Design and Testing of a Disposable Flow Cuvette for Continuous Electroporation of a Bioreactor’s Initial Algae Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of S. almeriensis and Pre-treatment
2.2. siRNA Transfection and Analysis
2.3. Nanoparticles Transfer and Analysis
2.4. Viability of Cells after Electroporation
2.5. Prussian Blue Staining
2.6. Three-Dimensional Printing
3. Results and Discussion
3.1. Flow Cuvette Design, Fluid Dynamics and Electrical Field Simulations
3.2. Flow Cuvette Construction
3.3. Testing Flow Cuvettes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Hwang, I.; Britain, D.; Chung, T.D.; Sun, Y.; Kim, D.H. Microfluidic Approaches for Gene Delivery and Gene Therapy. Lab Chip 2011, 11, 3941–3948. [Google Scholar] [CrossRef]
- Schnoor, M.; Buers, I.; Sietmann, A.; Brodde, M.F.; Hofnagel, O.; Robenek, H.; Lorkowski, S. Efficient Non-Viral Transfection of THP-1 Cells. J. Immunol. Methods 2009, 344, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Goomer, R.S.; Deftos, L.J.; Terkeltaub, R.; Maris, T.; Lee, M.C.; Harwood, F.L.; Amiel, D. High-Efficiency Non-Viral Transfection of Primary Chondrocytes and Perichondrial Cells for Ex-Vivo Gene Therapy to Repair Articular Cartilage Defects. Osteoarthr. Cartil. 2001, 9, 248–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Z.; Liu, H.; Mayer, M.; Deng, C.X. Spatiotemporally Controlled Single Cell Sonoporation. Proc. Natl. Acad. Sci. USA 2012, 109, 16486–16491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomizawa, M. Sonoporation: Gene Transfer Using Ultrasound. World J. Methodol. 2013, 3, 39. [Google Scholar] [CrossRef] [PubMed]
- Sharei, A.; Zoldan, J.; Adamo, A.; Sim, W.Y.; Cho, N.; Jackson, E.; Mao, S.; Schneider, S.; Han, M.J.; Lytton-Jean, A.; et al. A Vector-Free Microfluidic Platform for Intracellular Delivery. Proc. Natl. Acad. Sci. USA 2013, 110, 2082–2087. [Google Scholar] [CrossRef] [Green Version]
- Dixit, H.G.; Starr, R.; Dundon, M.L.; Pairs, P.I.; Yang, X.; Zhang, Y.; Nampe, D.; Ballas, C.B.; Tsutsui, H.; Forman, S.J.; et al. Massively-Parallelized, Deterministic Mechanoporation for Intracellular Delivery. Nano. Lett. 2020, 20, 860–867. [Google Scholar] [CrossRef]
- Froger, A.; Hall, J.E. Transformation of Plasmid DNA into E. Coli Using the Heat Shock Method. J. Vis. Exp. 2007, 6, 253. [Google Scholar] [CrossRef] [Green Version]
- Weaver, J.C. Electroporation: A General Phenomenon for Manipulating Cells and Tissues. J. Cell. Biochem. 2018, 51, 426–435. [Google Scholar] [CrossRef]
- Kingston, R.E.; Chen, C.A.; Rose, J.K. Calcium Phosphate Transfection. Curr. Protoc. Mol. Biol. 2003, 63, 9.1.1–9.1.11. [Google Scholar] [CrossRef]
- Hoekstra, S.A.D. Cationic Lipid-Mediated Transfection in Vitro and in Vivo. Mol. Membr. Biol. 2001, 18, 129–143. [Google Scholar] [CrossRef]
- Tryfona, T.; Bustard, M.T. Enhancement of Biomolecule Transport by Electroporation: A Review of Theory and Practical Application to Transformation of Corynebacterium Glutamicum. Biotechnol. Bioeng. 2006, 93, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Davalos, R.V.; Bischof, J.C. A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy. IEEE Trans. Biomed. Eng. 2015, 62, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Teachey, D.T.; Porter, D.L.; Grupp, S.A. CD19-Targeted Chimeric Antigen Receptor T-Cell Therapy for Acute Lymphoblastic Leukemia. Blood 2015, 125, 4017–4023. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Huang, D.; Li, Y.; Wu, M.; Zhong, W.; Cheng, Q.; Wang, X.; Wu, Y.; Zhou, X.; Wei, Z.; et al. A Flow-Through Cell Electroporation Device for Rapidly and Efficiently Transfecting Massive Amounts of Cells in Vitro and Ex Vivo. Sci. Rep. 2016, 6, 18469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teissié, J.; Rols, M.P. An Experimental Evaluation of the Critical Potential Difference Inducing Cell Membrane Electropermeabilization. Biophys. J. 1993, 65, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Teissie, J.; Golzio, M.; Rols, M.P. Mechanisms of Cell Membrane Electropermeabilization: A Minireview of Our Present (Lack of ?) Knowledge. Biochim. Biophys. Acta Gen. Subj. 2005, 1724, 270–280. [Google Scholar] [CrossRef]
- Miklavčič, D. Handbook of Electroporation. Handb. Electroporation 2017, 1–4, 1–2998. [Google Scholar] [CrossRef]
- Huang, D.; Zhao, D.; Li, J.; Wu, Y.; Zhou, W.; Wang, W.; Liang, Z.; Li, Z. High Cell Viability Microfluidic Electroporation in a Curved Channel. Sens. Actuators B Chem. 2017, 250, 703–711. [Google Scholar] [CrossRef]
- Savvidou, M.G.; Ferraro, A.; Hristoforou, E.; Mamma, D.; Kekos, D.; Kolisis, F.N. Incorporation of Magnetic Nanoparticles into Protoplasts of Microalgae Haematococcus pluvialis: A Tool for Biotechnological Applications. Molecules 2020, 25, 5068. [Google Scholar] [CrossRef]
- Savvidou, M.G.; Ferraro, A.; Schinas, P.; Mamma, D.; Kekos, D.; Hristoforou, E.; Kolisis, F.N. Magnetic Immobilization and Growth of Nannochloropsis oceanica and Scenedasmus almeriensis. Plants 2022, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- MicroPulser Electroporator. Available online: https://www.bio-rad.com/en-gr/product/micropulser-electroporator?ID=83527990-34fb-4b33-b955-ca53b57bf8b9 (accessed on 16 September 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banis, G.; Savvidou, M.; Georgas, A.; Batagiannis, A.; Kolisis, F.; Ferraro, A.; Hristoforou, E. Design and Testing of a Disposable Flow Cuvette for Continuous Electroporation of a Bioreactor’s Initial Algae Cultivation. Magnetochemistry 2022, 8, 147. https://doi.org/10.3390/magnetochemistry8110147
Banis G, Savvidou M, Georgas A, Batagiannis A, Kolisis F, Ferraro A, Hristoforou E. Design and Testing of a Disposable Flow Cuvette for Continuous Electroporation of a Bioreactor’s Initial Algae Cultivation. Magnetochemistry. 2022; 8(11):147. https://doi.org/10.3390/magnetochemistry8110147
Chicago/Turabian StyleBanis, Georgios, Maria Savvidou, Antonios Georgas, Athanasios Batagiannis, Fragiskos Kolisis, Angelo Ferraro, and Evangelos Hristoforou. 2022. "Design and Testing of a Disposable Flow Cuvette for Continuous Electroporation of a Bioreactor’s Initial Algae Cultivation" Magnetochemistry 8, no. 11: 147. https://doi.org/10.3390/magnetochemistry8110147
APA StyleBanis, G., Savvidou, M., Georgas, A., Batagiannis, A., Kolisis, F., Ferraro, A., & Hristoforou, E. (2022). Design and Testing of a Disposable Flow Cuvette for Continuous Electroporation of a Bioreactor’s Initial Algae Cultivation. Magnetochemistry, 8(11), 147. https://doi.org/10.3390/magnetochemistry8110147