Magnetoelectrochemistry and Asymmetric Electrochemical Reactions
Abstract
:1. Introduction
2. Experimental Section
3. Result Discussion
Morphological Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ray, K.; Ananthavel, S.P.; Waldeck, D.H.; Naaman, R. Asymmetric Scattering of Polarized Electrons by Organized Organic Films of Chiral Molecules|Science. Available online: https://science.sciencemag.org/content/283/5403/814 (accessed on 22 August 2019).
- Kelley, S.O.; Barton, J.K. Electron Transfer Between Bases in Double Helical DNA|Science. Available online: https://science.sciencemag.org/content/283/5400/375 (accessed on 22 August 2019).
- Göhler, B.; Hamelbeck, V.; Kettner, M.; Markus, T.Z.; Hanne, G.F.; Vager, Z.; Adams, R.; Zacharias, H. Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA|Science. Available online: https://science.sciencemag.org/content/331/6019/894 (accessed on 22 August 2019).
- Kumar, A.; Capua, E.; Fontanesi, C.; Carmieli, R.; Naaman, R. Injection of Spin-Polarized Electrons into a AlGaN/GaN Device from an Electrochemical Cell: Evidence for an Extremely Long Spin Lifetime. ACS Nano 2018, 12, 3892–3897. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Poonia, V.S.; Fontanesi, C.; Naaman, R.; Fleming, A.M.; Burrows, C.J. Effect of Oxidative Damage on Charge and Spin Transport in DNA. J. Am. Chem. Soc. 2019, 141, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Capua, E.; Kesharwani, M.K.; Martin, J.M.L.; Sitbon, E.; Waldeck, D.H.; Naaman, R. Chirality-Induced Spin Polarization Places Symmetry Constraints on Biomolecular Interactions. Proc. Natl. Acad. Sci. USA 2017, 114, 2474–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, A.-M.; Sun, Q. Spin-Selective Transport of Electrons in DNA Double Helix. Phys. Rev. Lett. 2012, 108, 218102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, A.-M.; Sun, Q.-F. Spin-Dependent Electron Transport in Protein-like Single-Helical Molecules. Proc. Natl. Acad. Sci. USA 2014, 111, 11658–11662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaeli, K.; Kantor-Uriel, N.; Naaman, R.; Waldeck, D.H. The Electron’s Spin and Molecular Chirality—How Are They Related and How Do They Affect Life Processes? Chem. Soc. Rev. 2016, 45, 6478–6487. [Google Scholar] [CrossRef] [PubMed]
- Banerjee-Ghosh, K.; Dor, O.B.; Tassinari, F.; Capua, E.; Yochelis, S.; Capua, A.; Yang, S.-H.; Parkin, S.S.P.; Sarkar, S.; Kronik, L.; et al. Separation of Enantiomers by Their Enantiospecific Interaction with Achiral Magnetic Substrates. Science 2018, 360, 1331–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassinari, F.; Steidel, J.; Paltiel, S.; Fontanesi, C.; Lahav, M.; Paltiel, Y.; Naaman, R. Enantioseparation by Crystallization Using Magnetic Substrates. Chem. Sci. 2019, 10, 5246–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, S.; Alemany, P.; Avnir, D. Continuous Chirality Measures in Transition Metal Chemistry. Chem. Soc. Rev. 2005, 34, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Gazzotti, M.; Arnaboldi, S.; Grecchi, S.; Giovanardi, R.; Cannio, M.; Pasquali, L.; Giacomino, A.; Abollino, O.; Fontanesi, C. Spin-Dependent Electrochemistry: Enantio-Selectivity Driven by Chiral-Induced Spin Selectivity Effect. Electrochim. Acta 2018, 286, 271–278. [Google Scholar] [CrossRef]
- Mtangi, W.; Tassinari, F.; Vankayala, K.; Vargas Jentzsch, A.; Adelizzi, B.; Palmans, A.R.A.; Fontanesi, C.; Meijer, E.W.; Naaman, R. Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting. J. Am. Chem. Soc. 2017, 139, 2794–2798. [Google Scholar] [CrossRef] [PubMed]
- Mtangi, W.; Kiran, V.; Fontanesi, C.; Naaman, R. Role of the Electron Spin Polarization in Water Splitting. J. Phys. Chem. Lett. 2015, 6, 4916–4922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Yogi, P.; Sagdeo, P.R.; Kumar, R. TiO2–Co3O4 Core–Shell Nanorods: Bifunctional Role in Better Energy Storage and Electrochromism. ACS Appl. Energy Mater. 2018, 1, 790–798. [Google Scholar] [CrossRef]
- Mishra, S.; Fontanesi, C. Combined Effect of Organic-Inorganic Heterostructure to Enhance Electrochemical Capacitance. Mater. Chem. Phys. 2019, 238, 121943. [Google Scholar] [CrossRef]
- Fontanesi, C.; Tassinari, F.; Parenti, F.; Cohen, H.; Mondal, P.C.; Kiran, V.; Giglia, A.; Pasquali, L.; Naaman, R. New One-Step Thiol Functionalization Procedure for Ni by Self-Assembled Monolayers. Langmuir 2015, 31, 3546–3552. [Google Scholar] [CrossRef] [PubMed]
S. No. | Deposition Time (seconds): Pure Ni | Thickness (µm) | Deposition Time (seconds): Ni-LTA | Thickness (µm) |
---|---|---|---|---|
1. | 600 | 9 | 600 | 7.5 |
2. | 900 | 13.5 | 900 | 8 |
3. | 1200 | 15 | 1200 | 6.4 |
S. No. | Technique | Ni% | C% | O% | Cl% | S% |
---|---|---|---|---|---|---|
1. | Ni potentiostatic | 75 | 10.35 | 13.78 | 0.62 | 0.26 |
2. | Ni low current galvanostatic | 80.08 | 17.26 | 2.65 | - | - |
3. | Ni galvanostatic | 83.28 | 16.72 | - | - | - |
S. No. | Technique | Ni% | C% | O% | Au% | S | Cl |
---|---|---|---|---|---|---|---|
1. | Ni-LTA potentiostatic | 74.54 | 20.22 | 5.24 | - | - | - |
2. | Ni-LTA low current galvanostatic | 82.90 | 16.87 | - | 0.23 | - | - |
3. | Ni-LTA galvanostatic | 65.42 | 15.45 | 17.74 | - | 0.61 | 0.78 |
S. No. | Technique | Ni% | C% | O% |
---|---|---|---|---|
1. | Ni-LTA mag UP | 69.85 | 26.29 | 3.86 |
2. | Ni-LTA mag DOWN | 71.05 | 21.05 | 7.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, S.; Marzio, M.d.; Giovanardi, R.; Tassinari, F. Magnetoelectrochemistry and Asymmetric Electrochemical Reactions. Magnetochemistry 2020, 6, 1. https://doi.org/10.3390/magnetochemistry6010001
Mishra S, Marzio Md, Giovanardi R, Tassinari F. Magnetoelectrochemistry and Asymmetric Electrochemical Reactions. Magnetochemistry. 2020; 6(1):1. https://doi.org/10.3390/magnetochemistry6010001
Chicago/Turabian StyleMishra, Suryakant, Marzia di Marzio, Roberto Giovanardi, and Francesco Tassinari. 2020. "Magnetoelectrochemistry and Asymmetric Electrochemical Reactions" Magnetochemistry 6, no. 1: 1. https://doi.org/10.3390/magnetochemistry6010001
APA StyleMishra, S., Marzio, M. d., Giovanardi, R., & Tassinari, F. (2020). Magnetoelectrochemistry and Asymmetric Electrochemical Reactions. Magnetochemistry, 6(1), 1. https://doi.org/10.3390/magnetochemistry6010001