Stepwise Synthesis, Hydrogen-Bonded Supramolecular Structure, and Magnetic Property of a Co–Mn Heterodinuclear Complex
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Supramolecular Structure
2.3. Magnetic Properties
3. Materials and Methods
3.1. General Consideration
3.2. Synthetic Method
3.3. Single-Crystal X-ray Crystallography
3.4. Magnetic Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Zadrozny, J.M.; Long, J.R. Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2−. J. Am. Chem. Soc. 2011, 133, 20732–20734. [Google Scholar] [CrossRef] [PubMed]
- Novikov, V.V.; Pavlov, A.A.; Nelyubina, Y.V.; Boulon, M.-E.; Varzatskii, O.A.; Voloshin, Y.Z.; Winpenny, R.E.P. A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule Magnet Behavior. J. Am. Chem. Soc. 2015, 137, 9792–9795. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, R.; Pedersen, K.S.; Ueda, T.; Suzuki, T.; Bendix, J.; Mikuriya, M. Field-induced single-molecule magnet behavior in ideal trigonal antiprismatic cobalt(II) complexes: precise geometrical control by a hydrogen-bonded rigid metalloligand. Chem. Commun. 2018, 54, 8869–8872. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, R.; Hosoya, S.; Suzuki, T.; Sunatsuki, Y.; Sakiyama, H.; Mikuriya, M. Hydrogen-bonding interactions and magnetic relaxation dynamics in tetracoordinated cobalt(II) single-ion magnets. Dalton Trans. 2019, 48, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Rosado Piquer, L.; Sañudo, E.C. Heterometallic 3d–4f single-molecule magnets. Dalton Trans. 2015, 44, 8771–8780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colacio, E.; Ruiz, J.; Ruiz, E.; Cremades, E.; Krzystek, J.; Carretta, S.; Cano, J.; Guidi, T.; Wernsdorfer, W.; Brechin, E.K. Slow Magnetic Relaxation in a CoII-YIII Single-Ion Magnet with Positive Axial Zero-Field Splitting. Angew. Chemie Int. Ed. 2013, 52, 9130–9134. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.A.; Weihe, H.; Vinum, M.G.; Mortensen, J.S.; Doerrer, L.H.; Bendix, J. Imposing high-symmetry and tuneable geometry on lanthanide centres with chelating Pt and Pd metalloligands. Chem. Sci. 2017, 8, 3566–3575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, M.A.; Hansen, U.B.; Perfetti, M.; Pedersen, K.S.; Bartolomé, E.; Simeoni, G.G.; Mutka, H.; Rols, S.; Jeong, M.; Zivkovic, I.; et al. Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet. Nat. Commun. 2018, 9, 1292. [Google Scholar] [CrossRef]
- Mitsuhashi, R.; Suzuki, T.; Hosoya, S.; Mikuriya, M. Hydrogen-Bonded Supramolecular Structures of Cobalt(III) Complexes with Unsymmetrical Bidentate Ligands: mer/fac Interconversion Induced by Hydrogen-Bonding Interactions. Cryst. Growth Des. 2017, 17, 207–213. [Google Scholar] [CrossRef]
- Liu, W.; Thorp, H.H. Bond Valence Sum Analysis of Metal-Ligand Bond Lengths in Metalloenzymes and Model Complexes. 2. Refined Distances and Other Enzymes. Inorg. Chem. 1993, 32, 4102–4105. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, R.; Suzuki, T.; Sunatsuki, Y. Four-Electron Oxidative Dehydrogenation Induced by Proton-Coupled Electron Transfer in Ruthenium(III) Complex with 2-(1,4,5,6-Tetrahydropyrimidin-2-yl)phenolate. Inorg. Chem. 2013, 52, 10183–10190. [Google Scholar] [CrossRef] [PubMed]
- Bruker. SADABS, Program for Absorption Correction; Bruker AXS Inc.: Madison, WI, USA, 2001. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
[Co(Himn)3MnCl2(CH3OH)]·0.78CH3OH·1.26H2O | |
---|---|
Chemical formula | C28.78H36.64Cl2CoMnN6O6.04 |
Formula weight | 748.05 |
Color and shape | brown, prism |
Size of specimen/mm3 | 0.18 × 0.12 × 0.08 |
Crystal system | monoclinic |
Space group | P21/n |
a/Å | 10.4888(13) |
b/Å | 14.4208(18) |
c/Å | 22.026(3) |
β/° | 102.460(2) |
V/Å3 | 3253.1(7) |
Z | 4 |
T/K | 90(2) |
Dcalc/g cm−3 | 1.527 |
F (000) | 1543 |
µ(Mo − Kα)/mm−1 | 1.113 |
Rint | 0.0361 |
2θmax/° | 55 |
No. of independent reflection | 7454 |
R1 (F2:Fo2 > 2s(Fo2)) | 0.0533 |
wR2 (F2: all data) | 0.1282 |
Bond | Distance | Bond | Distance |
---|---|---|---|
Co1–O1 | 1.909(3) | Mn1–O1 | 3.229(3) |
Co1–O2 | 1.898(2) | Mn1–O2 | 3.317(3) |
Co1–O3 | 1.902(3) | Mn1–O3 | 2.263(2) |
Co1–N2 | 1.906(3) | Mn1–O4 | 2.160(2) |
Co1–N4 | 1.899(3) | Mn1–Cl1 | 2.464(1) |
Co1–N6 | 1.903(3) | Mn1–Cl2 | 2.459(1) |
D–H···A | D–H | H···A | D···A | D–A···A |
---|---|---|---|---|
N1–H1···Cl1 i | 0.75(4) | 2.59(5) | 3.229(3) | 145(5) |
N3–H3A···Cl2 ii | 0.75(4) | 2.63(4) | 3.317(3) | 153(4) |
N5–H5A···Cl1 (iii) | 0.88 | 2.50 | 3.268(3) | 146 |
O5–H5M···Cl2 (iv) | 0.84 | 2.44 | 3.272(7) | 169 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsuhashi, R.; Ueda, T.; Mikuriya, M. Stepwise Synthesis, Hydrogen-Bonded Supramolecular Structure, and Magnetic Property of a Co–Mn Heterodinuclear Complex. Magnetochemistry 2019, 5, 5. https://doi.org/10.3390/magnetochemistry5010005
Mitsuhashi R, Ueda T, Mikuriya M. Stepwise Synthesis, Hydrogen-Bonded Supramolecular Structure, and Magnetic Property of a Co–Mn Heterodinuclear Complex. Magnetochemistry. 2019; 5(1):5. https://doi.org/10.3390/magnetochemistry5010005
Chicago/Turabian StyleMitsuhashi, Ryoji, Takaaki Ueda, and Masahiro Mikuriya. 2019. "Stepwise Synthesis, Hydrogen-Bonded Supramolecular Structure, and Magnetic Property of a Co–Mn Heterodinuclear Complex" Magnetochemistry 5, no. 1: 5. https://doi.org/10.3390/magnetochemistry5010005
APA StyleMitsuhashi, R., Ueda, T., & Mikuriya, M. (2019). Stepwise Synthesis, Hydrogen-Bonded Supramolecular Structure, and Magnetic Property of a Co–Mn Heterodinuclear Complex. Magnetochemistry, 5(1), 5. https://doi.org/10.3390/magnetochemistry5010005