Tuning Structure and Properties of a Ferromagnetic Organic Semiconductor via a Magnetic Field-Modified Reduction Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Sample Preparation
2.2. Structural Characterizations
2.3. Electrical and Magnetic Properties’ Characterization
2.4. PDI-Based OFET Fabrication and Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.N.; Gasperini, A.; Bao, Z. Stretchable polymer semiconductors for plastic electronics. Adv. Electron. Mater. 2018, 4, 1700429. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Qi, J.; Hu, Y.; Huang, Y.; Sun, S.; Sun, Y.; Gong, W.; Luo, L.; Zhang, L.; et al. Balancing the film strain of organic semiconductors for ultrastable organic transistors with a five-year lifetime. Nat. Commun. 2022, 13, 1480. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.C.; Wang, H.; Ren, J.F.; Xie, S.J.; Timm, C. Spin-charge disparity of polarons in organic ferromagnets. Org. Electron. 2014, 15, 118–125. [Google Scholar] [CrossRef]
- Steelman, M.E.; Adams, D.J.; Mayer, K.S.; Mahalingavelar, P.; Liu, C.; Eedugurala, N.; Lockart, M.; Wang, Y.; Gu, X.; Bowman, M.K.; et al. Magnetic ordering in a High-Spin donor–acceptor conjugated polymer. Adv. Mater. 2022, 34, 2206161. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.; Herng, T.S.; Wang, D.; Li, X.; Zeng, W.; Ding, J.; Loh, K.P.; Shen Wee, A.T.; Wu, J. Room-Temperature Magnets Based on 1,3,5-Triazine-Linked Porous Organic Radical Frameworks. Chem 2019, 5, 1223–1234. [Google Scholar] [CrossRef]
- Wang, W.Z. Ferromagnetism in a periodic Anderson-like organic polymer at half-filling and zero temperature. Phys. Rev. B 2006, 73, 35118. [Google Scholar] [CrossRef]
- Wei, M.; Fan, Y.; Qin, W. Progress of organic magnetic materials. Sci. China Phys. Mech. Astron. 2019, 62, 977501. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, J.; Xie, S.; Hu, G. Spin filtering through a metal/organic-ferromagnet/metal structure. Phys. Rev. B 2007, 75, 165321. [Google Scholar]
- Wang, Z.; Gao, M.; Wei, M.; Ren, S.; Hao, X.; Qin, W. Organic chiral charge transfer magnets. ACS Nano 2019, 13, 4705–4711. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, H.X.; Zhang, H.Q.; Wang, Y.; Li, J.T.; Wang, C.; Ren, J.F.; Hu, G.C. Molecular rectification induced by magnetization alignment in organic-ferromagnetic devices. Phys. Chem. Chem. Phys. 2024, 26, 4329–4337. [Google Scholar] [CrossRef] [PubMed]
- Blundell, S.J.; Pratt, F.L. Organic and molecular magnets. J. Phys. Condens. Matter 2004, 16, 771–828. [Google Scholar] [CrossRef]
- Qin, W.; Chen, X.; Li, H.; Gong, M.; Yuan, G.; Grossman, J.C.; Wuttig, M.; Ren, S. Room temperature multiferroicity of charge transfer crystals. ACS Nano 2015, 9, 9373–9379. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Song, K.; Yang, Y.; Huang, Q.; Tian, Y.; Hao, X.; Qin, W. Organic multiferroic magnetoelastic complexes. Adv. Mater. 2020, 32, 2003293. [Google Scholar] [CrossRef] [PubMed]
- Korshak, Y.V.; Medvedeva, T.V.; Ovchinnikov, A.A.; Spector, V.N. Organic polymer ferromagnet. Nature 1987, 326, 370–372. [Google Scholar] [CrossRef]
- Rajca, A.; Wongsriratanakul, J.; Rajca, S. Magnetic ordering in an organic polymer. Science 2001, 294, 1503–1505. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, J.; Park, J.; Shin, D.; Choi, H.; Seo, J.; Yoo, J.; Baek, J. Organic ferromagnetism: Trapping spins in the glassy state of an organic network structure. Chem 2018, 4, 2357–2369. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, J.; Mao, Z.; Yao, Y.; Zhao, D.; Jia, Y.; Hu, D.; Ma, Y. Room-Temperature ferromagnetism in perylene diimide organic semiconductor. Adv. Mater. 2022, 34, 2108103. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Wuttig, M. Organic exciton multiferroics. Adv. Mater. 2012, 24, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, H.; Hall, A.; Gao, W.; Gong, M.; Yuan, G.; Grossman, J.; Ren, S. All-polymeric control of nanoferronics. Sci. Adv. 2015, 1, e1501264. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Xia, G.; Chen, Q. Magnetochemistry and chemical synthesis. Chin. Phys. B 2019, 28, 37102. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Watanabe, K. Magnetic-Field-Induced synthesis of magnetic γ-Fe2O3 nanotubes. Chem. Mater. 2008, 20, 20–22. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, Z.; Ren, W.; Cao, G.; Deng, K.; Zhong, Y. Magnetic-field-assisted solvothermal growth of single-crystalline bismuth nanowires. Nanotechnology 2008, 19, 115602. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Q.; Zeng, C.; Hou, B. Magnetic-Field-Induced growth of Single-Crystalline Fe3O4 nanowires. Adv. Mater. 2004, 16, 137–140. [Google Scholar] [CrossRef]
- Ding, W.; Hu, L.; Dai, J.; Tang, X.; Wei, R.; Sheng, Z.; Liang, C.; Shao, D.; Song, W.; Liu, Q.; et al. Highly Ambient-Stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields. ACS Nano 2019, 13, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Meng, X.; Liu, H.; Wang, X.; Lin, Y.; Shi, X.; Sheng, Z.; Wang, H. Magnetic Field-Induced synthesis of One-Dimensional nickel nanowires for enhanced microwave absorption. Adv. Mater. Interfaces 2023, 10, 2201604. [Google Scholar] [CrossRef]
- Pan, G.; Chen, F.; Hu, L.; Zhang, K.; Dai, J.; Zhang, F. Effective controlling of film texture and carrier transport of a High-Performance polymeric semiconductor by magnetic alignment. Adv. Funct. Mater. 2015, 25, 5126–5133. [Google Scholar] [CrossRef]
- Zhou, H.; Fei, Y.; Ai, Z.; Hui, D.; Zhu, L.; Pan, G.; Zhang, F. The synergistic effect of processing solvents on magnetic manipulation of orientational order and carrier transport of semiconducting polymers. J. Mater. Chem. C 2023, 11, 6376–6385. [Google Scholar] [CrossRef]
- Hu, L.; Wang, Z.; Wang, H.; Qu, Z.; Chen, Q. Tuning the structure and properties of a multiferroic metal–organic-framework via growing under high magnetic fields. RSC Adv. 2018, 8, 13675–13678. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, L.; Qu, Z.; Hao, N.; Pi, L.; Ma, L. Magnetic field tuning of quantum spin excitations in a weakly coupled S=1/2 Heisenberg spin chain as seen from NMR. Phys. Rev. B 2019, 100, 125126. [Google Scholar]
- Usta, H.; Facchetti, A.; Marks, T.J. N-Channel semiconductor materials design for organic complementary circuits. Acc. Chem. Res. 2011, 44, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ye, P.; Zhu, Z.; Wang, X.; Yang, L.; Xu, X.; Wu, X.; Dong, T.; Zhang, H.; Hou, J.; et al. Achieving High-Performance ternary organic solar cells through tuning acceptor alloy. Adv. Mater. 2017, 29, 1603154. [Google Scholar] [CrossRef] [PubMed]
- Zeman, C.J.I.; Kim, S.; Zhang, F.; Schanze, K.S. Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion. J. Am. Chem. Soc. 2020, 142, 2204–2207. [Google Scholar] [CrossRef] [PubMed]
- Brocklehurst, B. Magnetic fields and radical reactions: Recent developments and their role in nature. Chem. Soc. Rev. 2002, 31, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Zadeh-Haghighi, H.; Simon, C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J. R. Soc. Interface 2022, 19, 20220325. [Google Scholar] [CrossRef] [PubMed]
- Seifert, S.; Schmidt, D.; Würthner, F. An ambient stable core-substituted perylene bisimide dianion: Isolation and single crystal structure analysis. Chem. Sci. 2015, 6, 1663–1667. [Google Scholar] [CrossRef]
- Cao, X.; Wu, Y.; Fu, H.; Yao, J. Self-Assembly of perylenediimide nanobelts and their Size-Tunable exciton dynamic properties. J. Phys. Chem. Lett. 2011, 2, 2163–2167. [Google Scholar] [CrossRef]
- Liu, C.; Ji, C.; Fan, Z.; Ma, R.; Yin, M. A facile design of thio-perylenediimides with controllable fluorescent, photodynamic and photothermal effects towards cancer theranostics. Chem. Commun. 2021, 57, 13126–13129. [Google Scholar] [CrossRef] [PubMed]
- Marcon, R.O.; Brochsztain, S. Aggregation of 3,4,9,10-Perylenediimide Radical Anions and Dianions Generated by Reduction with Dithionite in Aqueous Solutions. J. Phys. Chem. A 2009, 113, 1747–1752. [Google Scholar] [CrossRef] [PubMed]
- Gosztola, D.; Niemczyk, M.P.; Svec, W.; Lukas, A.S.; Wasielewski, M.R. Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. J. Phys. Chem. A 2000, 104, 6545–6551. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, R.; Chen, Q. Synthesis and assembly of nanomaterials under magnetic fields. Nanoscale 2014, 6, 14064–14105. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, C.; Qian, Y.; Hu, L.; Fang, J.; Tong, W.; Nie, R.; Chen, Q.; Wang, H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials 2020, 232, 119700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Pink, M.; Junghoefer, T.; Zhao, W.; Hsu, S.; Rajca, S.; Calzolari, A.; Boudouris, B.W.; Casu, M.B.; Rajca, A. High-Spin (S = 1) Blatter-Based diradical with robust stability and electrical conductivity. J. Am. Chem. Soc. 2022, 144, 6059–6070. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, J.; Fang, Y.; Deng, X.; Wang, X.; Liu, G.; Wang, Y.; Gu, X.; Jiang, S.; Lei, T. High-mobility semiconducting polymers with different spin ground states. Nat. Commun. 2022, 13, 2258. [Google Scholar] [CrossRef]
- Jiang, Q.; Sun, H.; Zhao, D.; Zhang, F.; Hu, D.; Jiao, F.; Qin, L.; Linseis, V.; Fabiano, S.; Crispin, X.; et al. High thermoelectric performance in n-Type perylene bisimide induced by the soret effect. Adv. Mater. 2020, 32, 2002752. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Cheng, Z.; Ai, Z.; Li, X.; Hu, L.; Zhang, F. Tuning Structure and Properties of a Ferromagnetic Organic Semiconductor via a Magnetic Field-Modified Reduction Process. Magnetochemistry 2024, 10, 34. https://doi.org/10.3390/magnetochemistry10050034
Zhou H, Cheng Z, Ai Z, Li X, Hu L, Zhang F. Tuning Structure and Properties of a Ferromagnetic Organic Semiconductor via a Magnetic Field-Modified Reduction Process. Magnetochemistry. 2024; 10(5):34. https://doi.org/10.3390/magnetochemistry10050034
Chicago/Turabian StyleZhou, Han, Zaitian Cheng, Zhiqiang Ai, Xinyao Li, Lin Hu, and Fapei Zhang. 2024. "Tuning Structure and Properties of a Ferromagnetic Organic Semiconductor via a Magnetic Field-Modified Reduction Process" Magnetochemistry 10, no. 5: 34. https://doi.org/10.3390/magnetochemistry10050034
APA StyleZhou, H., Cheng, Z., Ai, Z., Li, X., Hu, L., & Zhang, F. (2024). Tuning Structure and Properties of a Ferromagnetic Organic Semiconductor via a Magnetic Field-Modified Reduction Process. Magnetochemistry, 10(5), 34. https://doi.org/10.3390/magnetochemistry10050034