Structural, Magnetic, and Mössbauer Studies of Transition Metal-Doped Gd2Fe16Ga0.5TM0.5 Intermetallic Compounds (TM = Cr, Mn, Co, Ni, Cu, and Zn)
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Imports LLC. Permanent Magnet Selection and Design Handbook; Magcraft, Advance Magnetic Materials: Vienna, VA, USA, 2007. [Google Scholar]
- Strnat, K.J. Chapter 2—Rare earth-cobalt permanent magnets. Handb. Ferromagn. Mater. 1988, 4, 131–209. [Google Scholar]
- Coey, J.M.D.; Sun, H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in ammonia. J. Magn. Magn. Mater. 1990, 87, L251. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Sun, H.; Otani, Y.; Hurley, D.P.F. Gas-phase carbonation of R2Fe17; R = Y, Sm. J. Magn. Magn. Mater. 1991, 98, 76–78. [Google Scholar] [CrossRef]
- Zhong, X.P.; Radwanski, R.J.; de Boer, F.R.; Jacobs, T.H.; Buschow, K.H.J. Magnetic and crystallographic characteristics of rare-earth ternary carbides derived from R2Fe17 compounds. J. Magn. Magn. Mater. 1990, 86, 333–340. [Google Scholar] [CrossRef]
- Buschow, K.H.J.; Coehoorn, R.; de Mooij, D.B.; de Waard, K.; Jacobs, T.H. Structure and magnetic properties of R2Fe17Nx compounds. J. Magn. Magn. Mater. 1990, 92, L35. [Google Scholar] [CrossRef]
- Xu, R.; Zhen, L.; Yang, D.; Wu, J.; Wang, X.; Wang, Q.; Chen, C.; Dai, L. Effect of Ga on the structural stablity of Sm2(FeGa)17 compounds. Mater. Lett. 2002, 57, 146. [Google Scholar] [CrossRef]
- Shen, B.G.; Cheng, Z.H.; Gong, H.Y.; Liang, B.; Yan, Q.W.; Zhan, W.S. Magnetic anisotropy of Dy2Fe17−xGax compounds. Solid State Commun. 1995, 95, 813–816. [Google Scholar] [CrossRef]
- Givord, D.; Lemaire, R. Magnetic transition and anomalous thermal expansion in R2Fe17 compounds. IEEE Trans. Magn. 1974, 10, 109–113. [Google Scholar] [CrossRef]
- Jacobs, T.H.; Buschow, K.H.J.; Zhou, G.F.; Li, X.; de Boer, F.R. Magnetic interactions in R2Fe17−xAlx compounds (R = Ho, Y). J. Magn. Magn. Mater. 1992, 116, 220–230. [Google Scholar] [CrossRef]
- Shen, B.G.; Wang, F.W.; Kong, L.S.; Cao, L. Magnetic anisotropy of Sm2Fe17−xGax compounds with 0 ⩽x ⩽6. J. Phys. Condens. Matter 1993, 5, L685. [Google Scholar] [CrossRef]
- Sun, H.; Coey, J.M.D.; Otani, Y.; Hurley, D.P.F. Magnetic properties of a new series of rare-earth iron nitrides: R2Fe17Ny(y approximately 2.6). J. Phys. Condens. Matter 1990, 2, 6465. [Google Scholar] [CrossRef]
- De Mooij, D.B.; Buschow, K.H.J. Formation and magnetic properties of the compounds R2Fe14C. J. Less-Common Met. 1988, 142, 349–357. [Google Scholar] [CrossRef]
- Lukoyanov, A.V.; Kokorina, E.E.; Medvedev, M.V.; Nekrasov, I.A. Ab initio exchange interactions and magnetic properties of Gd2Fe17 iron sublattice: Rhombohedral vs. hexagonal phases. Phys. Rev. B 2009, 80, 104409. [Google Scholar] [CrossRef]
- Rao, K.V.S.R.; Ehrenberg, H.; Markandeyulu, G.; Varadaraju, U.V.; Venkatesan, M.; Suresh, K.G.; Murthy, V.S.; Schmidt, P.C.; Fuess, H. On the Structural and Magnetic Properties of R2Fe17–x(A,T)x (R =Rare Earth; A Al, Si, Ga; T= Transition Metal)Compounds. Phys. Status Solid (a) 2002, 189, 373–388. [Google Scholar] [CrossRef]
- Coey, J.M.D. New permanent magnets; manganese compounds. J. Phys. Condens. Matter 2014, 26, 064211. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr. 2014, 229, 345. [Google Scholar] [CrossRef]
- Liao, L.X.; Altounican, Z.; Ryan, D.H. Cobalt site preferences in iron rare-earth-based compounds. Phy. Rev. B 1993, 47, 11230–11241. [Google Scholar] [CrossRef] [Green Version]
- Howard, C.J. The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians. J. Appl. Crystallogr. 1982, 15, 615–620. [Google Scholar] [CrossRef]
- Pitschke, W.; Hermann, H.; Mattern, N. The influence of surface roughness on diffracted X-ray intensities in Bragg–Brentano geometry and its effect on the structure determination by means of Rietveld analysis. Powder Diffr. 1993, 8, 74–83. [Google Scholar] [CrossRef]
- Yang, Q.W.; Yan, Q.W.; Zhang, P.L.; Shen, B.G.; Lang, F.W.; Kong, L.S.; Gou, C.; Chen, D.F.; Cheng, Y.F. A neutron powder diffraction study of the structure of Ho2Fe17−xGaxC2 (x = 4.0 and 5.5). J. Phys. Condens. Mater. 1994, 6, 3567–3572. [Google Scholar]
- Hu, Z.; Yelon, W.B.; Mishra, S.; Long, G.J.; Pringle, O.A.; Middleton, D.P.; Buschow, K.H.J.; Grandjean, F. A magnetic, neutron diffraction, and Mössbauer spectral study of Nd2Fe15Ga2 and the Tb2Fe17−xGax solid solutions. J. Appl. Phys. 1994, 76, 443. [Google Scholar] [CrossRef]
- Morariu, M.; Rogalski, M.S. 57Fe Mössbauer study of Y2Fe16M compounds and their nitrides with M = Ga, V. Phys. Status Solidi A 1994, 141, 223–230. [Google Scholar] [CrossRef]
- Cadogan, J.M.; Li, H.S.; Margarian, A.; Dunlop, J.B. On the ternary intermetallic phases formed by YFe12−xGax (1⩽x⩽ 2). Mater. Lett. 1993, 18, 39–43. [Google Scholar] [CrossRef]
- Li, H.-S.; Suharyana; Cadogan, J.M.; Ju, B.-P.; Shen, B.-G.; Wang, F.-W.; Zhan, W.-S. A Mossbauer study of Sm2Fe14Ga3Cx (x=0–2.5). IEEE Trans. Mag. 1995, 31, 3716–3718. [Google Scholar]
- Chikazumi, S.; Graham, C.D. Physics of Ferromagnetism, 2nd ed.; Oxford University Press: New York, NY, USA, 2009; Volume 94. [Google Scholar]
- Huang, M.Z.; Ching, W.Y. Effects of Al substitution in Nd2Fe17 studied by first principles calculations. J. Appl. Phys. 1994, 76, 7046. [Google Scholar] [CrossRef]
- Huang, M.Z.; Ching, W.Y. First principles calculation of the electronic and magnetic properties of Nd2Fe17−xMx (M = Si, Ga) solid solutions. J. Appl. Phys. 1996, 79, 5545. [Google Scholar] [CrossRef]
- Akai, M.; Akai, H.; Kanamori, J. Electronic Structure of Impurities in Ferromagnetic Iron. II. 3d and 4d Impurities. J. Phys. Soc. Jpn. 1985, 54, 4257–4264. [Google Scholar] [CrossRef]
- Drittler, B.; Stefanou, N.; Blugel, S.; Zeller, R.; Dederichs, P.H. Electronic structure and magnetic properties of dilute Fe alloys with transition-metal impurities. Phys. Rev. B 1989, 40, 8203. [Google Scholar] [CrossRef]
- Mirbt, S.; Eriksson, O.; Johansson, B.; Skriver, H.L. Magnetic coupling in 3d transition-metal monolayers and bilayers on bcc (100) iron. Phys. Rev. B 1995, 52, 15070. [Google Scholar] [CrossRef]
- Wang, J.L.; Ibarra, M.R.; Marquina, C.; García-Landa, B.; Li, W.X.; Tang, N.; Wang, W.Q.; Yang, F.M.; Wu, G.H. Effect of Mn substitution on the volume and magnetic properties of Er2Fe17. J. Appl. Phys. 2002, 92, 1453. [Google Scholar] [CrossRef]
- Neél, L. Propriétés magnétiques de l’état métallique et énergie d’interaction entre atomes magnétiques. Ann. Phys. 1936, 5, 232–279. [Google Scholar] [CrossRef]
- Li, Z.W.; Morrish, A.H. Negative exchange interactions and Curie temperatures for Sm2Fe17 and Sm2Fe17Ny. Phys. Rev. B 1997, 55, 3670. [Google Scholar] [CrossRef]
- Dahal, J.N.; Wang, L.; Mishra, S.R.; Nguyen, V.V.; Liu, J.P. Synthesis and magnetic properties of SrFe12−x−yAlxCoyO19 nanocomposites prepared via autocombustion technique. J. Alloy. Comp. 2014, 595, 213–220. [Google Scholar] [CrossRef]
- Shen, B.G.; Cheng, Z.H.; Liang, B.; Guo, H.Q.; Zhang, J.X.; Gong, H.Y.; Wang, F.W.; Yan, Q.W.; Zhan, W.S. Structure and magnetocrystalline anisotropy of R2Fe17−xGax compounds with higher Ga concentration. Appl. Phys. Lett. 1995, 67, 1621. [Google Scholar] [CrossRef]
- Valeanu, M.; Plugaru, N.; Burzo, E. Effect of nitrogenation on the magnetic properties of Y2Fe17−xMx compounds, with M = Al, Ga or Si. Solid State Commun. 1994, 89, 519–522. [Google Scholar] [CrossRef]
- Srilatha, R.; Markandeyulu, G.; Murty, V. Effect of Co on the Magnetic Properties of YGdFe17−xCoxGa. IEEE Trans. Magn. 2006, 42, 917. [Google Scholar] [CrossRef]
- Friedel, J.; Leman, G.; Olszewski, S. On the Nature of the Magnetic Couplings in Transitional Metals. J. Appl. Phys. Suppl. 1961, 32, 325S. [Google Scholar] [CrossRef]
- Sabirianov, R.F.; Jaswal, S.S. Electronic structure and magnetism in Sm2Fe17−xAx (A = Al, Ga, Si). J. Appl. Phys. 1996, 79, 5942. [Google Scholar] [CrossRef]
- Li, H.-S.; Coey, J.M.D. Handbook of Magnetic Materials; Buschow, K.H.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 6, Chapter I; p. 1. [Google Scholar]
- Ching, W.Y.; Huang, M.Z. Band Theoretical Investigation of Curie Temperatures of Modified R2Fe17-Based Intermetallic Compounds. J. Appl. Phys. 1996, 79, 4602. [Google Scholar] [CrossRef]
- Hu, B.-P.; Li, H.-S.; Shen, B.-G.; Wang, F.-W.; Cadogan, J.M.; Zhan, W.-S. A 57Fe Mossbauer study of Gd2Fe17−xGaxC2 (x = 0–6). J. Appl. Phys. 1996, 79, 5713. [Google Scholar] [CrossRef]
- Kokorina, E.E.; Medvedev, M.V.; Nekrasov, I.A. Ab Initio Exchange Interactions and Magnetic Properties of Intermetallic Compound Gd2Fe17−xGax. Solid State Phenom. 2010, 168–169, 196–199. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Shen, B.G.; Liang, B.; Zhang, J.X.; Wang, F.W.; Zhang, S.Y.; Zhao, J.G.; Zhan, W.S. Ga-concentration dependence of magnetocrystalline anisotropy in Gd2Fe17−xGax Compounds. J. Appl. Phys. 1995, 78, 1385. [Google Scholar] [CrossRef]
- Pokharel, G.; Ali, K.S.S.; Mishra, S.R. Structural, magnetic and Mossbauer studies of Ti doped Gd2Fe17−xTix and Gd2Fe16Ga1−xTix (0 ≤ x ≤1). J. Magn. Magn. Mater. 2015, 382, 31–42. [Google Scholar] [CrossRef]
- Long, G.J.; Mishra, S.R.; Pringle, O.A.; Hu, Z.; Yelon, W.B.; Grandjean, F.; Middleton, D.P.; Buschow, K.H.J. A magnetic, neutron diffraction, and Mossbauer spectral study of the Ce2Fe17-xGax solid solutions. J. Magn. Magn. Mater. 1997, 176, 217–232. [Google Scholar] [CrossRef]
- Maruyama, F. Exchange interactions in R2Fe17−xGax (R =Y, Sm, Gd, Tb, Ho and Tm) compounds. J. Solid State Chem. 2005, 178, 3020–3026. [Google Scholar] [CrossRef]
- Paoluzi, A.; Pareti, L. Magnetocrystalline anisotropy of Fe and Sm sublattices in Sm2Fe17: Effects of Ti substitution for Fe. J. Mang. Magn. Mater. 1998, 189, 89–95. [Google Scholar] [CrossRef]
- Liao, L. Cobalt Site in Iron Rare-Earth Based Compounds. Ph.D. Thesis, McGill University, Montréal, QC, Canada, 1992. [Google Scholar]
- Gubbens, P.C.M.; Buschow, K.H.J. Magnetic phase transition in Tm2Fe17. J. Appl. Phys. 1973, 44, 3739. [Google Scholar] [CrossRef]
- Isnard, O.; Hautot, D.; Long, G.J.; Grandjean, F. A structural, magnetic, and Mössbauer spectral study of Dy2Fe17 and its hydrides. J. Appl. Phys. 2000, 88, 2750. [Google Scholar] [CrossRef]
- Buschow, K.H.J.; Wieringen, J.S.V. Crystal structure and magnetic properties of cerium-iron compounds. Phys. Status Solidi 1970, 42, 231–239. [Google Scholar] [CrossRef]
- Levinson, L.M.; Rosenberg, E.; Shaulov, A.; Strnat, K. Mössbauer Study of Some 2–17 Lanthanide-Iron Compounds. J. Appl. Phys. 1970, 41, 910. [Google Scholar] [CrossRef]
- Alp, E.E.; Umarji, A.M.; Malik, S.K.; Shenoy, G.K.; Huang, M.Q.; Boltich, E.B.; Wallace, W.E. 57Fe Mössbauer studies on Si-substituted Er2Fe17. J. Magn. Magn. Mater. 1987, 68, 305–308. [Google Scholar] [CrossRef]
- Wang, J.L.; Campbell, S.J.; Tegus, O.; Marquina, C.; Ibarra, M.R. Magnetovolume effect and magnetic properties of Dy2Fe17−xMnx. Phys. Rev. B 2007, 75, 174423. [Google Scholar] [CrossRef]
- Grandjean, F.; Isnard, O.; Long, G.J. Magnetic and Mossbauer spectral evidence for the suppression of the magnetic spin reorientation in Tm2Fe17 by deuterium. Phys. Rev. B 2002, 65, 064429. [Google Scholar] [CrossRef]
- Long, G.J.; Isnard, O.; Grandjean, F. A Mossbauer spectral study of the magnetic properties of Ho2Fe17 and Ho2Fe17D3.8. J. Appl. Phys. 2002, 91, 1423. [Google Scholar] [CrossRef]
- Gubbens, P.C.M.; van Apeldoorn, J.H.F.; van der Kraan, A.M.; Buschow, K.H.J. Mossbauer effect investigation of Y-Fe compounds. J. Phys. F Met. Phys. 1974, 4, 921. [Google Scholar] [CrossRef]
- Dubiel, S.M. Relationship between the magnetic hyperfine field and the magnetic moment. J. Alloy. Comp. 2009, 488, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Long, G.J.; Pringle, O.A.; Grandjean, F.; Buschow, K.H.J. A Mössbauer effect study of the microscopic magnetic properties of Nd2Fe17 and Nd2Fe17N2.6. J. Appl. Phys. 1992, 72, 4845. [Google Scholar] [CrossRef]
- Halasa, N.A.; de Pasquali, G.; Drickamer, H.G. High-pressure studies on ferrites. Phys. Rev. B 1974, 10, 154. [Google Scholar] [CrossRef]
- Drickamer, H.G.; Frank, C.W. Electronic Transitions and the High-Pressure Chemistry and Physics of Solids; Chapman and Hall: London, UK, 1973. [Google Scholar]
Parameter | Cr | Mn | Gd2Fe17 Fe | Co | Ni | Cu | Zn | Gd2Fe16Ga Ga |
---|---|---|---|---|---|---|---|---|
Metallic radii (pm) | 127 | 126 | 129 | 125 | 125 | 128 | 136 | 140 |
a (Å) | 8.5149(43) | 8.5267(42) | 8.4791(21) | 8.4911(81) | 8.4812(24) | 8.4997(32) | 8.5435(52) | 8.5555(61) |
c (Å) | 8.3320(32) | 8.3521(22) | 8.3326(6) | 8.3421(8) | 8.3338(32) | 8.3451(16) | 8.3641(62) | 8.3682(33) |
c/a | 0.9785 | 0.9795 | 0.9827 | 0.9824 | 0.9826 | 0.9818 | 0.9790 | 0.9781 |
Cell Volume (Å3) | 526.97 | 527.32 | 522.2634 | 525.15 | 523.60 | 526.06 | 528.21 | 528.5749 |
Robs (%) | 5.67 | 4.44 | 2.48 | 4.53 | 3.21 | 3.99 | 2.31 | 6.43 |
wRobs (%) | 4.32 | 5.21 | 3.55 | 5.31 | 4.21 | 4.87 | 3.65 | 7.12 |
Rp (%) | 6.22 | 7.87 | 9.12 | 8.11 | 7.32 | 7.22 | 5.32 | 10.55 |
wRp (%) | 7.87 | 8.86 | 10.54 | 9.32 | 8.32 | 10.11 | 7.78 | 12.54 |
TM | Gd1(2b) | Gd2(2d) | Fe(4f) | Fe(6g) | Fe(12j) | Fe(12k) | Ga(4f) | Ga(6g) | Ga(12j) | Ga(12k) | TM(4f) | TM(6g) | TM(12j) | TM(12k) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 0.0861 | 0.0809 | 0.1581 | 0.2360 | 0.4580 | 0.4956 | 0.0047 | 0.0068 | 0.0148 | 0.0112 | 0.0072 | 0.0032 | 0.0159 | 0.0181 |
Mn | 0.0829 | 0.0846 | 0.1510 | 0.2327 | 0.4379 | 0.5017 | 0.0042 | 0.0061 | 0.0128 | 0.0108 | 0.0082 | 0.0041 | 0.0166 | 0.0188 |
Fe | 0.0854 | 0.0815 | 0.1706 | 0.2580 | 0.4973 | 0.5293 | ||||||||
Co | 0.0835 | 0.0827 | 0.1509 | 0.2410 | 0.4589 | 0.4891 | 0.0057 | 0.0118 | 0.0112 | 0.0115 | 0.0047 | 0.0093 | 0.0144 | 0.0157 |
Ni | 0.0861 | 0.0809 | 0.1518 | 0.2527 | 0.4323 | 0.4824 | 0.0081 | 0.0117 | 0.0062 | 0.0171 | 0.0069 | 0.0103 | 0.0147 | 0.0162 |
Cu | 0.0839 | 0.0821 | 0.1503 | 0.2435 | 0.4521 | 0.4803 | 0.0052 | 0.0121 | 0.0118 | 0.0109 | 0.0051 | 0.0083 | 0.0151 | 0.0169 |
Zn | 0.0816 | 0.0839 | 0.1511 | 0.2321 | 0.4310 | 0.4956 | 0.0045 | 0.0058 | 0.0124 | 0.0102 | 0.0075 | 0.0042 | 0.0179 | 0.0129 |
Ga | 0.0812 | 0.0836 | 0.1455 | 0.2314 | 0.4285 | 0.4863 | 0.0094 | 0.01938 | 0.0309 | 0.0341 |
Fe–Fe Sites | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga |
---|---|---|---|---|---|---|---|---|
4f-4f | 2.4050(4) | 2.4018(13) | 2.4061(3) | 2.4012(5) | 2.4010(11) | 2.4070(3) | 2.4032(2) | 2.4166(21) |
6g-12j | 2.4405(9) | 2.4479(9) | 2.4516(2) | 2.4406(16) | 2.4460(3) | 2.4414(7) | 2.4536(3) | 2.6801(3) |
6g-12k | 2.4552(13) | 2.4543(5) | 2.4560(2) | 2.4510(7) | 2.4513(3) | 2.4394(11) | 2.4707(2) | 2.4734(3) |
12j-12j | 2.5721(3) | 2.5715(2) | 2.5650(1) | 2.5600(7) | 2.5684(2) | 2.5561(2) | 2.587(21) | 2.5800(3) |
12k-2k | 2.4610(13) | 2.4600(13) | 2.4620(4) | 2.4570(2) | 2.4571(11) | 2.4453(11) | 2.4764(11) | 2.5800(12) |
Gd2Fe16Ga0.5TM0.5 | Ms (emu/g) | Tc (K) |
---|---|---|
Cr | 59.78 | 571 |
Mn | 56.75 | 526 |
Gd2Fe17 | 67.00 | 513 |
Co | 68.61 | 587 |
Ni | 72.61 | 557 |
Cu | 76.79 | 570 |
Zn | 59.04 | 537 |
Gd2Fe16Ga1 | 67.49 | 559 |
TM | 4f | 6g1 | 6g2 | 12j1 | 12j2 | 12j3 | 12k1 | 12k2 | Doublet | Wt.Avg. | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | B (kOe) | 303 | 231.6 | 244.1 | 212.5 | 271.2 | 278.5 | 198 | 255.3 | 245.424 | |
IS (mm/s) | 0.102 | −0.121 | −0.121 | −0.1 | −0.1 | −0.1 | 0.011 | 0.011 | −0.0576 | ||
QS (mm/s) | 0.351 | 0.116 | 0.162 | 0.073 | −0.157 | −0.009 | 0.35 | −0.0446 | |||
Area (%) | 10.0 | 15.2 | 17.8 | 12.5 | 4.3 | 18.5 | 9.9 | 11.7 | |||
Mn | B (kOe) | 302.3 | 230 | 254.3 | 210.1 | 265.2 | 275.1 | 202 | 255.6 | 244.882 | |
IS (mm/s) | 0.078 | −0.117 | −0.117 | −0.124 | −0.124 | −0.124 | 0.039 | 0.039 | −0.0608 | ||
QS (mm/s) | 0.28 | 0.093 | 0.093 | −0.157 | 0.149 | −0.079 | 0.434 | −0.17 | |||
Area (%) | 8.2 | 16.3 | 17.6 | 8.7 | 23.1 | 10.6 | 10.7 | 6.2 | |||
(Gd2Fe17) | B (kOe) | 304 | 246.2 | 254.6 | 220.5 | 272.3 | 286.3 | 205.6 | 260.2 | 252.1 | |
IS (mm/s) | 0.07 | −0.13 | −0.13 | −0.115 | −0.115 | −0.115 | 0.035 | 0.035 | −0.0603 | ||
QS (mm/s) | 0.067 | 0.296 | 0.21 | −0.019 | 0.009 | −0.116 | 0.358 | −0.487 | |||
Area (%) | 13.8 | 15.5 | 19.8 | 6.1 | 13.6 | 11.9 | 6.16 | 11.7 | |||
Co | B (kOe) | 315.2 | 242.7 | 262.9 | 215.6 | 271.3 | 283 | 203.2 | 264.6 | 251.932 | |
IS (mm/s) | 0.11 | −0.119 | −0.119 | −0.098 | −0.098 | −0.098 | 0.056 | 0.056 | −0.0417 | ||
QS (mm/s) | 0.139 | 0.272 | 0.238 | −0.399 | 0.015 | −0.039 | 0.263 | −0.245 | |||
Area (%) | 11.5 | 16 | 18.1 | 7.1 | 18.4 | 5.9 | 10.1 | 10.8 | |||
Ni | B (kOe) | 310.1 | 239.1 | 257.4 | 220.6 | 276.7 | 285.2 | 201.9 | 263.3 | 44.4 | 252.524 |
IS (mm/s) | 0.113 | −0.129 | −0.129 | −0.09 | −0.09 | −0.09 | 0.044 | 0.044 | 0.5 | −0.0432 | |
QS (mm/s) | 0.265 | 0.458 | 0.055 | −0.036 | 0.042 | −0.079 | 0.138 | 0.151 | −0.5 | ||
Area (%) | 11.0 | 3.5 | 9.3 | 8.0 | 18.6 | 8.3 | 14.3 | 16.6 | 8.4 | ||
Cu | B (kOe) | 312.2 | 234.5 | 252.1 | 214.8 | 269.2 | 290.3 | 200.2 | 268.0 | 45.9 | 251.032 |
IS (mm/s) | 0.113 | −0.137 | −0.137 | −0.128 | −0.128 | −0.128 | 0.062 | 0.062 | 0.387 | −0.0567 | |
QS (mm/s) | 0.021 | 0.172 | 0.102 | −0.005 | −0.083 | −0.103 | −0.358 | −0.17 | −0.39 | ||
Area (%) | 22.0 | 20.8 | 20.4 | 10.3 | 18.7 | 6.5 | 1.9 | 2.6 | 2.8 | ||
Zn | B (kOe) | 303.4 | 234.5 | 252.3 | 217.1 | 265.0 | 280.7 | 211.3 | 256.4 | 248.689 | |
IS (mm/s) | 0.088 | −0.141 | −0.141 | −0.101 | −0.101 | −0.101 | 0.062 | 0.062 | −0.0459 | ||
QS (mm/s) | 0.041 | 0.252 | 0.125 | 0.098 | −0.0001 | −0.033 | 0.178 | −0.145 | |||
Area (%) | 11.3 | 19.4 | 18.8 | 13.2 | 19.5 | 4.3 | 3.4 | 9.1 | |||
Ga | B (kOe) | 304.8 | 235.6 | 238.3 | 222.8 | 255.1 | 283.8 | 208.2 | 252.9 | 246.529 | |
IS (mm/s) | 0.059 | −0.109 | −0.109 | −0.113 | −0.113 | −0.113 | 0.05 | 0.05 | −0.0518 | ||
QS (mm/s) | 0.025 | −0.086 | 0.211 | 0.216 | 0.275 | −0.023 | 0.093 | −0.147 | |||
Area (%) | 12.3 | 14.0 | 15.3 | 13.5 | 11.7 | 17.3 | 6.8 | 9.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahal, J.N.; Ali, K.S.S.; Mishra, S.R.; Alam, J. Structural, Magnetic, and Mössbauer Studies of Transition Metal-Doped Gd2Fe16Ga0.5TM0.5 Intermetallic Compounds (TM = Cr, Mn, Co, Ni, Cu, and Zn). Magnetochemistry 2018, 4, 54. https://doi.org/10.3390/magnetochemistry4040054
Dahal JN, Ali KSS, Mishra SR, Alam J. Structural, Magnetic, and Mössbauer Studies of Transition Metal-Doped Gd2Fe16Ga0.5TM0.5 Intermetallic Compounds (TM = Cr, Mn, Co, Ni, Cu, and Zn). Magnetochemistry. 2018; 4(4):54. https://doi.org/10.3390/magnetochemistry4040054
Chicago/Turabian StyleDahal, J. N., K. S. Syed Ali, S. R. Mishra, and J. Alam. 2018. "Structural, Magnetic, and Mössbauer Studies of Transition Metal-Doped Gd2Fe16Ga0.5TM0.5 Intermetallic Compounds (TM = Cr, Mn, Co, Ni, Cu, and Zn)" Magnetochemistry 4, no. 4: 54. https://doi.org/10.3390/magnetochemistry4040054