Next Article in Journal
Stepwise Synthesis, Hydrogen-Bonded Supramolecular Structure, and Magnetic Property of a Co–Mn Heterodinuclear Complex
Previous Article in Journal
Modelling the Effect of Zero-Field Splitting on the 1H, 13C and 29Si Chemical Shifts of Lanthanide and Actinide Compounds
Previous Article in Special Issue
Self-Assembly Properties of Amphiphilic Iron(III) Spin Crossover Complexes in Water and at the Air–Water Interface
Article Menu

Export Article

Open AccessArticle
Magnetochemistry 2019, 5(1), 4; https://doi.org/10.3390/magnetochemistry5010004

A Clock Transition in the Cr7Mn Molecular Nanomagnet

1
Department of Physics and Astronomy, Amherst College, Amherst, MA 01002, USA
2
Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
3
School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
Current address: Department of Physics, Boston University, Boston, MA 02215, USA.
*
Author to whom correspondence should be addressed.
Received: 21 November 2018 / Revised: 4 January 2019 / Accepted: 10 January 2019 / Published: 14 January 2019
(This article belongs to the Special Issue Controlling Molecular Nanomagnets)
Full-Text   |   PDF [602 KB, uploaded 14 January 2019]   |  

Abstract

A viable qubit must have a long coherence time T 2 . In molecular nanomagnets, T 2 is often limited at low temperatures by the presence of dipole and hyperfine interactions, which are often mitigated through sample dilution, chemical engineering and isotope substitution in synthesis. Atomic-clock transitions offer another route to reducing decoherence from environmental fields by reducing the effective susceptibility of the working transition to field fluctuations. The Cr7Mn molecular nanomagnet, a heterometallic ring, features a clock transition at zero field. Both continuous-wave and spin-echo electron-spin resonance experiments on Cr7Mn samples, diluted via co-crystallization, show evidence of the effects of the clock transition with a maximum T 2 390 ns at 1.8 K. We discuss improvements to the experiment that may increase T 2 further. View Full-Text
Keywords: electron spin resonance; clock transition; molecular nanomagnet electron spin resonance; clock transition; molecular nanomagnet
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Collett, C.A.; Ellers, K.-I.; Russo, N.; Kittilstved, K.R.; Timco, G.A.; Winpenny, R.E.P.; Friedman, J.R. A Clock Transition in the Cr7Mn Molecular Nanomagnet. Magnetochemistry 2019, 5, 4.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Magnetochemistry EISSN 2312-7481 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top