Structure–Property Relationships for Weak Ferromagnetic Perovskites
Abstract
:1. Introduction
2. Crystal and Magnetic Structure of Rare-Earth Orthoferrites
3. Isotropic Superexchange Coupling and Superexchange Geometry
4. Crystal Structure and the DM Coupling in Orthoferrites
- When C is a center of inversion: d = 0.
- When a mirror plane ⊥AB passes through C, mirror plane or AB.
- When there is a mirror plane including A and B, mirror plane.
- When a twofold rotation axis ⊥ AB passes through C, twofold axis.
- When there is an n-fold axis (n ≥ 2) along AB, AB.
The DM Coupling and Effective Magnetic Anisotropy
5. Magnetic and Magnetoelastic Anisotropy in Orthoferrites
5.1. Second-Order Spin Anisotropy
5.2. Magnetoelastic Coupling
5.3. Single-Ion Cubic Anisotropy
6. Optical Anisotropy and Anisotropic Photoelastic Effects in Orthoferrites
6.1. Natural Birefringence of Orthoferrites
6.2. Photoelastic Effects in Orthoferrites
6.3. Photomagnetoelastic Effects in Orthoferrites
7. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Geller, S.; Wood, E.A. Crystallographic Studies of Perovskite-Like Compounds. I. Rare Earth Orthoferrites and YFeO3, YCrO3, YAlO3. Acta Cryst. 1956, 9, 563. [Google Scholar] [CrossRef]
- Geller, S.; Wood, E.A. Crystal Structure of Gadolinium Orthoferrite, GdFeO3. J. Chem. Phys. 1956, 24, 1236. [Google Scholar] [CrossRef]
- Ahmed, S.; Nishat, S.S.; Kabir, A.; Faysal, A.K.M.S.H.; Hasan, T.; Chakraborty, S.; Ahmed, I. Structural, Elastic, Vibrational, Electronic and Optical Properties of SmFeO3 Using Density Functional Theory. Phys. Condens. Matter 2021, 615, 413061. [Google Scholar] [CrossRef]
- Moskvin, A.S. Dzyaloshinskii–Moriya Coupling in 3d Insulators. Condens. Matter. 2019, 4, 84. [Google Scholar] [CrossRef] [Green Version]
- Balachandran, P.V.; Rondinelli, J.M. Interplay of Octahedral Rotations and Breathing Distortions in Charge Ordering Perovskite Oxides. Phys. Rev. B 2013, 88, 054101. [Google Scholar] [CrossRef] [Green Version]
- Olekhnovich, N.M. Relationship Between the Rotation Angles of Octahedra and Bond-Strength Energy in Crystals With Provskite Structure. Crystallogr. Rep. 2007, 52, 759–767. [Google Scholar] [CrossRef]
- Zhou, J.-S.; Marshall, L.G.; Li, Z.-Y.; Li, X.; He, J.-M. Weak Ferromagnetism in Perovskite Oxides. Phys. Rev. B 2020, 102, 104420. [Google Scholar] [CrossRef]
- Holzschuh, E.; Denison, A.B.; Kundig, W.; Meier, P.F.; Patterson, B.D. Muon-Spin-Rotation Experiments in Orthoferrites. Phys. Rev. B 1983, 27, 5294. [Google Scholar] [CrossRef]
- Amelin, K.; Nagel, U.; Fishman, R.S.; Yoshida, Y.; Sim, H.; Park, K.; Park, J.G.; Rõõm, T. Terahertz Absorption Spectroscopy Study of Spin Waves in Orthoferrite YFeO3 in a Magnetic Field. Phys. Rev. B 2018, 98, 174417. [Google Scholar] [CrossRef] [Green Version]
- Belov, K.P.; Zvezdin, A.K.; Kadomtseva, A.M.; Levitin, R.Z. Orientational Transitions in Rare-Earth Magnetics; Nauka: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Moskvin, A.S. Many-Electron Theory of Superexchange. Fizika Tverdogo Tela 1970, 12, 3209, (Sov. Phys. Solid State 1971, 12, 2593). [Google Scholar]
- Moskvin, A.S. Antisymmetric Exchange and Magnetic Anisotropy in Weak Ferromagnets. D. Sc. Thesis, Lomonosov Moscow State University, Moscow, Russia, 1984. (In Russian). [Google Scholar]
- Sidorov, A.A.; Moskvin, A.S.; Popkov, V.V. Superexchange interactions in a strong crystal field. Fizika Tverdogo Tela 1976, 18, 3005. [Google Scholar]
- Moskvin, A.S.; Ovanesyan, N.S.; Trukhtanov, V.A. Angular dependence of the superexchange interaction Fe3+–O2−–Cr3+. Hyperfine Interact. 1975, 1, 265. [Google Scholar] [CrossRef]
- Moskvin, A.S. Microscopic theory of Dzyaloshinskii-Moriya coupling and related exchange-relativistic effects. JMMM 2016, 400, 117. [Google Scholar] [CrossRef]
- Moskvin, A.S. Dzyaloshinskii Interaction and Exchange-Relativistic Effects in Orthoferrites. JETP 2021, 132, 517–547. [Google Scholar] [CrossRef]
- Freeman, S. Molecular-Orbital Theory of Excited-State Exchange Interaction. Phys. Rev. B 1973, 7, 3960. [Google Scholar] [CrossRef]
- Moskvin, A.S.; Luk’yanov, A.S. Theory of the potential exchange in magnetic insulators. Sov. Phys. Solid State 1977, 19, 1199. [Google Scholar]
- Hornreich, R.M.; Shtrikman, S.; Wanklyn, B.M.; Yaeger, I. Magnetization Studies in Rare-Earth Orthochromites. 7. LuCrO3. Phys. Rev. B 1976, 13, 4046. [Google Scholar] [CrossRef]
- Bloch, D. 10/3 Law for Volume Dependence of Superexchange. J. Phys. Chem. Solids 1966, 27, 881. [Google Scholar] [CrossRef]
- Dzialoshinskii, I.E. Thermodynamic Theory of Weak Ferromagnetism in Antiferromagnetic Substances. Sov. Phys. JETP 1957, 5, 1259. [Google Scholar]
- Dzyaloshinsky, I. A Thermodynamic Theory of Weak Ferromagnetism of Antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241. [Google Scholar] [CrossRef]
- Moriya, T. New Mechanism of Anisotropic Superexchange Interaction. Phys. Rev. Lett. 1960, 4, 228. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 1960, 120, 91. [Google Scholar] [CrossRef]
- Keffer, F. Moriya Interaction and the Problem of the Spin Arrangements in β MnS. Phys. Rev. 1962, 126, 896. [Google Scholar] [CrossRef]
- Herrmann, G.F. Magnetic Resonances + Susceptibility in Orthoferrites. Phys. Rev. 1964, 133, A1334. [Google Scholar] [CrossRef]
- Moskvin, A.S.; Bostrem, I.G. Special features of the exchange interactions in orthoferrite–orthochromites. Fizika Tverdogo Tela 1977, 19, 2616, [Sov. Phys. Solid State 1977, 19, 1532]. [Google Scholar]
- Tofield, B.C.; Fender, B.F.E. Covalency parameters for Cr3+, Fe3+ and Mn4+ in an oxide environment. J. Phys. Chem. Solids 1970, 31, 2741. [Google Scholar] [CrossRef]
- Moskvin, A.S. Weak ferrimagnets with competing Dzyaloshinskii-Moriya coupling are perspective for the exchange-bias effect materials. JMMM 2018, 463, 50–56. [Google Scholar] [CrossRef]
- Marezio, M.; Remeika, J.P.; Dernier, P.D. The crystal chemistry of the rare earth orthoferrites. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 1970, 26, 2008. [Google Scholar] [CrossRef]
- Marezio, M.; Dernier, P.D. Bond Lengths in LaFeO3. Mater. Res. Bull. 1971, 6, 23. [Google Scholar] [CrossRef]
- Moskvin, A.S.; Sinitsyn, E.V. Antisymmetric exchange and four-sublattice model of orthoferrites. Fizika Tverdogo Tela 1975, 17, 1664, [Sov. Phys. Solid State 1975, 17, 2495]. [Google Scholar]
- Jacobs, S.; Burne, H.F.; Levinson, L.M. Field-Induced Spin Reorientation in YFeO3 and YCrO3. J. Appl. Phys. 1971, 42, 1631. [Google Scholar] [CrossRef]
- Luetgemeier, H.; Bohn, H.G.; Brajczewska, M. NMR observation of the spin structure and field induced spin reorientation in YFeO3. J. Magn. Magn. Mat. 1980, 21, 289. [Google Scholar] [CrossRef]
- Plakhtii, V.P.; Chernenkov, Y.P.; Schweizer, J.; Bedrizova, M.N. Experimental proof of the existence of a weak antiferromagnetic component in yttrium orthoferrite. JETP 1981, 53, 1291. [Google Scholar]
- Plakhtii, V.P.; Chernenkov, Y.P.; Bedrizova, M.N.; Schweizer, J. Neutron diffraction study of the weak antiferromagnetism in orthoferrites. Aip Conf. Proc. 1982, 89, 330. [Google Scholar]
- Plakhtii, V.P.; Chernenkov, Y.P.; Bedrizova, M.N. Neutron diffraction study of weak antiferromagnetism in ytterbium orthoferrite. Solid State Commun. 1983, 47, 309. [Google Scholar] [CrossRef]
- Georgieva, D.G.; Krezhov, K.A.; Nietza, V.V. Weak antiferromagnetism in YFeO3 and HoFeO3. Solid State Commun. 1995, 96, 535. [Google Scholar] [CrossRef]
- Moskvin, A.S. Nuclear magnetic resonance of 19F in the weak ferromagnet FeF3, and determination of the sign of the Dzyaloshinskii vector. Fizika Tverdogo Tela 1990, 32, 1644, [Sov. Phys. Solid State 1990, 32, 959]. [Google Scholar]
- Dmitrienko, V.E.; Ovchinnikova, E.N.; Collins, S.P.; Nisbet, G.; Beutier, G.; Kvashnin, Y.O.; Mazurenko, V.V.; Lichtenstein, A.I.; Katsnelson, M.I. Measuring the Dzyaloshinskii-Moriya interaction in a weak ferromagnet. Nat. Phys. 2014, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Zalesskii, A.V.; Savvinov, A.M.; Zheludev, I.S.; Ivashchenko, A.N. NMR of Fe-57 Nuclei and Reorientation of Spins in Domains and Domain-Walls of ErFeO3 and DyFeO3 Crystals. JETP 1975, 41, 723. [Google Scholar]
- Moskvin, A.S. Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects. JETP 2007, 104, 913–927. [Google Scholar] [CrossRef] [Green Version]
- Moskvin, A.S.; Sinitsyn, E.V.; Smirnov, A.Y. Magnetic Dipole Anisotropy and Magnetostriction of Rare-Earth Orthoferrites. Sov. Phys. Solid State 1978, 20, 2002. [Google Scholar]
- Moskvin, A.S.; Bostrem, I.G.; Sidorov, M.A. 2-Ion Exchange-Relativistic Anisotropy – the Tensor Form, Temperature-Dependence, and Numerical Value. JETP 1993, 77, 127–137. [Google Scholar]
- Volkov, A.A.; Goncharov, Y.G.; Kozlov, G.V.; Kocharyan, K.N.; Lebedev, S.P.; Prokhorov, A.S.; Prokhorov, A.M. Measurement of the Magnetic Spectrum of YFeO3 by the Method of Submillimeter Dielectric-Spectroscopy. JETP Lett. 1984, 39, 166. [Google Scholar]
- White, R.M.; Nemanich, R.J.; Herring, C. Light Scattering from Magnetic Excitations in Orthoferrites. Phys. Rev. B 1982, 25, 1822. [Google Scholar] [CrossRef]
- Hahn, S.E.; Podlesnyak, A.A.; Ehlers, G.; Granroth, G.E.; Fishman, R.S.; Kolesnikov, A.I.; Pomjakushina, E.; Conder, K. Inelastic neutron scattering studies of YFeO3. Phys. Rev. B 2014, 89, 014420. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Sim, H.; Leiner, J.C.; Yoshida, Y.; Jeong, J.; Yano, S.; Gardner, J.; Bourges, P.; Klicpera, M.; Sechovský, V.; et al. Low-energy spin dynamics of orthoferrites AFeO(3) (A = Y, La, Bi). J. Phys. Condens. Matter 2018, 30, 235802. [Google Scholar] [CrossRef] [Green Version]
- Likhtenshtein, A.I.; Moskvin, A.S.; Gubanov, V.A. Electronic structure of Fe3+ centers and exchange interactions in rare-earth orthoferrites. Fiz. Tverd. Tela 1982, 24, 3596, (Sov. Phys. Solid State 1982, 24, 2049). [Google Scholar]
- Kadomtseva, A.M.; Agafonov, A.P.; Lukina, M.M.; Milov, V.N.; Moskvin, A.S.; Semenov, V.A.; Sinitsyn, E.V. Nature of the Magnetic Anisotropy and Magnetostriction of Orthoferrites and Orthochromites. JETP 1981, 81, 700–706. [Google Scholar]
- Bidaux, R.; Bouree, J.E.; Hammann, J. Dipolar interactions in rare earth orthoferrites—I. J. Phys. Chem. Solids. 1974, 35, 1645–1655. [Google Scholar] [CrossRef]
- Egoyan, A.A.; Mukhin, A.A. On the Competition of Various Interactions in the Temperature Dependence of AFMR Frequencies and Anisotropy Constants in YFeO3. Fizika Tverdogo Tela 1994, 36, 1715–1723. [Google Scholar]
- Kadomtseva, A.M.; Agafonov, A.P.; Milov, V.N.; Moskvin, A.S.; Semenov, V.A. Direct Observation of a Symmetry Change Induced in Orthoferrite Crystals by an External Magnetic Field. JETP Lett 1981, 33, 383. [Google Scholar]
- Moskvin, A.S.; Latypov, D.G.; Agafonov, A.P. Role of latent diplacements in magnetostriction and piezomagnetism of orthoferrites. Fizika Tverdogo Tela 1987, 29, 3157–3160, (Sov. Phys. Solid State 1987, 29, 1814). [Google Scholar]
- Cullen, J.R.; Clark, A.E. Magnetostriction and Structural Distortion in Rare-Earth Intermetallics. Phys. Rev. B 1977, 15, 4510. [Google Scholar] [CrossRef]
- Bumagina, L.A.; Krotov, V.I.; Malkin, B.Z.; Khasanov, A.K. Magnetostriction in Ionic Rare-Earth Paramagnets. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 1981, 80, 1543–1553. [Google Scholar]
- Moskvin, A.S.; Bostrem, I.G. Cubic Anisotropy of Rare-Earth Orthoferrites. Sov. Phys. Solid St. 1979, 21, 628. [Google Scholar]
- Kahn, F.J.; Pershan, P.S.; Remeika, J.P. Ultraviolet magneto-optical properties of single-crystal orthoferrites, garnets, and other ferric oxide compounds. Phys. Rev. 1969, 186, 891. [Google Scholar] [CrossRef]
- Moskvin, A.S.; Zenkov, A.V.; Yuryeva, E.I.; Gubanov, V.A. Origin of the Magneto-Optical Properties of Iron Garnets. Phys. B 1991, 168, 187. [Google Scholar] [CrossRef]
- Moskvin, A.S.; Zenkov, A.V.; Ganshina, E.A.; Krinchik, G.S.; Nishanova, M.M. Anisotropy of the Circular Magneto-Optics of Orthoferrites: A Theoretical Consideration on the Basis of the Charge-Transfer Transitions and Exchange-Relativistic Concept. J. Phys. Chem. Solids 1993, 54, 101. [Google Scholar] [CrossRef]
- Clover, R.B.; Wentworth, C.; Mroczkowski, S.S. Low Birefringeant Orthoferrites for Optical Devices. IEEE Trans. Magn. 1971, 7, 480. [Google Scholar] [CrossRef]
- Tabor, W.J.; Anderson, A.W.; van Uitert, L.G. Visible and Infrared Faraday Rotation and Birefrigeance of Single-Crystal Rare-Earth Orthoferrites. J. Appl. Phys. 1970, 41, 3018. [Google Scholar] [CrossRef]
- Chetkin, M.V.; Didosyan, Y.S.; Akhutkina, A.I. Faraday Effect in Yttrium and Dysprosium Orthoferrites. IEEE Trans. Magn. 1971, 7, 401. [Google Scholar] [CrossRef]
- Clover, R.B.; Rayl, M.; Gutman, D. Low Birefringent Sm-Doped Orthoferrites. AIP Conf. Proc. 1972, 5, 264. [Google Scholar]
- Jahn, I.R. Linear Magnetic Birefringence in Antiferromagnetic Iron Group Difluorides. Phys. Stat. Sol. 1973, 57, 681. [Google Scholar] [CrossRef]
- Belanger, D.P.; King, A.R.; Jaccarino, Y. Temperature Dependence of the Optical Birefringence of MnF2, MgF2, and ZnF2. Phys. Rev. B 1984, 29, 2636. [Google Scholar] [CrossRef]
- Moskvin, A.S.; Latypov, D.G.; Gudkov, V.G. Nature of Birefringence and Elastooptic Properties of Orthoferrites. Fiz. Tverd. Tela 1988, 30, 413. [Google Scholar]
- Sosnowska, I.; Steichele, E. Magnetic structure of NdFeO3 and PrFeO3 investigated with a high resolution neutron time-of-flight diffractometer. AIP Conf. Proc. 1982, 89, 309. [Google Scholar]
- Krichevtsov, B.B.; Pisarev, R.V.; Ruvinshtein, M.M. Anisotropy of the Linear and Quadric Magneto-Optical Effects in YFeO3 Ortho-Ferrite. Fiz. Tverd. Tela 1980, 22, 2128. [Google Scholar]
- Markovin, P.A.; Pisarev, R.V. Magnetic, Thermal and Elastic Refraction of Light in Anti-Ferromagnetic MnF2. Zh. Eksper. Teor. Fiz. 1979, 77, 2461. [Google Scholar]
Ground State Configuration | X | Sign X | Y | Sign Y | Excited State Configuration |
---|---|---|---|---|---|
(): , , | + | + | |||
(): , | − | − | − | , | |
(): , | − | + |
() | () | () | |
---|---|---|---|
() | + | − | + |
() | − | + | + |
() | + | + | − |
1a | = −0.31 | = −0.29 | = 0.41 |
1b | = 0.31 | = −0.29 | = 0.41 |
3a | = 0.20 | = −0.55 | 0 |
Orthoferrite | A/F, Theory [32] | A/F, exp | A/C, Theory [32] | A/C, exp |
---|---|---|---|---|
YFeO | 1.10 | 1.10 ± 0.03 [34] 1.4 ± 0.2 [35] 1.1 ± 0.1 [38] | 2.04 | ? |
HoFeO | 1.16 | 0.85 ± 0.10 [38] | 2.00 | ? |
TmFeO | 1.10 | 1.25 ± 0.05 [34] | 1.83 | ? |
YbFeO | 1.11 | 1.22 ± 0.05 [35] | 1.79 | 2.0 ± 0.2 [34] |
Mechanism | ||||||
---|---|---|---|---|---|---|
Y | Lu | Y | Lu | Y | Lu | |
DM coupling | 3.1 | 3.1 | −0.8 | −0.9 | −3.9 | −4.0 |
Magneto-dipole | 0.9 | 0.8 | −0.2 | −0.5 | −1.1 | −1.3 |
SIA | −1.9 | 1.0 | −5.6 | −1.8 | −3.7 | −2.8 |
Total | 2.1 | 4.9 | −6.6 | −3.2 | −8.7 | −8.1 |
Experiment | 2.1 | ∼6.0 | −5.7 | ? | −7.8 | ? |
Mechanism | ac Plane | bc Plane | ab Plane | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Lb | Lc | λ2 | La | Lb | Lc | λ1 | La | Lb | Lc | λ3 | |
DM coupling | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 |
Magneto-dipole | 0.0 | −0.4 | 0.4 | −1.1 | −0.4 | −0.1 | 0.5 | −1.1 | −0.3 | 0.3 | 0.0 | 1.8 |
SIA-E term | −1.6 | −1.3 | 2.9 | 4.1 | −1.0 | −2.2 | 3.2 | 1.9 | 0.6 | −0.9 | 0.3 | 0.6 |
SIA-T2 term | −0.4 | 0.2 | 0.2 | 1.7 | 0.1 | −0.2 | 0.1 | 2.0 | 0.5 | −0.5 | 0.0 | 0.6 |
SIA-lattice | 0.4 | −0.2 | −0.2 | −2.1 | −0.1 | 0.1 | −0.0 | −2.0 | −0.5 | 0.4 | 0.1 | 0.0 |
Total | −1.6 | −1.7 | 3.3 | 2.6 | −1.4 | −2.4 | 3.8 | 0.8 | 0.3 | −0.7 | 0.4 | 14.7 |
Experiment | −1.6 | −1.3 | 2.9 | 2.4 | ? | ? | ? | ? | ? | ? | ? | ? |
() | ||||
---|---|---|---|---|
Magnetostriction | 1.7 | 1.8 | ±0.3 | |
Hidden displacements | 0.1 | 0.8 | ±0.7 | |
Total | 1.8 | 2.6 | ±1.0 (±0.4) | |
Experiment [69] | ± 0.4 | 2.0 ± 0.2 | 2.6 ± 0.2 | ±0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moskvin, A. Structure–Property Relationships for Weak Ferromagnetic Perovskites. Magnetochemistry 2021, 7, 111. https://doi.org/10.3390/magnetochemistry7080111
Moskvin A. Structure–Property Relationships for Weak Ferromagnetic Perovskites. Magnetochemistry. 2021; 7(8):111. https://doi.org/10.3390/magnetochemistry7080111
Chicago/Turabian StyleMoskvin, Alexander. 2021. "Structure–Property Relationships for Weak Ferromagnetic Perovskites" Magnetochemistry 7, no. 8: 111. https://doi.org/10.3390/magnetochemistry7080111
APA StyleMoskvin, A. (2021). Structure–Property Relationships for Weak Ferromagnetic Perovskites. Magnetochemistry, 7(8), 111. https://doi.org/10.3390/magnetochemistry7080111