Identification of Material Properties and Optimal Design of Magnetically Shielded Rooms
Abstract
:1. Introduction
2. Material Modeling
2.1. Numerical Model of Ferromagnetic Shields
2.2. Identification of the Curve
2.3. Robustness of the Identification
3. Design of a MSR
3.1. Optimization Method
- the thickness of each layer: , , ;
- the gap between layers: , .
3.2. Optimization Results
- Fixed external dimensions: .
- Gap between layers values: .
- Layer thickness values: .
- The gap between layers is always maximized.
- A linear approximation seems to be sufficient to estimate the geometry of the MSR.
- After finding the optimal geometry, it is important to consider the nonlinear behavior of the material to estimate the real SF of the MSR.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harakawa, K.; Kajiwara, G.; Kazami, K.; Ogata, H.; Kado, H. Evaluation of a high-performance magnetically shielded room for biomagnetic measurement. IEEE Trans. Magn. 1996, 32, 5256–5260. [Google Scholar] [CrossRef]
- Trahms, L.; Burghoff, M. NMR at very low fields. Magn. Reson. Imaging 2010, 28, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.H.; Leistner, S.; Geisler, F.; MacKert, B.M.; Trahms, L. Characterization of motor and somatosensory function for stroke patients. Physiol. Meas. 2011, 32, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Bork, J.; Hahlbohm, H.D.; Klein, R.; Schnabel, A. The 8-Layered Magnetically Shielded Room of the PTB: Design and Construction; Technical Report; Helsinki University of Technology: Espoo, Finland, 2001. [Google Scholar]
- Canova, A.; Freschi, F.; Giaccone, L.; Repetto, M. Numerical Modeling and Material Characterization for Multilayer Magnetically Shielded Room Design. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Mager, A. The Berlin Magnetically Shielded Room (BMSR), Section A: Design And Construction. In Biomagnetism; De Gruyter: Berlin, Germany, 2019; pp. 51–78. [Google Scholar] [CrossRef]
- Kelha, V.O.; Pukki, J.M.; Peltonen, R.S.; Penttinen, A.J.; Ilmoniemi, R.J.; Heino, J.J. Design, Construction, and Performance of a Large-Volume Magnetic-Shield. IEEE Trans. Magn. 1982, 18, 260–270. [Google Scholar] [CrossRef]
- Hasselgren, L.; Luomi, J. Geometrical aspects of magnetic shielding at extremely low frequencies. IEEE Trans. Electromagn. Compat. 1995, 37, 409–420. [Google Scholar] [CrossRef]
- Tashiro, K.; Sasada, I. A low-cost magnetic shield consisting of nonoriented silicon steel. IEEE Trans. Magn. 2005, 41, 4081–4083. [Google Scholar] [CrossRef]
- Liyi, L.; Zhiyin, S.; Donghua, P.; Jiaxi, L.; Feng, Y. An Approach to Analyzing Magnetically Shielded Room Permeability in Low Magnetic Field. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kato, K.; Muramatsu, K.; Haga, A.; Kobayashi, K.; Kamata, K.; Fujiwara, K.; Yamaguchi, T. Incremental permeability of mu-metal in low magnetic fields for design of multi-layer-type of magnetically-shielded rooms. In Proceedings of the INTERMAG ASIA 2005: Digests of the IEEE International Magnetics Conference, Nagoya, Japan, 4–8 April 2005; p. 774. [Google Scholar] [CrossRef]
- Freschi, F.; Repetto, M. VIS: An artificial immune network for multi-objective optimization. Eng. Optim. 2006, 38, 975–996. [Google Scholar] [CrossRef]
- Chadebec, O.; Coulomb, J.; Bongiraud, J.; Cauffet, G.; Le Thiec, P. Recent Improvements for Solving Inverse Magnetostatic Problem Applied to Thin Shells. IEEE Trans. Magn. 2002, 38, 1005–1008. [Google Scholar] [CrossRef] [Green Version]
- Vuillermet, Y.; Chadebec, O.; Coulomb, J.; Rouve, L.L.; Cauffet, G.; Bongiraud, J.; Demilier, L. Scalar Potential Formulation and Inverse Problem Applied to Thin Magnetic Sheets. IEEE Trans. Magn. 2008, 44, 1054–1057. [Google Scholar] [CrossRef] [Green Version]
- Giaccone, L.; Ragusa, C.; Khan, O.; Manca, M. Fast magnetic field modeling for shielding systems. IEEE Trans. Magn. 2013, 49, 4128–4131. [Google Scholar] [CrossRef]
- Giaccone, L.; Ragusa, C. Fast analysis of ferromagnetic shields by means of fixed point iterative technique. Phys. B Condens. Matter 2014, 435, 96–99. [Google Scholar] [CrossRef]
- Rogovoy, A.A.; Stolbov, O.V.; Stolbova, O.S. The Microstructural Model of the Ferromagnetic Material Behavior in an External Magnetic Field. Magnetochemistry 2021, 7, 7. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ishikawa, Y. Surface Magnetic Charge Distributions and Demagnetizing Factors of Circular Cylinders. IEEE Trans. Magn. 1992, 28, 1810–1814. [Google Scholar] [CrossRef]
- Ozaki, K.; Kobayashi, M.; Rowlands, G. Surface Magnetic Charge Distribution of a Long, Thin Cylinder and Its Edge Singularity. IEEE Trans. Magn. 1998, 34, 2185–2191. [Google Scholar] [CrossRef]
- Ozaki, K.; Kobayashi, M. Surface Magnetic Charge Densities and Demagnetizing Factors for Rotating Astroids. IEEE Trans. Magn. 2000, 36, 210–215. [Google Scholar] [CrossRef]
- Soda, M.; Kobayashi, M.; Rowlands, G. Charge Densities and Inclination Angles of Magnetization on Various Surfaces of Rotational Symmetry. IEEE Trans. Magn. 2004, 40, 1763–1768. [Google Scholar] [CrossRef]
- Muscia, R. Equivalent magnetic charge in helicoidal magnets. J. Appl. Phys. 2008, 104, 103916. [Google Scholar] [CrossRef]
- Brunotte, X.; Meunier, G. Line element for efficient computation of the magnetic field created by thin iron plates. IEEE Trans. Magn. 1990, 26, 2196–2198. [Google Scholar] [CrossRef]
- Newell, A.; Williams, W.; Dunlop, D. A Two-Dimensional Micromagnetic Model of Magnetizations and Fields in Magnetite. J. Geophys. Res. 1993, 98, 9533–9549. [Google Scholar] [CrossRef]
- Volmer, M.; Neamtu, J. Computer simulation of magnetization curves in magnetic thin films. J. Optoelectron. Adv. Mater. 2003, 5, 319–324. [Google Scholar]
- Chiampi, M.; Chiarabaglio, D.; Repetto, M. An accurate investigation on numerical methods for nonlinear magnetic field problems. J. Magn. Magn. Mater. 1994, 133, 591–595. [Google Scholar] [CrossRef]
- Chiampi, M.; Chiarabaglio, D.; Repetto, M. An Improved Technique for Nonlinear Magnetic Problems. IEEE Trans. Magn. 1994, 30, 4332–4334. [Google Scholar] [CrossRef]
- Hantila, I. A method for solving stationary magnetic field in non-linear media. Rev. Roum. Des Sci. Tech. ÉLectrotechnique ÉNergÉTique 1975, 20, 397. [Google Scholar]
- Bozorth, R. Ferromagnetism; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Bavastro, D.; Canova, A.; Freschi, F.; Giaccone, L.; Manca, M. Magnetic Field Mitigation at Power Frequency: Design Principles and Case Studies. IEEE Trans. Ind. Appl. 2015, 51, 2009–2016. [Google Scholar] [CrossRef]
- Del-Pino-López, J.C.; Giaccone, L.; Canova, A.; Cruz-Romero, P. Design of active loops for magnetic field mitigation in MV/LV substation surroundings. Electr. Power Syst. Res. 2015, 119, 337–344. [Google Scholar] [CrossRef]
- Mitigation Techniques of Power Frequency Magnetic Fields Originated from Electric Power Systems; Technical Report Worging Group C4.204; International Council on Large Electric Systems (CIGRE’): Paris, France, 2009; ISBN 978-2-85873-060-5.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canova, A.; Freschi, F.; Giaccone, L.; Repetto, M.; Solimene, L. Identification of Material Properties and Optimal Design of Magnetically Shielded Rooms. Magnetochemistry 2021, 7, 23. https://doi.org/10.3390/magnetochemistry7020023
Canova A, Freschi F, Giaccone L, Repetto M, Solimene L. Identification of Material Properties and Optimal Design of Magnetically Shielded Rooms. Magnetochemistry. 2021; 7(2):23. https://doi.org/10.3390/magnetochemistry7020023
Chicago/Turabian StyleCanova, Aldo, Fabio Freschi, Luca Giaccone, Maurizio Repetto, and Luigi Solimene. 2021. "Identification of Material Properties and Optimal Design of Magnetically Shielded Rooms" Magnetochemistry 7, no. 2: 23. https://doi.org/10.3390/magnetochemistry7020023
APA StyleCanova, A., Freschi, F., Giaccone, L., Repetto, M., & Solimene, L. (2021). Identification of Material Properties and Optimal Design of Magnetically Shielded Rooms. Magnetochemistry, 7(2), 23. https://doi.org/10.3390/magnetochemistry7020023