Synthesis, Crystal Structures, and Magnetic Properties of Lanthanide (III) Amino-Phosphonate Complexes
Abstract
1. Introduction
2. Results and Discussion
2.1. Syntheses of the Complexes
2.2. Description of the Structures
2.3. Magnetic Properties
3. Experimental Section
3.1. Starting Materials
3.2. Synthesis of [Ln10(μ3-OH)3(µ-OH) (CO3)2(O2CtBu)15(O3PC6H10NH2)3(O3PC6H10NH3)2(H2O)2] [Et2NH2] (Ln = Gd(III), 1 and Tb(III), 2)
3.3. Magnetic Measurements
3.4. Crystallographic Data Collection and Refinement
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Clearfield, A. Organically Pillared Micro- and Mesoporous Materials. Chem. Mater. 1998, 10, 2801–2810. [Google Scholar] [CrossRef]
- Groves, J.A.; Miller, S.R.; Warrender, S.J.; Mellot, D.-C.; Lightfoot, P.; Wright, P.A. The first route to large pore metal phosphonates. Chem. Commun. 2006, 31, 3305–3307. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhu, G.; Qiu, S.; Huang, K.; Yu, J.; Xu, R. Zn2[(S)-O3PCH2NHC4H7CO2]2. A Homochiral 3D Zinc Phosphonate with Helical Channels. Angew. Chem. Int. Ed. 2004, 43, 6482–6485. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.-B.; Hu, S.-M.; Wu, X.-T. Two new molecular zinc phosphonates with bright luminescence for sensing UV radiation. CrystEngComm 2013, 15, 8937–8940. [Google Scholar] [CrossRef]
- Huang, J.; Bao, S.-S.; Ling, L.-S.; Zhu, H.; Li, Y.-Z.; Pi, L.; Zheng, L.-M. A Racemic Polar Cobalt Phosphonate with Weak Ferromagnetism. Chem. Eur. J. 2012, 18, 10839–10842. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.-Y.; Xu, H.-B.; Mao, J.-G. Rational Design of 0D, 1D, and 3D Open Frameworks Based on Tetranuclear Lanthanide(III) Sulfonate−Phosphonate Clusters. Inorg. Chem. 2006, 45, 9780–9788. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.-H.; Yi, F.-Y.; Li, P.-X.; Mao, J.-G. Synthesis, Crystal Structures, and Luminescent Properties of Two Series’ of New Lanthanide (III) Amino-Carboxylate-Phosphonates. Inorg. Chem. 2010, 49, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Zangana, K.H.; Moreno-Pineda, E.; Iñigo, V.-Y.; McInnes, J.L.; Winpenny, R.E.P. Linking Cr3 triangles through phosphonates and lanthanides: Synthetic, structural, magnetic and EPR studies. Dalton Trans. 2014, 43, 13242–13249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Song, Y.; Okamura, T.; Hasegawa, Y.; Sun, W.Y.; Ueyama, N. Syntheses, Structures, Near-Infrared and Visible Luminescence, and Magnetic Properties of Lanthanide-Organic Frameworks with an Imidazole-Containing Flexible Ligand. Inorg. Chem. 2006, 45, 2896–2902. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, M.; Chastanet, G.; Sessoli, R.; Mallah, T.; Wernsdorfer, W.; Winpenny, R.E.P. Minor changes in phosphonate ligands lead to new hexa- and dodeca-nuclear Mn clusters. J. Mater. Chem. 2006, 16, 2576–2578. [Google Scholar] [CrossRef]
- Shanmugam, M.; Chastanet, G.; Mallah, T.; Sessoli, R.; Teat, S.J.; Timco, G.A.; Winpenny, R.E.P. Synthesis and Characterization of Mixed-Valent Manganese Phosphonate Cage Complexes. Chem. Eur. J. 2006, 12, 8777–8785. [Google Scholar] [CrossRef] [PubMed]
- Zangana, K.H.; Moreno-Pineda, E.; Winpenny, R.E.P. Single molecule magnet behaviour in a {Dy4P2} octahedron. Dalton Trans. 2015, 44, 12522–12525. [Google Scholar] [CrossRef] [PubMed]
- Zangana, K.H.; Moreno-Pineda, E.; Schnack, J.; Winpenny, R.E.P. Octametallic 4f-phosphonate horseshoes. Dalton Trans. 2013, 42, 14045–14048. [Google Scholar] [CrossRef] [PubMed]
- Clearfield, A.; Sharma, C.V.K.; Zhang, B. Crystal Engineered Supramolecular Metal Phosphonates: Crown Ethers and Iminodiacetates. Chem. Mater. 2001, 13, 3099–3112. [Google Scholar] [CrossRef]
- Ngo, H.L.; Lin, W. Chiral Crown Ether Pillared Lamellar Lanthanide Phosphonates. J. Am. Chem. Soc. 2002, 124, 14298–14299. [Google Scholar] [CrossRef] [PubMed]
- Vojtíšek, P.; Cígler, P.; Kotek, J.; Rudovský, J.; Hermann, P.; Lukeš, I. Crystal Structures of Lanthanide(III) Complexes with Cyclen Derivative Bearing Three Acetate and One Methylphosphonate Pendants. Inorg. Chem. 2005, 44, 5591–5599. [Google Scholar] [CrossRef] [PubMed]
- Bligh, S.W.A.; Choi, N.; Geraldes, C.F.G.C.; Knoke, S.; McPartlin, M.; Sanganee, M.J.; Woodroffe, T.M. A novel hexaaza macrocycle with methylenephosphonate pendant arms: A potential useful chelate for biomedical applications. Dalton Trans. 1997, 21, 4119–4126. [Google Scholar] [CrossRef]
- Avecilla, F.; Peters, J.A.; Geraldes, C.F.G.C. X-ray Crystal Structure of a Sodium Salt of [Gd(DOTP)]5−: Implications for Its Second-Sphere Relaxivity and the 23Na NMR Hyperfine Shift Effects of [Tm(DOTP)]5−. Eur. J. Inorg. Chem. 2003, 23, 4179–4186. [Google Scholar] [CrossRef]
- Legendziewicz, J.; Gawryszewska, P.; Gałdecka, E.; Galdecki, Z. Novel polynuclear compound of europium with N-phosphonomethylglycine: Spectroscopy and structure. J. Alloys Compd. 1998, 275, 356–360. [Google Scholar] [CrossRef]
- Gałdecka, E.; Gałdecki, Z.; Gawryszewska, P.; Legendziewicz, J. Structure of a novel polynuclear europium compound with N-phosphonomethylglycine: Heptaaquaperchloratodi-μ4-N-phosphonomethylglycine-dieuropium(III) triperchlorate monohydrate, [Eu2(HO3PCH2NH2CH2CO2)2(H2O)7(ClO4)]·3ClO4·H2O. New J. Chem. 2000, 24, 387–391. [Google Scholar] [CrossRef]
- Tang, S.-F.; Song, J.-L.; Mao, J.-G. Syntheses, Crystal Structures, and Characterizations of a Series of New Layered Lanthanide Carboxylate-Phosphonates. Eur. J. Inorg. Chem. 2006, 2006, 2011–2019. [Google Scholar] [CrossRef]
- Yue, Q.; Yang, J.; Li, G.-H.; Li, G.-D.; Chen, J.-S. Homochiral Porous Lanthanide Phosphonates with 1D Triple-Strand Helical Chains: Synthesis, Photoluminescence, and Adsorption Properties. Inorg. Chem. 2006, 45, 4431–4439. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-F.; Song, J.-L.; Li, X.-L.; Mao, J.-G. Luminescent Lanthanide(III) Carboxylate−Phosphonates with Helical Tunnels. Cryst. Growth Des. 2006, 6, 2322–2326. [Google Scholar] [CrossRef]
- Głowiak, T.; Huskowska, E.; Legendziewicz, J. Preparation and X-ray crystal structure determination of an octahedral polymeric lutetium compound with ciliatine; {Lu(PO3HCH2CH2NH3)3(ClO4)3·3D2O}n. Polyhedron 1991, 10, 175–178. [Google Scholar] [CrossRef]
- Groves, J.A.; Wright, P.A.; Lightfoot, P. Two Closely Related Lanthanum Phosphonate Frameworks Formed by Anion-Directed Linking of Inorganic Chains. Inorg. Chem. 2005, 44, 1736–1739. [Google Scholar] [CrossRef] [PubMed]
- Comby, S.; Scopelliti, R.; Imbert, D.; Charbonnière, L.; Ziessel, R.; Bünzli, J.C.G. Dual Emission from Luminescent Nonalanthanide Clusters. Inorg. Chem. 2006, 45, 3158–3160. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.-K.; Li, Y.-Z.; Song, Y.; Zheng, L.-M. Three-, Two-, and One-Dimensional Metal Phosphonates Based on [Hydroxy(4-pyridyl)methyl]phosphonate: M{(4-C5H4N)CH(OH)PO3}(H2O) (M = Ni, Cd) and Gd{(4-C5H4N)CH(OH)P(OH)O2}3·6H2O. Inorg. Chem. 2005, 44, 3599–3604. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.M.; Bingamin, I.; Rapko, B.M.; Fox, J.; Duesler, E.N.; Paine, R.T. Hydrogen Bonded Framework Structures Constructed from 2-(Pyridyl N-oxide) Methylphosphonic Acid Ligands and Erbium(III). Inorg. Chem. 2004, 43, 2443–2448. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.-M.; Rapko, B.M.; Fox, J.; Binyamin, I.; Pailloux, S.; Duesler, E.N.; Paine, R.T. A Three-Dimensional Framework Structure Constructed from 2-(2-Pyridyl-N-oxide) Ethylphosphonic Acid and Nd(III). Inorg. Chem. 2006, 45, 3741–3745. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.-M.; Zeng, X.-R.; Fang, X.-N.; Li, X.-F.; Liu, D.-S. Synthesis, crystal structure and fluorescent characterization of a novel lanthanide tetraphosphonate with a layered structure. Inorg. Chim. Acta 2006, 359, 1589–1593. [Google Scholar] [CrossRef]
- Nash, K.L.; Rogers, R.D.; Ferraro, J.; Zhang, J. Lanthanide complexes with 1-hydroxyethane-1,1-diphosphonic acid: Solvent organization and coordination geometry in crystalline and amorphous solids. Inorg. Chem. Acta 1998, 269, 211–223. [Google Scholar] [CrossRef]
- Gan, X.-M.; Binyamin, I.; Pailloux, S.; Duesler, E.N.; Paine, R.T. Formation of a layered framework structure based upon 4-methyl-2,6-bis(methylphosphonic acid) phenol. Dalton Trans. 2006, 32, 3912–3917. [Google Scholar] [CrossRef] [PubMed]
- Wharmby, M.T.; Miller, S.R.; Groves, J.A.; Margiolaki, I.; Ashbrooka, S.E.; Wright, P.A. Yttrium bisphosphonate STA-13: A racemic phosphonate metal organic framework with permanent microporosity. Dalton Trans. 2010, 39, 6389–6391. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Manseki, K.; Hisashi, O. d–f Heteronuclear complexes: synthesis, structures and physicochemical aspects. Coord. Chem. Rev. 2001, 221, 379–414. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Sun, Y.-H.; Liu, Q.-Y.; Xie, Y.-R.; Wen, H.-R. Octanuclear aluminum(III) and iron(III) phosphonate cages encapsulating two Na(I) ions. Inorg. Chem. 2009, 48, 7015–7017. [Google Scholar] [CrossRef] [PubMed]
- Habib, H.A.; Gil-Hernández, B.; Abu-Shandi, K.; Sanchiz, J.; Janiak, C. Iron, copper and zinc ammonium-1-hydroxyalkylidene-diphosphonates with zero-, one- and two-dimensional covalent metal–ligand structures extended into three-dimensional supramolecular networks by charge-assisted hydrogen-bonding. Polyhedron 2010, 29, 2537–2545. [Google Scholar] [CrossRef]
- Li, J.T.; Guo, L.R.; Shen, Y.; Zheng, L.M. LiF-assisted crystallization of zinc 4-carboxyphenylphosphonates with pillared layered structures. CrystEngComm 2009, 11, 1674–1678. [Google Scholar] [CrossRef]
- Moreno-Pineda, E.; Tuna, F.; Pritchard, R.G.; Regan, A.C.; Winpenny, R.E.P.; McInnes, E.J.L. Molecular amino-phosphonate cobalt–lanthanide clusters. Chem. Commun. 2013, 49, 3522–3524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-M.; Zangana, K.H.; Kostopoulos, A.K.; Tong, M.-L.; Winpenny, R.E.P. A pseudo-icosahedral cage {Gd12} based on aminomethylphosphonate. Dalton Trans. 2016, 45, 9041–9044. [Google Scholar] [CrossRef] [PubMed]
- Aboshyan, S.L.; Cantuel, M.; Petoud, S.; Hauser, A.; Piguet, C. Optical sensitization and upconversion in discrete polynuclear chromium–lanthanide complexes. Coord. Chem. Rev. 2012, 256, 1644–1663. [Google Scholar] [CrossRef]
- Mao, J.-G. Structures and luminescent properties of lanthanide phosphonates. Coord. Chem. Rev. 2007, 251, 1493–1520. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Moreno-Pineda, E.; Helliwell, M.; Winpenny, R.E.P. Mn(II) -Gd(III) phosphonate cages with a large magnetocaloric effect. Chem. Eur. J. 2012, 18, 4161–4165. [Google Scholar] [CrossRef] [PubMed]
- Konar, S.; Clearfield, A. Synthesis and characterization of high nuclearity iron(III) phosphonate molecular clusters. Inorg. Chem. 2008, 47, 5573–5579. [Google Scholar] [CrossRef] [PubMed]
- Goura, J.; Bag, P.; Mereacre, V.; Powell, A. K.; Chandrasekhar, V. Molecular iron(III) phosphonates: Synthesis, structure, magnetism, and Mössbauer studies. Inorg. Chem. 2014, 53, 8147–8154. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.R.; Schmitt, W.; Evans, R.C. Lighting Up Two-Dimensional Lanthanide Phosphonates: Tunable Structure—Property Relationships toward Visible and Near-Infrared Emitters. J. Phys. Chem. 2014, 118, 10291–10301. [Google Scholar] [CrossRef]
- Song, J.-L.; Lei, C.; Mao, J.-G. Syntheses, Crystal Structures, and Luminescent Properties of Novel Layered Lanthanide Sulfonate−Phosphonates. Inorg. Chem. 2004, 43, 5630–5634. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-L.; Mao, J.-G. New Types of Blue, Red or Near IR Luminescent Phosphonate-Decorated Lanthanide Oxalates. Eur. J. Inorg. Chem. 2005, 11, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.-M.; Mao, J.-G. Introducing a Second Ligand: New Route to Luminescent Lanthanide Polyphosphonates. Cryst. Growth Des. 2006, 6, 964–968. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Evangelisti, M.; Winpenny, R.E.P. Co–Gd phosphonate complexes as magnetic refrigerants. Chem. Sci. 2011, 2, 99–102. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Evangelisti, M.; Winpenny, R.E.P. Large Magnetocaloric Effect in a Wells–Dawson Type {Ni6Gd6P6} Cage. Angew. Chem. Int. Ed. 2011, 50, 3692–3695. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-Z.; Evangelisti, M.; Tuna, F.; Winpenny, R.E.P. Co–Ln Mixed-Metal Phosphonate Grids and Cages as Molecular Magnetic Refrigerants. J. Am. Chem. Soc. 2012, 134, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Zangana, K.H.; Moreno-Pineda, E.; McInnes, E.J.L.; Schnack, J.; Winpenny, R.E.P. Centred nine-metal rings of lanthanides. Chem. Commun. 2014, 50, 1438–1440. [Google Scholar] [CrossRef] [PubMed]
- Coxall, R.A.; Harris, S.G.; Henderson, D.K.; Parsons, S.; Tasker, P.A.; Winpenny, R.E.P. Inter-ligand reactions: In situ formation of new polydentate ligands. Dalton Trans. 2000, 14, 2349–2356. [Google Scholar] [CrossRef]
- Moreno-Pineda, E.; Lorusso, G.; Zangana, K.H.; Palacios, E.; Schnack, J.; Evangelisti, M.; Winpenny, R.E.P.; McInnes, E.J.L. Observation of the influence of dipolar and spin frustration effects on the magnetocaloric properties of a trigonal prismatic {Gd7} molecular nanomagnet. Chem. Sci. 2016, 7, 4891–4895. [Google Scholar] [CrossRef]
- Bochkarev, M.N.; Fedorova, E.A.; Radkov, Y.F.; Khorshev, S.Y.; Kalinina, G.S.; Razuvaev, G.A. Carbon dioxide fixaion by lathanide complexes. J. Organomet. Chem. 1983, 258, C29–C33. [Google Scholar] [CrossRef]
- Tang, X.-L.; Wang, W.-H.; Dou, W.; Jiang, J.; Liu, W.-S.; Qin, W.-W.; Zhang, G.-L.; Zhang, H.-R.; Yu, K.-B.; Zheng, L.-M. Olive-Shaped Chiral Supramolecules: Simultaneous Self-Assembly of Heptameric Lanthanum Clusters and Carbon Dioxide Fixation. Angew. Chem. Int. Ed. 2009, 48, 3499–3502. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhao, L.; Guo, Y.-N.; Guo, Y.; Tang, J.; Liu, Z. Quadruple-CO32− bridged octanuclear dysprosium(III) compound showing single-molecule magnet behavior. Chem. Commun. 2012, 48, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Zangana, K.H.; Moreno-Pineda, E.; Winpenny, R.E.P. Tetrametallic lanthanide(III) phosphonate cages: Synthetic, structural and magnetic studies. Dalton Trans. 2014, 43, 17101–17107. [Google Scholar] [CrossRef] [PubMed]
- Fomina, I.G.; Kiskin, M.A.; Martynov, A.G.; Aleksandrov, G.G.; Dobrokhotova, Zh.V.; Gorbunova, Y.G.; Shvedenkov, Y.G.; Tsivadze, A.Y.; Novotortsev, V.M. Lanthanum(III), Samarium(III), Europium(III), and Thulium(III) Binuclear Acetates and Pivalates: Synthesis, Structure, Magnetic Properties, and Solid-Phase Thermolysis. Russ. J. Inorg. Chem. 2004, 49, 1463–1474. [Google Scholar]
- Zoan, T.A.; Kuzmina, N.P.; Frolovskaya, S.N.; Rykov, A.N.; Mitrofanova, N.D.; Troyanov, S.I.; Pisarevsky, A.P.; Martynenko, L.I.; Korenev, Y.M. Synthesis, structure and properties of volatile lanthanide pivalates. J. Alloys Compd. 1995, 225, 396–399. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, C17, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourthis, L.J.; Gildea, R.L.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sluis, P.V.D.; Spek, A.L. BYPASS: An effective method for the refinement of crystal structures containing disordered solvent regions. Acta Cryst. 1990, A46, 194–201. [Google Scholar] [CrossRef]
- Evangelisti, M.; Berchin, E.K. Recipes for enhanced molecular cooling. Dalton Trans. 2010, 39, 4672–4676. [Google Scholar] [CrossRef] [PubMed]
- Serre, C.; Stock, N.; Bein, T.; Ferey, G. Synthesis and Characterization of a New Three-Dimensional Lanthanide Carboxyphosphonate: Ln4(H2O)7[O2C−C5H10N−CH2-PO3]4(H2O)5. Inorg. Chem. 2004, 43, 3159–3163. [Google Scholar] [CrossRef] [PubMed]
Compound b | Yield a | Elemental Analysis: Found (Calculated) | ||||
---|---|---|---|---|---|---|
C | H | Ln | P | N | ||
1 (MeCN)5 | 45% | 32.50 (32.45) | 5.15 (5.20) | 35.15 (35.10) | 3.45 (3.46) | 3.48 (3.44) |
2 (MeCN)8 | 39% | 33.06 (33.02) | 5.21 (5.24) | 34.38 (34.40) | 3.38 (3.35) | 4.22 (4.25) |
1 | 2 | |
---|---|---|
Formula a | C134H249.5Gd10N17.5 O59 P5 | C149H270Tb10N25O59 P5 |
Fw | 4366.81 | 4463.60 |
T/K | 150(1) | 150(1) |
Cryst system | monoclinic | monoclinic |
space group | P21/n | P21/n |
a/Å | 17.9933(3) | 18.0239(3) |
b/Å | 33.9737(5) | 34.0856(4) |
c/Å | 28.6063(4) | 28.6516(4) |
α/° | 90 | 90 |
β/° | 90.883(2) | 91.006(2) |
γ/° | 90 | 90 |
V/Å3 | 17484.9(5) | 17599.6(4) |
Z | 2 | 4 |
ρ calcd/g cm−3 | 1.659 | 1.678 |
μ (Mo Kα)/mm−1 | 3.855 | 4.083 |
R1(I > 2σ)(I)) a | 0.0516 | 0.0714 |
wR2 a | 0.1283 | 0.1459 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zangana, K.H. Synthesis, Crystal Structures, and Magnetic Properties of Lanthanide (III) Amino-Phosphonate Complexes. Magnetochemistry 2018, 4, 29. https://doi.org/10.3390/magnetochemistry4030029
Zangana KH. Synthesis, Crystal Structures, and Magnetic Properties of Lanthanide (III) Amino-Phosphonate Complexes. Magnetochemistry. 2018; 4(3):29. https://doi.org/10.3390/magnetochemistry4030029
Chicago/Turabian StyleZangana, Karzan H. 2018. "Synthesis, Crystal Structures, and Magnetic Properties of Lanthanide (III) Amino-Phosphonate Complexes" Magnetochemistry 4, no. 3: 29. https://doi.org/10.3390/magnetochemistry4030029
APA StyleZangana, K. H. (2018). Synthesis, Crystal Structures, and Magnetic Properties of Lanthanide (III) Amino-Phosphonate Complexes. Magnetochemistry, 4(3), 29. https://doi.org/10.3390/magnetochemistry4030029