Adjusting the Magnetic Properties of ZrO2:Mn Nanocrystals by Changing Hydrothermal Synthesis Conditions
Abstract
:1. Introduction
2. Sample Preparation and Experimental Methods
3. Results and Discussion
3.1. XRD and STEM Characterization
3.2. Magnetic Studies
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Yadav, G.D.; Nair, J.J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous Mesoporous Mater. 1999, 33, 1–48. [Google Scholar] [CrossRef]
- Lee, D.S.; Kim, W.S.; Choi, S.H.; Kim, J.; Lee, H.W.; Lee, J.H. Characterization of ZrO2 codoped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ion. 2005, 176, 33–39. [Google Scholar] [CrossRef]
- Badwal, S.P.S. Stability of Solid Oxide Fuel Cell Components. Solid State Ion. 2001, 143, 39–46. [Google Scholar] [CrossRef]
- Minh, N.Q. Ceramic Fuel Cells. J. Am. Ceram. Soc. 1993, 76, 563–588. [Google Scholar] [CrossRef]
- French, R.H.; Glass, S.J.; Ohuchi, F.S.; Xu, Y.N.; Ching, W.Y. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys. Rev. B 1994, 49, 5133–5142. [Google Scholar] [CrossRef]
- Yashima, M.; Hirose, T.; Katano, S.; Suzuki, Y.; Kakihana, M.; Yoshimura, M. Structural changes of ZrO2-CeO2 solid solutions around the monoclinic-tetragonal phase boundary. Phys. Rev. B 1995, 51, 8018–8025. [Google Scholar] [CrossRef]
- Albanese, E.; Leccese, M.; Di Valentin, C.; Pacchioni, G. Magnetic properties of nitrogen doped ZrO2: Theoretical evidence of absence of room temperature ferromagnetism. Sci. Rep. 2016, 6, 31435–31445. [Google Scholar] [CrossRef] [PubMed]
- Bacquet, G.; Dugas, J.; Escribe, C.; Rouanet, A. The system ZrO2 CaO studied by the electron spin resonance of Mn2+ ions. J. Solid State Chem. 1976, 19, 251–261. [Google Scholar] [CrossRef]
- Appel, C.C.; Bonanos, N.; Horsewell, A.; Linderoth, S. Ageing behaviour of zirconia stabilised by yttria and manganese oxide. J. Mater. Sci. 2001, 36, 4493–4501. [Google Scholar] [CrossRef]
- Hannink, R.H.J. Microstructural development of sub-eutectoid aged MgO-ZrO2 alloys. J. Mater. Sci. 1983, 18, 457–470. [Google Scholar] [CrossRef]
- Zippel, J.; Lorenz, M.; Lenzner, J.; Grundmann, M.; Hammer, T.; Jacquot, A.; Böttner, H. Electrical transport and optical emission of MnxZr1−xO2 (0 ≤ x ≤ 0.5) MnxZr1−xO2 (0 ≤ x ≤ 0.5) thin films. J. Appl. Phys. 2001, 110, 043706. [Google Scholar] [CrossRef]
- Dimri, M.C.; Kooskora, H.; Pahapill, J.; Joon, E.; Heinmaa, I.; Subbi, J.; Stern, R. Search for ferromagnetism in manganese-stabilized zirconia. Phys. Status Solidi A 2011, 208, 172–179. [Google Scholar] [CrossRef]
- Saravanakumra, S.; Kamalaveni, J.; Rani, M.P.; Saravanan, R. Solubility of Mn stabilized cubic zirconia nanostructures. J. Mater. Sci. Mater. Electron. 2014, 25, 837–843. [Google Scholar] [CrossRef]
- Pucci, A.; Clavel, G.; Willinger, M.-G.; Zitoun, D.; Pinna, N. Transition metal-doped ZrO2 and HfO2 nanocrystals. J. Phys. Chem. C 2009, 113, 12048–12052. [Google Scholar] [CrossRef]
- Pearton, S.J.; Heo, W.H.; Ivill, M.; Norton, D.P.; Steiner, T. Dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 2004, 19, R59–R74. [Google Scholar] [CrossRef]
- Kuryliszyn-Kudelska, I.; Hadžić, B.; Sibera, D.; Romčević, M.; Romčević, N.; Narkiewicz, U.; Dobrowolski, W. Dynamic magnetic properties of ZnO nanocrystals incorporating Fe. J. Alloys Compd. 2011, 509, 3756–3759. [Google Scholar] [CrossRef]
- Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Arciszewska, M.; Romčević, N.; Romčević, M.; Hadžić, B.; Sibera, D.; Narkiewicz, U.; Łojkowski, W. Transition metals in ZnO nanocrystals—Magnetic and structural properties. Sci. Sinter. 2013, 45, 31–48. [Google Scholar] [CrossRef]
- Hong, N.H.; Kanoun, M.B.; Goumri-Said, S.; Song, J.-H.; Chikoidze, E.; Dumont, Y.; Ruyter, A.; Kurisu, M. The origin of magnetism in transition metal-doped ZrO2 thin films: Experiment and theory. J. Phys. Condens. Matter 2013, 25, 436003–436010. [Google Scholar] [CrossRef] [PubMed]
- Sundaresan, A.; Bhagavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C.N.R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006, 74, 161306(R). [Google Scholar] [CrossRef]
- Venkatesan, M.; Fitzgerald, C.B.; Coey, J.M.D. Thin films: Unexpected magnetism in a dielectric oxide. Nature 2004, 430, 630. [Google Scholar] [CrossRef] [PubMed]
- Ostanin, S.; Ernst, A.; Sandratskii, L.M.; Bruno, P.; Dane, M.; Dughes, I.D.; Staunton, J.B.; Hergert, W.; Mertig, I.; Kudrnovsky, J. Mn-stabilized zirconia: From imitation diamonds to a new potential high-TC ferromagnetic spintronics material. Phys. Rev. Lett. 2007, 98, 016101. [Google Scholar] [CrossRef] [PubMed]
- Boujnah, M.; Zaari, H.; Benyoussef, A.; El Kenz, A.; Mounkachi, O. Understanding ferromagnetism and optical absorption in 3D transition metal-doped cubic ZrO2 with the modified Becke-Johnson exchange-correlation functional. J. Appl. Phys. 2014, 115, 123909–123916. [Google Scholar] [CrossRef]
- Yu, J.; Duan, L.B.; Yang, Y.C.; Rao, G.H. Absence of ferromagnetism in Mn- and Fe-stabilized zirconia nanoparticles. Physica B 2008, 403, 4264–4268. [Google Scholar] [CrossRef]
- Clavel, G.; Willinger, M.G.; Zioun, D.; Pinna, N. Manganese-doped zirconia nanocrystals. Eur. J. Inorg. Chem. 2008, 6, 863–868. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Lejay, P.; Barbara, B.; Boisron, O.; Pailhes, S.; Bouzerar, G. Absence of ferromagnetism in Mn-doped tetragonal zirconia. J. Appl. Phys. 2011, 110, 043929. [Google Scholar] [CrossRef] [Green Version]
- Zippel, J.; Lorenz, M.; Setzer, A.; Wagner, G.; Sobolev, N.; Esquinazi, P.; Grundmann, M. Defect-induced ferromagnetism in undoped and Mn-doped zirconia thin films. Phys. Rev. B 2010, 82, 125209–125214. [Google Scholar] [CrossRef]
- Hong, N.H.; Park, C.K.; Raghavender, A.T.; Ciftja, O.; Bingham, N.S.; Phan, M.H.; Srikanth, H. Room ferromagnetism in monoclinic Mn-doped ZrO2 thin films. J. Appl. Phys. 2012, 111, 07C302. [Google Scholar] [CrossRef]
- Kumar, S.; Ojha, A.K. Room temperature ferromagnetism in undoped and Mn doped t-ZrO2 nanostructures originated due to oxygen vacancy and effect of Mn doping on its optical properties. Mater. Chem. Phys. 2016, 169, 13–20. [Google Scholar] [CrossRef]
- Kuryliszyn-Kudelska, I.; Arciszewska, M.; Małolepszy, A.; Mazurkiewicz, M.; Stobiński, L.; Grabias, A.; Kopcewicz, M.; Paszkowicz, W.; Minikaev, R.; Domukhovski, V.; et al. Influence of Fe doping on magnetic properties of ZrO2 nanocrystals. J. Alloys Compd. 2015, 632, 609–615. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Buschow, K.H.J.; de Boer, F.R. Physics of Magnetism and Magnetic Materials; Plenum Publishers: New York, NY, USA, 2003; ISBN 978-0-306-48408-7. [Google Scholar]
- Spałek, J.; Lewicki, A.; Tarnawski, Z.; Furdyna, J.K.; Gałązka, R.R.; Obuszko, Z. Magnetic susceptibility of semiconductors: High-temperature regime and the role of superexchang. Phys. Rev. B 1986, 33, 3407–3418. [Google Scholar] [CrossRef]
- Gaj, J.A.; Planel, R.; Fishman, G. Relation of magneto-optical properties of free excitonic to spin alignment of Mn2+ ions in Cd1−xMnxTe. Solid State Commun. 1979, 29, 435–438. [Google Scholar] [CrossRef]
Sample Name and Precursor | Nominal Content of Mn pH | ZrO2 (Cubic) | ZrO2 (Tetragonal) | ZrO2 (Monoclinic) | NaCl | Additional Phase | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
% | D (nm) | % | D (nm) | % | D (nm) | % | D (nm) | % | D (nm) | ||
P7 KMnO4 | 4.9 wt % pH 3 | - | - | 77.2 | 7 | 22.8 | 10.8 | - | - | - | - |
P3 KMnO4 | 4.9 wt % pH 7 | - | - | 88.9 | 7.1 | 11.1 | 10.1 | - | - | - | - |
P5 KMnO4 | 4.9 wt % pH 9 | - | - | 87.4 | 7.5 | 12.6 | 17 | - | - | - | - |
P8 KMnO4 | 19.5 wt % pH 3 | - | - | + | + | + | + | - | - | + | + |
P4 KMnO4 | 19.5 wt % pH 7 | - | - | 73.5 | 7.3 | 15.1 | 10.8 | 11.4 | + | - | - |
P6 KMnO4 | 19.5 wt % pH 9 | - | - | 84.8 | 8.1 | 15.2 | 17 | - | - | - | - |
P9 MnCl2 | 4.9 wt % pH 9 | 95.4 | 7.1 | - | - | 4.6 | + | - | - | - | - |
P12 Mn(NO3)2 | 4.9 wt % pH 9 | 94.2 | 6.7 | - | - | 5.8 | + | - | - | - | - |
P10 MnCl2 | 9.8 wt % pH 9 | 100 | 6.6 | - | - | - | - | - | - | - | - |
P11 Mn(NO3)2 | 9.8 wt % pH 9 | 100 | 5.8 | - | - | - | - | - | - | - | - |
P1 ZrOCl2 | - pH 3 | 50 | 5 | - | - | 50 | 7.3 | - | - | - | - |
P2 ZrOCl2 | - pH 7 | 64 | 6.1 | - | - | 36 | 8.2 | - | - | - | - |
Sample | θ (K) | C (emuK/g) | x | xeff | Teff (K) |
---|---|---|---|---|---|
P7 4.9 wt % pH 3; KMnO4 | −0.1 | 0.00080 | 0.022 (0.99 wt %) | 0.018 (0.81 wt %) | 1.48 |
P3 4.9 wt % pH 7; KMnO4 | −1.5 | 0.00066 | 0.018 (0.80 wt %) | 0.015 (0.67 wt %) | 1.77 |
P5 4.9 wt % pH 9; KMnO4 | −2.5 | 0.00470 | 0.013 (0.58 wt %) | 0.010 (0.45 wt %) | 1.36 |
P8 19.5 wt % pH 3; KMnO4 | −6.1 | 0.00167 | 0.046 (2.08 wt %) | 0.032 (1.44 wt %) | 3.13 |
P4 19.5 wt % pH 7; KMnO4 | −9.8 | 0.00164 | 0.045 (2.01 wt %) | 0.024 (1.08 wt %) | 3.71 |
P6 19.5 wt % pH 9; KMnO4 | −17.4 | 0.00158 | 0.044 (2.00 wt %) | 0.018 (0.81 wt %) | 3.21 |
P9 4.9 wt % pH 9; MnCl2 | −1.8 | 0.00086 | 0.024 (1.08 wt %) | 0.021 (0.94 wt %) | 2.56 |
P12 4.9 wt % pH 9; Mn(NO3)2 | −1 | 0.00079 | 0.022 (0.99 wt %) | 0.021 (0.94 wt %) | 2.29 |
P10 9.8 wt % pH 9; MnCl2 | −5.7 | 0.00178 | 0.049 (2.20 wt %) | 0.031 (1.40 wt %) | 2.58 |
P11 9.8 wt % pH 9; Mn(NO3)2 | −4.7 | 0.00167 | 0.046 (2.08 wt %) | 0.031 (1.40 wt %) | 2.87 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Arciszewska, M.; Małolepszy, A.; Stobinski, L.; Minikayev, R. Adjusting the Magnetic Properties of ZrO2:Mn Nanocrystals by Changing Hydrothermal Synthesis Conditions. Magnetochemistry 2018, 4, 28. https://doi.org/10.3390/magnetochemistry4020028
Kuryliszyn-Kudelska I, Dobrowolski W, Arciszewska M, Małolepszy A, Stobinski L, Minikayev R. Adjusting the Magnetic Properties of ZrO2:Mn Nanocrystals by Changing Hydrothermal Synthesis Conditions. Magnetochemistry. 2018; 4(2):28. https://doi.org/10.3390/magnetochemistry4020028
Chicago/Turabian StyleKuryliszyn-Kudelska, Izabela, Witold Dobrowolski, Monika Arciszewska, Artur Małolepszy, Leszek Stobinski, and Roman Minikayev. 2018. "Adjusting the Magnetic Properties of ZrO2:Mn Nanocrystals by Changing Hydrothermal Synthesis Conditions" Magnetochemistry 4, no. 2: 28. https://doi.org/10.3390/magnetochemistry4020028
APA StyleKuryliszyn-Kudelska, I., Dobrowolski, W., Arciszewska, M., Małolepszy, A., Stobinski, L., & Minikayev, R. (2018). Adjusting the Magnetic Properties of ZrO2:Mn Nanocrystals by Changing Hydrothermal Synthesis Conditions. Magnetochemistry, 4(2), 28. https://doi.org/10.3390/magnetochemistry4020028