Comprehensive Characterization of Bi1.34Fe0.66Nb1.34O6.35 Ceramics: Structural, Morphological, Electrical, and Magnetic Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sol–Gel Process
2.3. Characterization Techniques
3. Results
3.1. Stuctural Characterization
3.2. Morphological Characterization
3.3. Electrical Characterization
3.4. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Xi, R.; Xu, X.; Zhang, Y.; Feng, X.; Fang, X.; Wang, X. A2B2O7 Pyrochlore Compounds: A Category of Potential Materials for Clean Energy and Environment Protection Catalysis. J. Rare Earths 2020, 38, 840–849. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Machine Learning the Lattice Constant of Cubic Pyrochlore Compounds. Int. J. Appl. Ceram. Technol. 2021, 18, 661–676. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Levin, I.; Lufaso, M.W. An Unexpected Crystal-Chemical Principle for the Pyrochlore Structure. Eur. J. Inorg. Chem. 2005, 2005, 2895–2901. [Google Scholar] [CrossRef]
- Somphon, W.; Ting, V.; Liu, Y.; Withers, R.L.; Zhou, Q.; Kennedy, B.J. Local Crystal Chemistry, Structured Diffuse Scattering and the Dielectric Properties of (Bi1−xYx)2(MIIINbV)O7 (M=Fe3+, In3+) Bi-Pyrochlores. J. Solid State Chem. 2006, 179, 2495–2505. [Google Scholar] [CrossRef]
- Chen, X.; Ma, D.; Huang, G.; Liu, G.; Zhou, H. Structure and Dielectric Properties of a Novel Defect Pyrochlore Bi1.34Fe0.66Nb1.34O6.35 Ceramic. J. Mater. Sci. Mater. Electron. 2016, 27, 8619–8622. [Google Scholar] [CrossRef]
- Piir, I.V.; Koroleva, M.S.; Ryabkov, Y.I.; Pikalova, E.Y.; Nekipelov, S.V.; Sivkov, V.N.; Vyalikh, D.V. Chemistry, Structure and Properties of Bismuth Copper Titanate Pyrochlores. Solid State Ion. 2014, 262, 630–635. [Google Scholar] [CrossRef]
- Liu, Y.; Withers, R.L.; Nguyen, H.B.; Elliott, K.; Ren, Q.; Chen, Z. Displacive Disorder and Dielectric Relaxation in the Stoichiometric Bismuth-Containing Pyrochlores, Bi2MIIINbO7 (M=In and Sc). J Solid State Chem. 2009, 182, 2748–2755. [Google Scholar] [CrossRef]
- Cann, D.P.; Randall, C.A.; Shrout, T.R. Investigation of the Dielectric Properties of Bismuth Pyrochlores. Solid State Commun. 1996, 100, 529–534. [Google Scholar] [CrossRef]
- Miiller, W.; Causeret, L.; Ling, C.D. Frustrated Magnetism and Local Structural Disorder in Pyrochlore-Type Bi1.89Fe1.16Nb0.95O6.95. J. Phys. Condens. Matter 2010, 22, 486004. [Google Scholar] [CrossRef]
- Huang, B.; Liu, Y.; Lu, Y.; Gao, H.; Chen, H. Structure and Dielectric Properties of Nd Substituted Bi1.5MgNb1.5O7 Ceramics. J. Mater. Sci. Mater. Electron. 2013, 24, 2785–2789. [Google Scholar] [CrossRef]
- Mowri, S.T.; Delwar Hossain, Q.; Gafur, M.A.; Ahmed, A.N.; Bashar, M.S. Effect of Sintering Temperature on Structural and Dielectric Properties of (Bi2O3Fe2O3)0.4(Nb2O5Nd2O3)0.6. In Proceedings of the 2016 11th International Forum on Strategic Technology (IFOST), Novosibirsk, Russia, 1–3 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 193–196. [Google Scholar]
- Wang, H.; Dong, F.; Wang, H.; Zhao, B.; Wang, Y.; Tan, W. Magnetic Properties, Critical Behavior, and Magnetocaloric Effect of Nd1−xSrxMnO3 (0.2 ≤ x ≤ 0.5): The Role of Sr Doping Concentration. J. Appl. Phys. 2024, 136, 093902. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, C.; Cao, M.; Gan, Z.; Wang, X.; Ma, Y.; Wang, X.; Tan, W.; Wang, D.; Du, Y. Large Magnetocaloric and Magnetoresistance Effects in Metamagnetic Sm0.55(Sr0.5Ca0.5)0.45MnO3 Manganite. Ceram. Int. 2017, 43, 7870–7874. [Google Scholar] [CrossRef]
- Devesa, S.; Graça, M.P.; Henry, F.; Costa, L.C. Dielectric Properties of FeNbO4 Ceramics Prepared by the Sol-Gel Method. Solid State Sci. 2016, 61, 44–50. [Google Scholar] [CrossRef]
- Amorim, C.O.; Mohseni, F.; Dumas, R.K.; Amaral, V.S.; Amaral, J.S. A Geometry-Independent Moment Correction Method for the MPMS3 SQUID-Based Magnetometer. Meas. Sci. Technol. 2021, 32, 105602. [Google Scholar] [CrossRef]
- Rozhdestvenskaya, I.; Ivanova, T.; Kaminskaya, T.K. ICDD Grant-in-Aid; ICDD: St. Petersburg, Germany, 2001. [Google Scholar]
- Doebelin, N.; Kleeberg, R. Profex: A Graphical User Interface for the Rietveld Refinement Program BGMN. J. Appl. Cryst. 2015, 48, 1573–1580. [Google Scholar] [CrossRef]
- Radha, R.; Kumar, Y.R.; Sakar, M.; Vinod, K.R.; Balakumar, S. Understanding the Lattice Composition Directed in Situ Structural Disorder for Enhanced Visible Light Photocatalytic Activity in Bismuth Iron Niobate Pyrochlore. Appl. Catal. B 2018, 225, 386–396. [Google Scholar] [CrossRef]
- Gallhofer, D.; Lottermoser, B. The Influence of Spectral Interferences on Critical Element Determination with Portable X-Ray Fluorescence (PXRF). Minerals 2018, 8, 320. [Google Scholar] [CrossRef]
- Liao, Y. Practical Electron Microscopy and Database. Online Book. 2006. Available online: https://www.globalsino.com/EM/ (accessed on 21 August 2024).
- Rayssi, C.; El Kossi, S.; Dhahri, J.; Khirouni, K. Frequency and Temperature-Dependence of Dielectric Permittivity and Electric Modulus Studies of the Solid Solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 2018, 8, 17139–17150. [Google Scholar] [CrossRef]
- Chandran, A.; George, K.C. Defect Induced Modifications in the Optical, Dielectric, and Transport Properties of Hydrothermally Prepared ZnS Nanoparticles and Nanorods. J. Nanoparti. Res. 2014, 16, 2238. [Google Scholar] [CrossRef]
- Farea, A.M.M.; Kumar, S.; Batoo, K.M.; Yousef, A.; Lee, C.G. Alimuddin Structure and Electrical Properties of Co0.5CdxFe2.5−xO4 Ferrites. J. Alloys Compd. 2008, 464, 361–369. [Google Scholar] [CrossRef]
- Rahaman, M.D.; Mia, M.D.; Khan, M.N.I.; Akther Hossain, A.K.M. Study the Effect of Sintering Temperature on Structural, Microstructural and Electromagnetic Properties of 10% Ca-Doped Mn0.6Zn0.4Fe2O4. J. Magn. Magn. Mater. 2016, 404, 238–249. [Google Scholar] [CrossRef]
- Idrees, M.; Nadeem, M.; Atif, M.; Siddique, M.; Mehmood, M.; Hassan, M.M. Origin of Colossal Dielectric Response in LaFeO3. Acta Mater. 2011, 59, 1338–1345. [Google Scholar] [CrossRef]
- Zakaria, A.; Nesa, F.; Khan, M.S.; Yunus, S.; Khan, N.; Saha, D.; Eriksson, S. Dielectric and Electrical Properties of Cr Substituted Mg Ferrites. J. Bangladesh Acad. Sci. 2015, 39, 1–12. [Google Scholar] [CrossRef]
- Sarkar, R.; Sarkar, B.; Pal, S. Dielectric Properties and Thermally Activated Relaxation in Monovalent (Li+1) Doped Multiferroic GdMnO3. App. Phys. A 2021, 127, 177. [Google Scholar] [CrossRef]
- Cao, W. Calculation of Various Relaxation Times and Conductivity for a Single Dielectric Relaxation Process. Solid State Ion. 1990, 42, 213–221. [Google Scholar] [CrossRef]
- Ray, J.; Biswal, A.K.; Vishwakarma, P.N. Low Temperature Magneto-Dielectric Measurements on BiFeO3 Lightly Substituted by Cobalt. J. Appl. Phys. 2015, 117, 134102. [Google Scholar] [CrossRef]
- Melo, B.M.G.; Loureiro, F.J.A.; Fagg, D.P.; Costa, L.C.; Graça, M.P.F. DFRTtoEIS: An Easy Approach to Verify the Consistency of a DFRT Generated from an Impedance Spectrum. Electrochim. Acta 2021, 366, 137429. [Google Scholar] [CrossRef]
- Devesa, S.; da Silva, P.S.P.; Graça, M.P.; Valente, M.; Costa, L.C.; Paixão, J.A. Electrical and Magnetic Characterization of Bi1−XFexNbO4 Ceramics. Ionics 2021, 27, 5347–5357. [Google Scholar] [CrossRef]
- Devesa, S.; Ferreira, N.M.; Peixoto, M.V.; Costa, F.M.; Graça, M.P.F. Growth Rate Effect on the Dielectric Properties of FeNbO4 Fibres Processed by the Laser Floating Zone Technique. Ceram. Int. 2024, 50, 34143–34152. [Google Scholar] [CrossRef]
- Horta, A.C.; André, P.; Amaral, J.S.; Amorim, C.O. Curie temperature control in Zn-Fe ferrite superparamagnetic nanoparticles. J. Magn. Magn. Mater. 2024, 610, 172497. [Google Scholar] [CrossRef]
- Amorim, C.O.; Figueiras, F.; Amaral, J.S.; Vaghefi, P.M.; Tavares, P.B.; Correia, M.R.; Baghizadeh, A.; Alves, E.; Rocha, J.; Amaral, V.S. Peculiar Magnetoelectric Coupling in BaTiO3: Fe113 ppm Nanoscopic Segregations. ACS Appl. Mater. Interfaces 2015, 7, 24741–24747. [Google Scholar] [CrossRef] [PubMed]
- Kuz’min, M.D. Shape of Temperature Dependence of Spontaneous Magnetization of Ferromagnets: Quantitative Analysis. Phys. Rev. Lett. 2005, 94, 107204. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, V.N.; Koksharov, Y.A.; Polyakov, S.N.; Malakho, A.P.; Volkov, A.V.; Moskvina, M.A.; Khomutov, G.B.; Irkhin, V.Y. Magnetism and Verwey Transition in Magnetite Nanoparticles in Thin Polymer Film. J. Alloys. Compd. 2013, 569, 58–61. [Google Scholar] [CrossRef]
- Coey, J. Magnetism and Magnetic Material; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Shokrollahi, H. A Review of the Magnetic Properties, Synthesis Methods and Applications of Maghemite. J. Magn. Magn. Mater. 2017, 426, 74–81. [Google Scholar] [CrossRef]
- Nikiforov, V.N.; Ignatenko, A.N.; Irkhin, V.Y. Size and Surface Effects on the Magnetism of Magnetite and Maghemite Nanoparticles. J. Exp. Theor. Phys. 2017, 124, 304–310. [Google Scholar] [CrossRef]
- Nikiforov, V.N.; Goldt, A.E.; Gudilin, E.A.; Sredin, V.G.; Irhin, V.Y. Magnetic Properties of Maghemite Nanoparticles. Bull. Russ. Acad. Sci. Phys. 2014, 78, 1075–1080. [Google Scholar] [CrossRef]
- Liu, X.; Shaw, J.; Jiang, J.; Bloemendal, J.; Hesse, P.; Rolph, T.; Mao, X. Analysis on Variety and Characteristics of Maghemite. Sci. China Earth Sci. 2010, 53, 1153–1162. [Google Scholar] [CrossRef]
- Kuz’min, M.D.; Tishin, A.M. Temperature Dependence of the Spontaneous Magnetisation of Ferromagnetic Insulators: Does It Obey the Law? Phys. Lett. A 2005, 341, 240–243. [Google Scholar] [CrossRef]
Sample | Reference [16] | Reference [18] | ||
---|---|---|---|---|
Cell parameters | a = b = c (Å) V (Å3) α = β = γ | 10.509 1160.6 90.0° | 10.4998 1157.56 90.0° | 10.494 1155.65 90.0° |
Crystallite size | D (nm) | 42.4413 | __________ | __________ |
Fit Parameter | ||
---|---|---|
s | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devesa, S.; Amorim, C.O.; Belo, J.H.; Araújo, J.P.; Teixeira, S.S.; Graça, M.P.F.; Costa, L.C. Comprehensive Characterization of Bi1.34Fe0.66Nb1.34O6.35 Ceramics: Structural, Morphological, Electrical, and Magnetic Properties. Magnetochemistry 2024, 10, 79. https://doi.org/10.3390/magnetochemistry10100079
Devesa S, Amorim CO, Belo JH, Araújo JP, Teixeira SS, Graça MPF, Costa LC. Comprehensive Characterization of Bi1.34Fe0.66Nb1.34O6.35 Ceramics: Structural, Morphological, Electrical, and Magnetic Properties. Magnetochemistry. 2024; 10(10):79. https://doi.org/10.3390/magnetochemistry10100079
Chicago/Turabian StyleDevesa, Susana, Carlos Oliveira Amorim, João Horta Belo, João P. Araújo, Sílvia Soreto Teixeira, Manuel P. F. Graça, and Luís Cadillon Costa. 2024. "Comprehensive Characterization of Bi1.34Fe0.66Nb1.34O6.35 Ceramics: Structural, Morphological, Electrical, and Magnetic Properties" Magnetochemistry 10, no. 10: 79. https://doi.org/10.3390/magnetochemistry10100079
APA StyleDevesa, S., Amorim, C. O., Belo, J. H., Araújo, J. P., Teixeira, S. S., Graça, M. P. F., & Costa, L. C. (2024). Comprehensive Characterization of Bi1.34Fe0.66Nb1.34O6.35 Ceramics: Structural, Morphological, Electrical, and Magnetic Properties. Magnetochemistry, 10(10), 79. https://doi.org/10.3390/magnetochemistry10100079