rheingold, A.L.; Christou, G.; Hendrickson, D.N. Reduced Anionic Mn12 Molecules with Half-Integer Ground States as Single-Molecule Magnets. Inorg. Chem. 1999, 38, 5329–5340. [Google Scholar] [CrossRef]
- Guo, Y.-N.; Xu, G.-F.; Guo, Y.; Tang, J. Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton Trans. 2011, 40, 9953–9963. [Google Scholar] [CrossRef]
- Kuruvilla, E.; Joseph, J.; Ramaiah, D. Novel bifunctional acridine-acridinium conjugates: Synthesis and study of their chromophore-selective electron-transfer and DNA-binding properties. J. Phys. Chem. B 2005, 109, 21997–22002. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-G.; Zhai, Z.-M.; Lu, X.-M.; Ma, L.-F.; Yan, D. Fast Crystallization-Deposition of Orderly Molecule Level Heterojunction Thin Films Showing Tunable Up-Conversion and Ultrahigh Photoelectric Response. ACS Cent. Sci. 2020, 6, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ma, L.-F.; Yan, D. Facile synthesis of 1D organic–inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chem. Sci. 2019, 10, 4567–4572. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | |
---|---|---|---|
Empirical formula | C55H39F12NdNO9 | C53H34DyF12NO8 | C53H34YbF12NO8 |
Formula Weight | 1230.11 | 1203.31 | 1213.85 |
Crystal System | Triclinic | triclinic | triclinic |
Space group | P-1 (No. 2) | P-1 (No. 2) | P-1 (No. 2) |
a (Å) | 10.1909 (3) | 11.3753 (11) | 11.3331 (5) |
b (Å) | 11.8183 (4) | 13.2649 (14) | 13.2428 (6) |
c (Å) | 11.9800 (4) | 17.7231 (18) | 17.7774 (9) |
α (°) | 110.310 (1) | 91.029 (5) | 90.509 (3) |
β (°) | 98.786 (1) | 93.792 (5) | 94.668 (3) |
γ (°) | 107.258 (1) | 113.259 (5) | 112.730 (2) |
V (Å3) | 1238.44 (7) | 2448.7 (4) | 2450.3 (2) |
Z | 2 | 2 | 2 |
T (K) | 100 | 100 | 100 |
μ (mm−1) | 1.154 | 1.628 | 2.010 |
θ max (°) | 30.7 | 27.5 | 26.4 |
Data collected | 68,486 | 47,710 | 43,442 |
Unique refl./Rint | 7617/0.043 | 11,242/0.171 | 10,031/0.154 |
Parameters/Restraints | 357/3 | 649/2 | 676/0 |
S | 1.11 | 1.03 | 1.03 |
R1/wR2 (all data) | 0.0204/0.0525 | 0.0637/0.1293 | 0.0518/0.0912 |
1 | 2 | 3 | ||
---|---|---|---|---|
Nd1-O1 | 2.4335 (11) | Ln1-O1 | 2.379 (4) | 2.278 (4) |
Nd1-O2 | 2.4600 (11) | Ln1-O2 | 2.330 (4) | 2.302 (4) |
Nd1-O3 | 2.4501 (11) | Ln1-O3 | 2.394 (4) | 2.297 (4) |
Nd1-O4 | 2.4405 (11) | Ln1-O4 | 2.326 (4) | 2.291 (4) |
Nd1-O1_$1 | 2.4335 (11) | Ln1-O5 | 2.348 (4) | 2.366 (4) |
Nd1-O2_$1 | 2.4600 (11) | Ln1-O6 | 2.322 (4) | 2.279 (4) |
Nd1-O3_$1 | 2.4501 (11) | Ln1-O7 | 2.316 (4) | 2.341 (4) |
Nd1-O4_$1 | 2.4405 (11) | Ln1-O8 | 2.332 (4) | 2.283 (4) |
O1-Nd1-O2 | 69.46 (4) | O1-Ln1-O2 | 71.69 (15) | 75.08 (14) |
O1-Nd1-O3 | 71.05 (3) | O1-Ln1-O3 | 77.34 (13) | 140.44 (13) |
O1-Nd1-O4 | 110.28 (4) | O1-Ln1-O4 | 77.53 (13) | 76.22 (13) |
O1-Nd1-O1_$1 | 180.00 | O1-Ln1-O5 | 148.85 (13) | 148.13 (13) |
O1-Nd1-O2_$1 | 110.54 (4) | O1-Ln1-O6 | 129.30 (16) | 104.65 (15) |
O1-Nd1-O3_$1 | 108.96 (3) | O1-Ln1-O7 | 72.57 (13) | 72.47 (13) |
O1-Nd1-O4_$1 | 69.72 (4) | O1-Ln1-O8 | 128.83 (14) | 86.02 (14) |
O2-Nd1-O3 | 108.05 (4) | O2-Ln1-O3 | 78.75 (14) | 72.86 (13) |
O2-Nd1-O4 | 71.88 (3) | O2-Ln1-O4 | 142.25 (13) | 75.82 (13) |
O1_$1-Nd1-O2 | 110.54 (4) | O2-Ln1-O5 | 103.14 (15) | 122.90 (13) |
O2-Nd1-O2_$1 | 180.00 | O2-Ln1-O6 | 144.99 (13) | 147.44 (13) |
O2-Nd1-O3_$1 | 71.95 (4) | O2-Ln1-O7 | 86.18 (15) | 131.50 (13) |
O2-Nd1-O4_$1 | 108.12 (3) | O2-Ln1-O8 | 69.31 (14) | 69.70 (13) |
O3-Nd1-O4 | 69.12 (4) | O3-Ln1-O4 | 73.57 (15) | 73.96 (14) |
O1_$1-Nd1-O3 | 108.96 (3) | O3-Ln1-O5 | 71.55 (13) | 70.85 (13) |
O2_$1-Nd1-O3 | 71.95 (4) | O3-Ln1-O6 | 128.82 (13) | 90.64 (14) |
O3-Nd1-O3_$1 | 180.00 | O3-Ln1-O7 | 149.32 (12) | 147.10 (13) |
O3-Nd1-O4_$1 | 110.88 (4) | O3-Ln1-O8 | 124.29 (16) | 103.72 (15) |
O1_$1-Nd1-O4 | 69.72 (4) | O4-Ln1-O5 | 91.99 (14) | 130.85 (13) |
O2_$1-Nd1-O4 | 108.12 (3) | O4-Ln1-O6 | 72.48 (14) | 72.65 (13) |
O3_$1-Nd1-O4 | 110.88 (4) | O4-Ln1-O7 | 105.08 (15) | 127.94 (15) |
O4-Nd1-O4_$1 | 180.00 | O4-Ln1-O8 | 148.35 (14) | 144.28 (13) |
O1_$1-Nd1-O2_$1 | 69.46 (4) | O5-Ln1-O6 | 72.57 (15) | 74.56 (13) |
O1_$1-Nd1-O3_$1 | 71.05 (3) | O5-Ln1-O7 | 138.52 (13) | 76.54 (13) |
O1_$1-Nd1-O4_$1 | 110.28 (4) | O5-Ln1-O8 | 72.92 (15) | 77.95 (13) |
O2_$1-Nd1-O4_$1 | 108.05 (4) | O6-Ln1-O7 | 77.00 (14) | 76.39 (14) |
O2_$1-Nd1-O4_$1 | 71.88 (3) | O6-Ln1-O8 | 76.44 (15) | 142.66 (13) |
O3_$1-Nd1-O4_$1 | 69.12 (4) | O7-Ln1-O8 | 73.04 (16) | 72.98 (14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speed, S.; Tubau, À.; Vicente, R.; Castro, E.; Font-Bardia, M. Slow Magnetic Relaxation and Luminescence Properties in Tetra β-Diketonate Lanthanide(III) Complexes. Magnetochemistry 2023, 9, 131. https://doi.org/10.3390/magnetochemistry9050131
Speed S, Tubau À, Vicente R, Castro E, Font-Bardia M. Slow Magnetic Relaxation and Luminescence Properties in Tetra β-Diketonate Lanthanide(III) Complexes. Magnetochemistry. 2023; 9(5):131. https://doi.org/10.3390/magnetochemistry9050131
Chicago/Turabian StyleSpeed, Saskia, Ànnia Tubau, Ramon Vicente, Eva Castro, and Mercè Font-Bardia. 2023. "Slow Magnetic Relaxation and Luminescence Properties in Tetra β-Diketonate Lanthanide(III) Complexes" Magnetochemistry 9, no. 5: 131. https://doi.org/10.3390/magnetochemistry9050131
APA StyleSpeed, S., Tubau, À., Vicente, R., Castro, E., & Font-Bardia, M. (2023). Slow Magnetic Relaxation and Luminescence Properties in Tetra β-Diketonate Lanthanide(III) Complexes. Magnetochemistry, 9(5), 131. https://doi.org/10.3390/magnetochemistry9050131