Controllable Synthesis of Magnetic Composite Derived from MIL-88D and Study on Adsorption Properties of Cu2+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Preparation of MIL-88D and Its Derived Carbon Coated Iron Oxides
2.3. Cu2+ Adsorption Experiment
2.4. Reuse Experiment
3. Results and Discussion
3.1. Sample Preparation and Characterization
3.2. Adsorption Properties of Sample
3.3. Reusability of Fe3O4@C
3.4. Adsorption Mechanism of Fe3O4@C
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Gao, Q.; Xu, J.; Bu, X.-H. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord. Chem. Rev. 2019, 378, 17–31. [Google Scholar] [CrossRef]
- Savage, N.; Diallo, M.S. Nanomaterials and water purification: Opportunities and challenges. J. Nanopart. Res. 2005, 7, 331–342. [Google Scholar] [CrossRef]
- Haque, E.; Lee, J.E.; Jang, I.T.; Hwang, Y.K.; Chang, J.-S.; Jegal, J.; Jhung, S.H. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater. 2010, 181, 535–542. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Wu, J.; Wang, T.; Du, Y.; Li, Y.; Li, H. Constructing nanostructured silicates on diatomite for Pb(II) and Cd(II) removal. J. Mater. Sci. 2019, 54, 6882–6894. [Google Scholar] [CrossRef]
- Bulut, Y.; Karaer, H. Adsorption of Methylene Blue from aqueous solution by crosslinked chitosan/bentonite composite. J. Disper. Sci. Technol. 2014, 36, 61–67. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Wang, L.; Zhou, B.; Chen, Q.; Bu, X. Microporous metal–organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. J. Mater. Chem. A 2013, 1, 495–499. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, M.; Li, S.; Li, Z.; Li, J.; Wu, B.; Li, G.; Li, F.; Guan, X. Magnetic metal–organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small 2014, 10, 2927–2936. [Google Scholar] [CrossRef]
- Mohamed, E.; Jaheon, K.; Nathaniel, R.; David, V.; Joseph, W.; Michael, O.; Yaghi, O. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar]
- Xu, Y.; Jin, J.; Li, X.; Han, Y.; Meng, H.; Song, C.; Zhang, X. Magnetization of a Cu(II)-1,3,5-benzenetricarboxylate metal-organic framework for efficient solid-phase extraction of Congo Red. Microchim. Acta 2015, 182, 2313–2320. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Sui, K.-W.; Yin, N. Facile synthesis of metal-organic framework MOF-808 for arsenic removal. Mater. Lett. 2015, 160, 412–414. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Wu, Q.; Wang, Z. Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides. Anal. Chim. Acta 2015, 870, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Amatjan, S.; Rena, S.; Xieraili, M.; Jiao, X. In situ self-assembly of ZIF-8@sodium alginate composite hydrogels for enhanced adsorption of Cu2+ ions. Colloids Surfaces A 2024, 702, 135040. [Google Scholar] [CrossRef]
- Xu, D.; Qin, Y.; Cao, X.; Huang, Y.; Wang, J.; Liu, X.; Liu, F.; Li, X. Study on the adsorption of Ce(III) on phosphonic acid functionalized ZIF-67@SiO2 magnetic porous carbon materials. Colloids Surfaces A 2024, 696, 134306. [Google Scholar] [CrossRef]
- Liang, R.; Chen, R.; Jing, F.; Qin, N.; Wu, L. Multifunctional polyoxometalates encapsulated in MIL-100(Fe): Highly efficient photocatalysts for selective transformation under visible light. Dalton Trans. 2015, 44, 18227–18236. [Google Scholar] [CrossRef]
- Liang, C.; Meng, Y.; Lu, M.; Wang, G. Insights into the impact of interlayer spacing on MXene-based electrodes for supercapacitors: Areview, J. Energy Storage 2023, 65, 107341. [Google Scholar] [CrossRef]
- Wei, Z.; Xing, R.; Zhang, X.; Liu, S.; Yu, H.; Li, P. Facile Template-Free Fabrication of Hollow Nestlike α-Fe2O3 Nanostructures for Water Treatment. ACS Appl. Mater. Interfaces 2012, 5, 598–604. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Hsueh, C.-L.; Cheng, H.-P.; Su, L.-C.; Chen, C.-Y. Thermodynamics and kinetics of adsorption of Cu(II) onto waste iron oxide. J. Hazard. Mater. 2007, 144, 406–411. [Google Scholar] [CrossRef]
- Bara, D.; Wilson, C.; Mörtel, M.; Khusniyarov, M.M.; Ling, S.; Slater, B.; Sproules, S.; Forgan, R.S. Kinetic control of interpenetration in Fe–biphenyl-4,4′-dicarboxylate metal–organic frameworks by coordination and oxidation modulation. J. Am. Chem. Soc. 2019, 141, 8346–8357. [Google Scholar] [CrossRef]
- Lin, X.; Chen, P.; Fenghua, H. Effect of SiO2 surface coating on the properties of Fe3O4 magnetic microspheres. Chin. J. Synth. Chem. 2010, 18, 507–510. [Google Scholar]
- Luo, X.; Ding, L.; Luo, J. Adsorptive removal of Pb(II) ions from aqueous amples with amino-functionalization of metal–organic frameworks MIL-101(Cr). J. Chem. Eng. Data 2015, 60, 1732–1743. [Google Scholar] [CrossRef]
- Lu MLv, X.; Xu, X.; Tingting, G. Study on the adsorption mechanism of amphoteric bacterial cellulose to persistent pollutants. J. Funct. Mater. 2014, 23, 23054–23058. [Google Scholar]
- Abdelghani, H.; Redouane, H.; Abdelaziz, I.; Yassine, N.; Rahime, E.; Abdelillah, S.; Sabine, S.; Rabah, B.; Abdallah, A. 1,2,4,5-benzene tetracarboxylic acid-doped polyaniline/protonated carbon nitride nanostructures for Cr(VI) adsorption in water. ACS Appl. Nano Mater. 2024, 7, 13050–13061. [Google Scholar]
- Ye, M.; Zou, J.; Chen, D.; Song, Y.; Sun, Y.; Guo, C. Preparation of Tobermolite based on two typical solid wastes and its adsorption properties for Cd2+. J. Chin. Coal Soc. 2023, 48, 3289–3299. [Google Scholar]
- Li, S. Study on the Remediation of Nickel-Contaminated Soil by Rhamnose-Lipid-Modified Nano Zero-Valent Iron and Its Mechanism. Master’s Thesis, East China University Of Science and Technology, Shanghai, China, 2021. [Google Scholar]
- Fu, M.; Tuo, X.; Yan, X.; Li, D.; Zhu, H.; Gao, S.; Han, X.; Zhou, J.; Mou, D.; Xiu, J. Adsorption performance and mechanism of pectin modified with β-cyclodextrin for Zn2+ and Cu2+. Int. J. Biol. Macro. Mol. 2024, 274, 133563. [Google Scholar] [CrossRef]
- Bates, I.I.C.; Loranger, E.; Mathew, A.P.; Chabot, B. Cellulose reinforced electrospun chitosan nanofibers bio-based composite sorbent for water treatment applications. Cellulose 2021, 28, 4865–4885. [Google Scholar] [CrossRef]
- Wang, M.; Wang, A.; Cai, H.; Niu, Y. Preparation of polyamine grafted silica gels supported naphthaldehyde Schiff’s base and their adsorption properties as Cu2+ ions adsorbents. Desalin. Water Treat. 2021, 226, 208–222. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.; Ma, W.; Li, J.; Feng, S.; Zhang, L.; Mao, A. Study on the adsorption performance of Cu2+ in wastewater by red mud. Desalin. Water Treat. 2024, 317, 100524–100531. [Google Scholar] [CrossRef]
- Runit, I.; Shaziya, S.; Obaid, F.; Mohammad, K. Magnetic biochar derived from Juglans regia for the adsorption of Cu2+ and Ni2+: Characterization, modelling, optimization, and cost analysis. J. Saudi Chem. Soc. 2023, 27, 101749–101764. [Google Scholar]
- Yang, R.; Feng, S.; Jin, D.; Wang, Y.; Li, D.; Liang, Y.; Wu, J. Removing DOM from chloride modified hydrochar could improve Cu2+ adsorption capacity from aqueous solution. Chemosphere 2023, 342, 140202–140213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, W.; Cao, H.; Hu, D.; Chen, X.; Guan, Y.; Tang, J.; Gao, H. Ultra-efficient sorption of Cu2+ and Pb2+ ions by light biochar derived from Medulla tetrapanacis. Bioresour. Technol. 2019, 291, 121818. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Liu, S.; Wang, W.; Liang, Y.; Fu, J.; Zhou, Q.; Wang, L.; Huang, S. Synergistic effects of aluminum doping and amino functionalization to enhance adsorption capacity of ultrathin-nanosheet-assembled calcium silicate hydrate architectures for effective removal of Pb2+ and Cu2+ from aqueous solution. J. Environ. Chem. Eng. 2024, 12, 112194–112207. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Li, Y.; Liu, Y.; Chen, Y.; Li, H.; Li, L.; Xu, F.; Jiang, H.; Chen, L. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms. Bioresour. Technol. 2021, 321, 124413. [Google Scholar] [CrossRef]
- Yu, C.; Wang, M.; Dong, X.; Shi, Z.; Zhang, X.; Lin, Q. Removal of Cu (ii) from aqueous solution using Fe3O4–alginate modified biochar microspheres. RSC Adv. 2017, 7, 53135–53144. [Google Scholar] [CrossRef]
- Deng, J.; Li, X.; Wei, X.; Liu, Y.; Liang, J.; Tang, N.; Song, B.; Chen, X.; Cheng, X. Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu (II) from aqueous solution: Adsorption behavior and mechanism. Bioresour. Technol. 2019, 290, 121765. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Li, B.; Fan, S. Biochar from rice straw for Cu2+ removal from aqueous solutions: Mechanism and contribution made by acid-soluble minerals. Water Air Soil Poll. 2020, 231, 420. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Yang, X.; Jia, X.; Cai, M.; Bao, Y. Preparation of Si-Mn/biochar composite and discussions about characterizations, advances in application and adsorption mechanisms. Chemosphere 2021, 281, 130946. [Google Scholar] [CrossRef]
Sample | MIL-88D | Fe3O4@C |
---|---|---|
Specific surface area (m2/g) | 392.51 | 248.10 |
Aperture (nm) | 3.64/21.73 | 3.76 |
First-Order Kinetic Equation | Second-Order Kinetic Equation | ||
---|---|---|---|
Qe (mg/g) | 56.61 | Qe (mg/g) | 52.91 |
k1 (min−1) | 0.0466 | k2 (g/mg·min) | 0.0076 |
R2 | 0.7911 | R2 | 0.9977 |
Langmuir Adsorption Isotherm | Freundlich Adsorption Isotherm | ||
---|---|---|---|
Qe (mg/g) | 69.93 | n | 0.2473 |
kL (L/mg) | 0.0378 | kF (L/g) | 15.92 |
R2 | 0.9981 | R2 | 0.6665 |
Adsorbent | Adsorption Apacity (mg/g) | Cite Literature |
---|---|---|
Fe3O4@C | 69.93 | This work |
pectin β-cyclodextrin composite | 12.51 | [27] |
Cellulose reinforced electrospunchitosan nanofibers | 36.76 | [28] |
SiO2-TEPA-NA | 13.44 | [29] |
The adsorbent prepared from Bayer’s method-derived red mud (RM) | 68.86 | [30] |
Magnetically modified iron oxide immobilized biochar adsorbent using Juglans regia shells | 16.83 | [31] |
Chlorides-modified hydrochars | 54.74 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Yu, J.; Jiang, L.; Zhang, J.; Lu, M. Controllable Synthesis of Magnetic Composite Derived from MIL-88D and Study on Adsorption Properties of Cu2+. Magnetochemistry 2024, 10, 64. https://doi.org/10.3390/magnetochemistry10090064
Zheng Z, Yu J, Jiang L, Zhang J, Lu M. Controllable Synthesis of Magnetic Composite Derived from MIL-88D and Study on Adsorption Properties of Cu2+. Magnetochemistry. 2024; 10(9):64. https://doi.org/10.3390/magnetochemistry10090064
Chicago/Turabian StyleZheng, Zhongyuan, Jinshan Yu, Ling Jiang, Jiacheng Zhang, and Min Lu. 2024. "Controllable Synthesis of Magnetic Composite Derived from MIL-88D and Study on Adsorption Properties of Cu2+" Magnetochemistry 10, no. 9: 64. https://doi.org/10.3390/magnetochemistry10090064
APA StyleZheng, Z., Yu, J., Jiang, L., Zhang, J., & Lu, M. (2024). Controllable Synthesis of Magnetic Composite Derived from MIL-88D and Study on Adsorption Properties of Cu2+. Magnetochemistry, 10(9), 64. https://doi.org/10.3390/magnetochemistry10090064