Next Article in Journal
Comprehensive Characterization of Bi1.34Fe0.66Nb1.34O6.35 Ceramics: Structural, Morphological, Electrical, and Magnetic Properties
Previous Article in Journal
Incorporation of Superparamagnetic Magnetic–Fluorescent Iron Oxide Nanoparticles Increases Proliferation of Human Mesenchymal Stem Cells
Previous Article in Special Issue
Thermal Conductivity for p–(Bi, Sb)2Te3 Films of Topological Insulators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Short-Period Skyrmion Crystals in Itinerant Body-Centered Tetragonal Magnets

by
Satoru Hayami
Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
Magnetochemistry 2024, 10(10), 78; https://doi.org/10.3390/magnetochemistry10100078
Submission received: 9 September 2024 / Revised: 8 October 2024 / Accepted: 15 October 2024 / Published: 16 October 2024
(This article belongs to the Special Issue Spin and Charge Transport in Novel Quantum and Topological Materials)

Abstract

:
In this study, we investigate the stability of a magnetic skyrmion crystal with short-period magnetic modulations in a centrosymmetric body-centered tetragonal system. By performing the simulated annealing for the spin model, incorporating the effects of the biquadratic interaction and high-harmonic wave–vector interaction in momentum space, we find that the double-Q square skyrmion crystal consisting of two spin density waves is stabilized in an external magnetic field. We also show that double-Q states appear in both low- and high-field regions; the low-field spin configuration is characterized by an anisotropic double-Q modulation consisting of a superposition of the spiral wave and sinusoidal wave, while the high-field spin configuration is characterized by an isotropic double-Q modulation consisting of a superposition of two sinusoidal waves. Furthermore, we show that the obtained multiple-Q instabilities can be realized for various ordering wave vectors. The results provide the possibility of realizing the short-period skyrmion crystals under the body-centered tetragonal lattice structure.

1. Introduction

Magnetic skyrmions with topologically nontrivial swirling spin textures have attracted great interest for years in both theory and experiment [1,2,3,4,5,6,7]. Many interesting phenomena arise owing to their unconventional topological properties ascertained through the spin Berry phase mechanism, such as the topological Hall effect [8,9,10,11,12,13,14,15,16,17,18,19,20,21], the topological Nernst effect [22,23,24,25], the skyrmion Hall effect [26,27,28,29,30,31,32,33,34,35,36], the magnetoelectric effect [37,38,39,40,41,42,43,44,45,46], and nonreciprocal transport [47,48,49,50,51,52,53,54]. Exploring a periodic alignment of the skyrmion, i.e., the skyrmion crystal (SkX), is a central topic in modern condensed matter physics.
One of the guidelines for exploring the SkX in materials is to take into account the effect of the Dzyaloshinskii–Moriya (DM) interaction in noncentrosymmetric crystals [3,55,56,57]. The competition between the ferromagnetic exchange interaction and the DM interaction in an external magnetic field leads to the emergence of the SkX in chiral [4,5,6,37,58,59,60,61,62,63], polar [64,65,66], and other noncentrosymmetric crystals [67,68,69,70], including the two-dimensional van der Waals systems [71,72,73,74]. Meanwhile, recent studies revealed another guideline to engineering the SkX based on the Fermi surface nesting [75,76,77]. Since the nesting property can be found irrespective of the spatial inversion symmetry, such a mechanism might account for the emergence of the SkX in both centrosymmetric magnets, such as NiMnIn [78], NiMnGa [78], Gd 2 PdSi 3 [79,80,81,82,83,84,85,86], Gd 3 Ru 4 Al 12 [87,88,89,90], GdRu 2 Si 2 [91,92,93,94,95,96,97,98,99], and GdRu 2 Ge 2 [100], and noncentrosymmetric magnets, such as EuPtSi [101,102,103,104,105,106,107,108,109,110,111] and EuNiGe 3 [112,113,114,115]. In particular, the latter mechanism often induces the short-period SkX with large multiple-Q ordering wave vectors; the typical magnetic modulation of the spiral pitch is around a few nanometers in the latter mechanism, while it is around a few hundreds of nanometers in the former mechanism [116]. Since a short-period SkX tends to produce a large emergent magnetic field, as found in the similar short-periodic magnetic textures [10,11,117,118], engineering the short-period (high-density) SkX is promising for future spintronics applications, such as energy-efficient devices using high-density topological objects [119].
In the present study, we investigate the stabilization condition of the short-period SkX by focusing on the bond-centered structure in centrosymmetric tetragonal systems. We introduce an effective spin model consisting of minimal ingredients to stabilize the SkX and construct the magnetic phase diagram by performing the simulated annealing. We show that a positive biquadratic interaction and a high-harmonic wave–vector interaction play an important role in stabilizing the SkX. The SkX phase appears in the intermediate-field region, which turns into a topologically trivial double-Q state with anisotropic (isotropic) modulations at two ordering wave vectors when the strength of the magnetic field is smaller (larger). We also discuss the phase diagram obtained by a different set of ordering wave vectors. As a result, we show that the difference in the ordering wave vectors does not alter the stability of the short-period SkX qualitatively. The present results indicate that the stability of the short-period SkX on the body-centered tetragonal lattice is similar to that on the primitive tetragonal lattice, irrespective of the magnitude of the ordering wave vectors [120,121,122].
The rest of this paper is organized as follows. In Section 2, we introduce a fundamental spin model with momentum-resolved spin interactions in order to capture the essence of the SkX. We also show the numerical method based on the simulated annealing from high temperatures. Then, we discuss when and how the SkX is stabilized while showing the magnetic phase diagram in the model in Section 3. We also detail the magnetic structures for other double-Q states. In Section 4, we discuss the results when the ordering wave vectors are varied. We conclude with the results of this paper in Section 5.

2. Model and Method

We investigate the instability toward the short-period SkX by analyzing a spin model with the momentum-resolved interaction on a three-dimensional body-centered tetragonal lattice under the space group I 4 / m m m . The primitive translational vector is given by a 1 = ( a , 0 , 0 ) , a 2 = ( 0 , a , 0 ) , and a 3 = ( a / 2 , a / 2 , c / 2 ) ; we set a = c = 1 for simplicity. Especially, We focus on the ground-state spin configuration in the thermodynamic limit. For that purpose, we consider the following spin model, which is given by [123]
H = 2 ν J ν ( S Q ν · S Q ν ) + 2 N ν K ν ( S Q ν · S Q ν ) 2 H i S i z ,
where S i = ( S i x , S i y , S i z ) denotes the classical spin at site i, where the spin length is set to | S i | = 1 , and S Q ν = ( S Q ν x , S Q ν y , S Q ν z ) denotes the Q ν component of S i ; Q ν is the ordering wave vector and ν is its index.
The spin model consists of three terms. The first term stands for the momentum-resolved bilinear exchange interaction with the coupling constant J ν . One of the origins of this interaction is the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction [124,125,126]; for example, the lowest-order perturbative expansions in terms of the Kondo coupling in the Kondo lattice model leads to this bilinear exchange interaction. The schematic Feynman diagram corresponding to the lowest-order contribution in the original Kondo lattice model is shown in Figure 1a. We suppose that the interactions at particular wave vectors give the dominant contributions to the internal energy with the nesting of the Fermi surfaces in mind. We set the dominant interactions J 1 J = 1 at Q 1 = ( 6 π / 5 , 0 , 0 ) . From the fourfold rotational symmetry, J 2 at Q 2 = ( 0 , 6 π / 5 , 0 ) is equivalent to J 1 . In other words, we consider the situation where the Fermi surface nesting occurs at Q 1 and Q 2 . It is noted that such large ordering wave vectors as | Q 1 |   > π are owed to the body-centered structure. Furthermore, we take into account the interactions at the high-harmonic wave vectors, Q 3 = Q 1 + Q 2 and Q 4 = Q 1 + Q 2 , as J 3 = J 4 J since such high-harmonic wave–vector interactions tend to favor the multiple-Q states including the SkX [96,127]. We ignore the interactions at other wave vectors in the Brillouin zone, since they do not affect the energy of the magnetic phases that are characterized by Q 1 Q 4 . We show that a similar result can be obtained for other ordering wave vectors in Section 4. In addition, in order to focus on the role of the biquadratic interaction and high-harmonic wave–vector interaction on the stabilization of the SkX, we neglect the effect of magnetic anisotropy, such as the DM interaction, Ising-type anisotropy, and bond-dependent anisotropy for simplicity [128], which tends to favor the SkX [129,130].
The second term in Equation (1) stands for the biquadratic exchange interaction with the coupling constant K ν [ K 1 = K 2 K and K 3 = K 4 ( J / J ) 2 K ], where N is the total number of spins in the system. The interaction arises from the higher-order contribution of the RKKY interaction in the perturbative expansion in the Kondo lattice model [131,132], which leads to unconventional multiple-Q states such as the vortex crystal [133] and hedgehog crystal [134]. We show the schematic Feynman diagram corresponding to the biquadratic interaction in Figure 1b. It is noted that the nature of this momentum-resolved biquadratic interaction is different from that of the real-space biquadratic interaction, although both of them tend to prefer the stabilization of the SkX [135,136]. In order to systematically examine the effect of K, we deal with it as a variable. The third term in Equation (1) stands for the Zeeman coupling under an external magnetic field along the z direction.
The model in Equation (1) describes the ground-state spin configuration in an efficient way, since it only includes the dominant interactions at particular ordering wave vectors. On the other hand, the simplification of the model makes the following analyses difficult. One is the stability against defects and surface roughness in real space. Since the model only includes the momentum-resolved interaction, it is difficult to analyze such effects; the analysis based on the spin model with the real-space interaction is desired. The other is the effect of other degrees of freedom, such as the phonon, which often plays an important role in discussing the stability of magnetic states through the spin–lattice coupling. Although the above effects might affect the magnetic stability in the following section, we suppose that the above effects are omitted by considering the clean sample and a negligible spin–lattice coupling.
The magnetic instability in the model in Equation (1) is investigated by performing the simulated annealing by changing K and H for fixed J = 1 and J = 0.4 . Starting from a random spin configuration at the temperature T 0 = 1 –10, we gradually reduce the temperature with a rate T n + 1 = 0.999999 T n in each Monte Carlo sweep up to the final temperature T = 0.001 , where T n is the nth-step temperature. In each Monte Carlo sweep, we locally update localized spins based on the Metropolis algorithm. At the final temperature, we perform 10 5 10 6 Monte Carlo sweeps for measurements. We set the lattice size as N = 10 3 under the periodic boundary condition. Although the effect of thermal fluctuations can be investigated by the steepest descent method [137], we focus on the stability of the ground-state spin configuration; typically, the magnetic states are stable up to the order of T / J = 0.1 –1.
The spin configurations obtained at the final temperature are classified by the spin structure factor and scalar spin chirality. In other words, different magnetic phases in the phase diagram are characterized by different peak profiles of the spin structure factor and scalar spin chirality. The spin structure factor is given by
S s η η ( q ) = 1 N i , j S i η S j η e i q · ( r i r j ) ,
for η = x , y , z . r i is the position vector at site i and q is the wave vector in the first Brillouin zone. By using S s η η ( q ) , the Q ν component of the magnetic moments is given by
m Q ν η = S s η η ( Q ν ) N ,
where the in-plane spin component of m Q ν η is defined as ( m Q ν x y ) 2 = ( m Q ν x ) 2 + ( m Q ν y ) 2 . The uniform magnetization along the field direction is given by M = ( 1 / N ) i S i z .
In the chirality sector, the scalar spin chirality is given by
χ sc = 1 N i δ , δ = ± 1 δ δ S i · ( S i + δ d ^ 1 × S i + δ d ^ 2 ) ,
where d ^ 1 ( d ^ 2 ) represents a shift by a in the [ 100 ] ( [ 010 ] ) direction. Nonzero χ sc often leads to the emergence of the SkX.

3. Results

Figure 2 shows the magnetic phase diagram by changing the biquadratic interaction K and the magnetic field H at J = 0.4 . There are four magnetic phases denoted as 1Q, 2 Q , 2Q, and SkX, except for the fully polarized state appearing in the high-field region for H 2 ; 1Q stands for the single-Q state, while 2Q (2 Q ) stands for the double-Q state with the same (different) intensities at Q 1 and Q 2 in the spin structure factor. The 1Q, 2Q, and 2 Q states do not exhibit the scalar spin chirality, while the SkX does. Although the 2Q and 2 Q states are topologically trivial, their emergence is important in accounting for the experimental phase diagram in GdRu 2 Si 2 [91,92,93].
For K = 0 , the 1Q state appears irrespective of H. The spin configuration in this state is characterized by the conical spiral structure, whose spiral plane lies on the x y plane perpendicular to the magnetic field. When K is introduced, the 1Q state in the low-field region is replaced by the 2 Q state, as shown in Figure 2. This state is characterized by the double-Q superposition of the x y -plane cycoloidal spiral wave at Q 1 and the z-component sinusoidal wave at Q 2 , where the magnitude of the Q 1 component is much larger than that of the Q 2 component, as shown in Figure 3b. Such a superposition is seen by the real-space spin configuration in the leftmost and middle left panels of Figure 4a. In contrast to the 1Q state, the spin configuration of the 2 Q state is noncoplanar, even without the uniform magnetization. Accordingly, the 2 Q state accompanies the density waves in terms of the scalar spin chirality, as shown in the middle right and rightmost panels in Figure 4a [138]. It is noted that the uniform component of the scalar spin chirality is zero; the 2 Q state is topologically trivial. With the increase in H, the Q 2 component of the magnetic moments becomes smaller and vanishes, meaning that the transition to the 1Q state has occured, as shown in Figure 3b. This transition is of second order with the continuous change in the magnetization, as shown in Figure 3a.
The SkX and the 2Q state emerge for large K, as shown in Figure 2. When H increases in the 2 Q state for K 0.27 , the SkX is realized for 0.6 H 0.8 in the case of K = 0.3 in Figure 3c,d. The transition between the 2 Q and the SkX is of first order, with the jump of the magnetization M owed to the different topological properties between the 2 Q and the SkX, as shown in Figure 3c; it is noted that no SkX appears at the zero field in the present model in contrast to the real-space spin model with a vanishingly small DM interaction [136]. In the SkX, both the x y and z components of magnetic moments have equal intensities at Q 1 and Q 2 [Figure 3d], which indicates that the fourfold rotational symmetry is kept. The real-space spin configuration of the SkX is shown in the leftmost and middle left panels of Figure 4b. The skyrmion cores denoted as S i z = 1 are located at the z = 0 plane; the skyrmion cores form the square lattice. Owing to the short-period magnetic modulations, the spins surrounding the skyrmion core point along the positive z direction. Since the vorticity around the skyrmion core is 1 , this skyrmion is categorized into the anti-skyrmion with the positive skyrmion number of + 1 . Indeed, the real-space scalar spin chirality takes positive values, as shown in the middle right and rightmost panels of Figure 4b. It is noted that this SkX with the skyrmion number of + 1 is energetically degenerate with that of the skyrmion number of 1 , owing to the x y -spin rotational symmetry of the model in Equation (1). Such a degeneracy can be lifted when the effect of the magnetic anisotropy arising from the spin–orbit coupling is taken into account [139]. The SkX turns into the 2Q state with the jump of M and χ sc by increasing H, as shown in Figure 3c.
The 2Q state appears in the high-field region for large K, as shown in Figure 2. The transition from the SkX to the 2Q state is discontinuous where the magnetization shows the jump, as shown in Figure 3c. The spin configuration of this state consists of the superposition of two sinusoidal waves at Q 1 and Q 2 , where the sinusoidal spin directions are on the x y plane and they are also perpendicular to each other. This state is also topologically trivial without the uniform component of the scalar spin chirality; the scalar spin chirality is locally induced, as shown in the middle right and rightmost panels of Figure 4.
Finally, let us comment on the role of the high-harmonic wave–vector interactions. When J is turned off, the region where the SkX is stabilized almost vanishes. Instead, the regions of the 2 Q and 2 Q are extended. Thus, the interplay between the biquadratic interaction and high-harmonic wave–vector interaction plays an important role in realizing the SkX; a similar tendency is also found in the model on the primitive tetragonal lattice [96].

4. Other Ordering Wave Vectors

The results in the previous section indicate the emergence of the short-period SkX on the body-centered tetragonal lattice. Such a stability feature is unchanged for different ordering wave vectors. To demonstrate this, we consider the situation where the ordering wave vectors are located at Q 1 = ( 7 π / 5 , 0 , π ) and Q 2 = ( 0 , 7 π / 5 , π ) instead of Q 1 and Q 2 ; we consider the short-period modulation for the z direction as well as the in-plane direction. We adopt the same model parameters and set the high-harmonic wave vectors, Q 3 = Q 1 + Q 2 and Q 4 = Q 1 + Q 2 .
Figure 5 shows the phase diagram at T = 0.001 in the plane of K and H. Compared to the phase diagram in Figure 2, one finds that the overall phase boundaries among the 1Q, 2Q, 2 Q , and SkX phases are almost unchanged. Owing to the staggered modulated tendency, the SkX exhibits the uniform component of the scalar spin chirality. Thus, the momentum-resolved spin model in Equation (1) captures the instability toward the SkX, irrespective of the magnitude of the ordering wave vectors.
Additionally, the spin configurations in each phase look slightly different, owing to the different ordering wave vectors. We show the real-space spin and scalar spin chirality configurations of the 2 Q , SkX, and 2Q states in Figure 6a–c, respectively. In the end, the emergence of the three double-Q states (2 Q , SkX, and 2Q) is expected in itinerant magnets, irrespective of the ordering wave vectors, where K plays an important role.

5. Conclusions

In conclusion, we have investigated the stability of the SkX on the body-centered tetragonal lattice. In order to focus on the instability toward the short-period SkX, we examined the momentum-resolved spin model with large ordering wave vectors. The simulated annealing analyses revealed the emergence of the SkX as a consequence of the synergy between the biquadratic interaction and high-harmonic wave–vector interaction in the intermediate-field region, irrespective of the position of the ordering wave vectors. We have also shown that two types of double-Q states appear in the low- and high-field regions. The present model will serve as a more realistic fundamental model to examine the SkX-hosting materials in the body-centered tetragonal system in GdRu 2 Si 2 [91,92,93,94,95,96,97,98,99] and GdRu 2 Ge 2 [100], since some model calculations have been performed only for a simple primitive square lattice [120,121,122]. In particular, three magnetic phases observed in GdRu 2 Si 2 [91,92,93] correspond to the 2Q′, the SkX, and the 2Q state from the low-field region.

Funding

This research was supported by JSPS KAKENHI Grants Numbers JP21H01037, JP22H00101, JP22H01183, JP23H04869, JP23K03288, JP23K20827, and by JST CREST (JPMJCR23O4).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Bogdanov, A.N.; Yablonskii, D.A. Thermodynamically stable “vortices” in magnetically ordered crystals: The mixed state of magnets. Sov. Phys. JETP 1989, 68, 101. [Google Scholar]
  2. Bogdanov, A.; Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 1994, 138, 255–269. [Google Scholar] [CrossRef]
  3. Rößler, U.K.; Bogdanov, A.N.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797–801. [Google Scholar] [CrossRef] [PubMed]
  4. Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet. Science 2009, 323, 915–919. [Google Scholar] [CrossRef] [PubMed]
  5. Yu, X.Z.; Onose, Y.; Kanazawa, N.; Park, J.H.; Han, J.H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901–904. [Google Scholar] [CrossRef] [PubMed]
  6. Yu, X.Z.; Kanazawa, N.; Onose, Y.; Kimoto, K.; Zhang, W.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 2011, 10, 106–109. [Google Scholar] [CrossRef]
  7. Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911. [Google Scholar] [CrossRef]
  8. Loss, D.; Goldbart, P.M. Persistent currents from Berry’s phase in mesoscopic systems. Phys. Rev. B 1992, 45, 13544–13561. [Google Scholar] [CrossRef]
  9. Ye, J.; Kim, Y.B.; Millis, A.J.; Shraiman, B.I.; Majumdar, P.; Tešanović, Z. Berry Phase Theory of the Anomalous Hall Effect: Application to Colossal Magnetoresistance Manganites. Phys. Rev. Lett. 1999, 83, 3737–3740. [Google Scholar] [CrossRef]
  10. Ohgushi, K.; Murakami, S.; Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 2000, 62, R6065–R6068. [Google Scholar] [CrossRef]
  11. Shindou, R.; Nagaosa, N. Orbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Lattice. Phys. Rev. Lett. 2001, 87, 116801. [Google Scholar] [CrossRef] [PubMed]
  12. Tatara, G.; Kawamura, H. Chirality-driven anomalous Hall effect in weak coupling regime. J. Phys. Soc. Jpn. 2002, 71, 2613–2616. [Google Scholar] [CrossRef]
  13. Haldane, F.D.M. Berry Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property. Phys. Rev. Lett. 2004, 93, 206602. [Google Scholar] [CrossRef]
  14. Onoda, M.; Tatara, G.; Nagaosa, N. Anomalous Hall effect and skyrmion number in real and momentum spaces. J. Phys. Soc. Jpn. 2004, 73, 2624–2627. [Google Scholar] [CrossRef]
  15. Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A.H.; Ong, N.P. Anomalous Hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592. [Google Scholar] [CrossRef]
  16. Lee, M.; Kang, W.; Onose, Y.; Tokura, Y.; Ong, N.P. Unusual Hall Effect Anomaly in MnSi under Pressure. Phys. Rev. Lett. 2009, 102, 186601. [Google Scholar] [CrossRef]
  17. Neubauer, A.; Pfleiderer, C.; Binz, B.; Rosch, A.; Ritz, R.; Niklowitz, P.G.; Böni, P. Topological Hall Effect in the A Phase of MnSi. Phys. Rev. Lett. 2009, 102, 186602. [Google Scholar] [CrossRef]
  18. Yi, S.D.; Onoda, S.; Nagaosa, N.; Han, J.H. Skyrmions and anomalous Hall effect in a Dzyaloshinskii-Moriya spiral magnet. Phys. Rev. B 2009, 80, 054416. [Google Scholar] [CrossRef]
  19. Hamamoto, K.; Ezawa, M.; Nagaosa, N. Quantized topological Hall effect in skyrmion crystal. Phys. Rev. B 2015, 92, 115417. [Google Scholar] [CrossRef]
  20. Göbel, B.; Mook, A.; Henk, J.; Mertig, I. Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice. Phys. Rev. B 2017, 95, 094413. [Google Scholar] [CrossRef]
  21. Ullah, A.; Balasubramanian, B.; Tiwari, B.; Giri, B.; Sellmyer, D.J.; Skomski, R.; Xu, X. Topological spin textures and topological Hall effect in centrosymmetric magnetic nanoparticles. Phys. Rev. B 2023, 108, 184432. [Google Scholar] [CrossRef]
  22. Shiomi, Y.; Kanazawa, N.; Shibata, K.; Onose, Y.; Tokura, Y. Topological Nernst effect in a three-dimensional skyrmion-lattice phase. Phys. Rev. B 2013, 88, 064409. [Google Scholar] [CrossRef]
  23. Mizuta, Y.P.; Ishii, F. Large anomalous Nernst effect in a skyrmion crystal. Sci. Rep. 2016, 6, 28076. [Google Scholar] [CrossRef]
  24. Hirschberger, M.; Spitz, L.; Nomoto, T.; Kurumaji, T.; Gao, S.; Masell, J.; Nakajima, T.; Kikkawa, A.; Yamasaki, Y.; Sagayama, H.; et al. Topological Nernst Effect of the Two-Dimensional Skyrmion Lattice. Phys. Rev. Lett. 2020, 125, 076602. [Google Scholar] [CrossRef]
  25. Oike, H.; Ebino, T.; Koretsune, T.; Kikkawa, A.; Hirschberger, M.; Taguchi, Y.; Tokura, Y.; Kagawa, F. Topological Nernst effect emerging from real-space gauge field and thermal fluctuations in a magnetic skyrmion lattice. Phys. Rev. B 2022, 106, 214425. [Google Scholar] [CrossRef]
  26. Zhang, X.; Zhou, Y.; Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 2016, 7, 10293. [Google Scholar] [CrossRef]
  27. Jiang, W.; Zhang, X.; Yu, G.; Zhang, W.; Wang, X.; Benjamin Jungfleisch, M.; Pearson, J.E.; Cheng, X.; Heinonen, O.; Wang, K.L.; et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 2017, 13, 162–169. [Google Scholar] [CrossRef]
  28. Huang, S.; Zhou, C.; Chen, G.; Shen, H.; Schmid, A.K.; Liu, K.; Wu, Y. Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2017, 96, 144412. [Google Scholar] [CrossRef]
  29. Kim, K.W.; Moon, K.W.; Kerber, N.; Nothhelfer, J.; Everschor-Sitte, K. Asymmetric skyrmion Hall effect in systems with a hybrid Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2018, 97, 224427. [Google Scholar] [CrossRef]
  30. Kolesnikov, A.G.; Stebliy, M.E.; Samardak, A.S.; Ognev, A.V. Skyrmionium–high velocity without the skyrmion Hall effect. Sci. Rep. 2018, 8, 16966. [Google Scholar] [CrossRef]
  31. Göbel, B.; Mook, A.; Henk, J.; Mertig, I. Overcoming the speed limit in skyrmion racetrack devices by suppressing the skyrmion Hall effect. Phys. Rev. B 2019, 99, 020405. [Google Scholar] [CrossRef]
  32. Jin, C.; Zhang, C.; Song, C.; Wang, J.; Xia, H.; Ma, Y.; Wang, J.; Wei, Y.; Wang, J.; Liu, Q. Current-induced motion of twisted skyrmions. Appl. Phys. Lett. 2019, 114, 192401. [Google Scholar] [CrossRef]
  33. Weißenhofer, M.; Nowak, U. Orientation-dependent current-induced motion of skyrmions with various topologies. Phys. Rev. B 2019, 99, 224430. [Google Scholar] [CrossRef]
  34. Juge, R.; Je, S.G.; Chaves, D.d.S.; Buda-Prejbeanu, L.D.; Peña Garcia, J.; Nath, J.; Miron, I.M.; Rana, K.G.; Aballe, L.; Foerster, M.; et al. Current-Driven Skyrmion Dynamics and Drive-Dependent Skyrmion Hall Effect in an Ultrathin Film. Phys. Rev. Appl. 2019, 12, 044007. [Google Scholar] [CrossRef]
  35. Fattouhi, M.; García-Sánchez, F.; Yanes, R.; Raposo, V.; Martínez, E.; Lopez-Diaz, L. Electric Field Control of the Skyrmion Hall Effect in Piezoelectric-Magnetic Devices. Phys. Rev. Appl. 2021, 16, 044035. [Google Scholar] [CrossRef]
  36. Cook, A.M. Quantum skyrmion Hall effect. Phys. Rev. B 2024, 109, 155123. [Google Scholar] [CrossRef]
  37. Seki, S.; Yu, X.Z.; Ishiwata, S.; Tokura, Y. Observation of skyrmions in a multiferroic material. Science 2012, 336, 198–201. [Google Scholar] [CrossRef]
  38. White, J.S.; Levatić, I.; Omrani, A.; Egetenmeyer, N.; Prša, K.; Živković, I.; Gavilano, J.L.; Kohlbrecher, J.; Bartkowiak, M.; Berger, H.; et al. Electric field control of the skyrmion lattice in Cu2OSeO3. J. Phys. Condens. Matter 2012, 24, 432201. [Google Scholar] [CrossRef]
  39. Okamura, Y.; Kagawa, F.; Mochizuki, M.; Kubota, M.; Seki, S.; Ishiwata, S.; Kawasaki, M.; Onose, Y.; Tokura, Y. Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat. Commun. 2013, 4, 2391. [Google Scholar] [CrossRef]
  40. Mochizuki, M.; Seki, S. Magnetoelectric resonances and predicted microwave diode effect of the skyrmion crystal in a multiferroic chiral-lattice magnet. Phys. Rev. B 2013, 87, 134403. [Google Scholar] [CrossRef]
  41. Tokura, Y.; Seki, S.; Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 2014, 77, 076501. [Google Scholar] [CrossRef]
  42. Mochizuki, M.; Seki, S. Dynamical magnetoelectric phenomena of multiferroic skyrmions. J. Phys. Condens. Matter 2015, 27, 503001. [Google Scholar] [CrossRef]
  43. Christensen, M.H.; Andersen, B.M.; Kotetes, P. Unravelling Incommensurate Magnetism and Its Emergence in Iron-Based Superconductors. Phys. Rev. X 2018, 8, 041022. [Google Scholar] [CrossRef]
  44. Göbel, B.; Mook, A.; Henk, J.; Mertig, I. Magnetoelectric effect and orbital magnetization in skyrmion crystals: Detection and characterization of skyrmions. Phys. Rev. B 2019, 99, 060406. [Google Scholar] [CrossRef]
  45. Hayami, S.; Yambe, R. Helicity locking of a square skyrmion crystal in a centrosymmetric lattice system without vertical mirror symmetry. Phys. Rev. B 2022, 105, 104428. [Google Scholar] [CrossRef]
  46. Bhowal, S.; Spaldin, N.A. Magnetoelectric Classification of Skyrmions. Phys. Rev. Lett. 2022, 128, 227204. [Google Scholar] [CrossRef]
  47. Seki, S.; Okamura, Y.; Kondou, K.; Shibata, K.; Kubota, M.; Takagi, R.; Kagawa, F.; Kawasaki, M.; Tatara, G.; Otani, Y.; et al. Magnetochiral nonreciprocity of volume spin wave propagation in chiral-lattice ferromagnets. Phys. Rev. B 2016, 93, 235131. [Google Scholar] [CrossRef]
  48. Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; et al. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves. Sci. Rep. 2016, 6, 36020. [Google Scholar] [CrossRef]
  49. Tokura, Y.; Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 2018, 9, 3740. [Google Scholar] [CrossRef]
  50. Yokouchi, T.; Hoshino, S.; Kanazawa, N.; Kikkawa, A.; Morikawa, D.; Shibata, K.; Arima, T.h.; Taguchi, Y.; Kagawa, F.; Nagaosa, N.; et al. Current-induced dynamics of skyrmion strings. Sci. Adv. 2018, 4, eaat1115. [Google Scholar] [CrossRef]
  51. Hoshino, S.; Nagaosa, N. Theory of the magnetic skyrmion glass. Phys. Rev. B 2018, 97, 024413. [Google Scholar] [CrossRef]
  52. Seki, S.; Garst, M.; Waizner, J.; Takagi, R.; Khanh, N.; Okamura, Y.; Kondou, K.; Kagawa, F.; Otani, Y.; Tokura, Y. Propagation dynamics of spin excitations along skyrmion strings. Nat. Commun. 2020, 11, 256. [Google Scholar] [CrossRef]
  53. Hayami, S.; Okubo, T.; Motome, Y. Phase shift in skyrmion crystals. Nat. Commun. 2021, 12, 6927. [Google Scholar] [CrossRef]
  54. Eto, R.; Pohle, R.; Mochizuki, M. Low-Energy Excitations of Skyrmion Crystals in a Centrosymmetric Kondo-Lattice Magnet: Decoupled Spin-Charge Excitations and Nonreciprocity. Phys. Rev. Lett. 2022, 129, 017201. [Google Scholar] [CrossRef]
  55. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255. [Google Scholar] [CrossRef]
  56. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91. [Google Scholar] [CrossRef]
  57. Ullah, A.; Balamurugan, B.; Zhang, W.; Valloppilly, S.; Li, X.Z.; Pahari, R.; Yue, L.P.; Sokolov, A.; Sellmyer, D.J.; Skomski, R. Crystal structure and Dzyaloshinski–Moriya micromagnetics. IEEE Trans. Magn. 2019, 55, 7100305. [Google Scholar] [CrossRef]
  58. Adams, T.; Chacon, A.; Wagner, M.; Bauer, A.; Brandl, G.; Pedersen, B.; Berger, H.; Lemmens, P.; Pfleiderer, C. Long-Wavelength Helimagnetic Order and Skyrmion Lattice Phase in Cu2OSeO3. Phys. Rev. Lett. 2012, 108, 237204. [Google Scholar] [CrossRef]
  59. Seki, S.; Kim, J.H.; Inosov, D.S.; Georgii, R.; Keimer, B.; Ishiwata, S.; Tokura, Y. Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu2OSeO3. Phys. Rev. B 2012, 85, 220406. [Google Scholar] [CrossRef]
  60. Tokunaga, Y.; Yu, X.; White, J.; Rønnow, H.M.; Morikawa, D.; Taguchi, Y.; Tokura, Y. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 2015, 6, 7638. [Google Scholar] [CrossRef]
  61. Karube, K.; White, J.; Reynolds, N.; Gavilano, J.; Oike, H.; Kikkawa, A.; Kagawa, F.; Tokunaga, Y.; Rønnow, H.M.; Tokura, Y.; et al. Robust metastable skyrmions and their triangular–square lattice structural transition in a high-temperature chiral magnet. Nat. Mater. 2016, 15, 1237. [Google Scholar] [CrossRef] [PubMed]
  62. Li, W.; Jin, C.; Che, R.; Wei, W.; Lin, L.; Zhang, L.; Du, H.; Tian, M.; Zang, J. Emergence of skyrmions from rich parent phases in the molybdenum nitrides. Phys. Rev. B 2016, 93, 060409. [Google Scholar] [CrossRef]
  63. Balasubramanian, B.; Manchanda, P.; Pahari, R.; Chen, Z.; Zhang, W.; Valloppilly, S.R.; Li, X.; Sarella, A.; Yue, L.; Ullah, A.; et al. Chiral Magnetism and High-Temperature Skyrmions in B20-Ordered Co-Si. Phys. Rev. Lett. 2020, 124, 057201. [Google Scholar] [CrossRef] [PubMed]
  64. Heinze, S.; von Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011, 7, 713–718. [Google Scholar] [CrossRef]
  65. Kézsmárki, I.; Bordács, S.; Milde, P.; Neuber, E.; Eng, L.M.; White, J.S.; Rønnow, H.M.; Dewhurst, C.D.; Mochizuki, M.; Yanai, K.; et al. Neel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 2015, 14, 1116–1122. [Google Scholar] [CrossRef]
  66. Kurumaji, T.; Nakajima, T.; Ukleev, V.; Feoktystov, A.; Arima, T.h.; Kakurai, K.; Tokura, Y. Néel-Type Skyrmion Lattice in the Tetragonal Polar Magnet VOSe2O5. Phys. Rev. Lett. 2017, 119, 237201. [Google Scholar] [CrossRef]
  67. Nayak, A.K.; Kumar, V.; Ma, T.; Werner, P.; Pippel, E.; Sahoo, R.; Damay, F.; Rößler, U.K.; Felser, C.; Parkin, S.S. Magnetic Antiskyrmions Above Room Temperature in Tetragonal Heusler Materials. Nature 2017, 548, 561–566. [Google Scholar] [CrossRef]
  68. Peng, L.; Takagi, R.; Koshibae, W.; Shibata, K.; Nakajima, K.; Arima, T.h.; Nagaosa, N.; Seki, S.; Yu, X.; Tokura, Y. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat. Nanotechnol. 2020, 15, 181–186. [Google Scholar] [CrossRef]
  69. Karube, K.; Peng, L.; Masell, J.; Yu, X.; Kagawa, F.; Tokura, Y.; Taguchi, Y. Room-temperature antiskyrmions and sawtooth surface textures in a non-centrosymmetric magnet with S4 symmetry. Nat. Mater. 2021, 20, 335–340. [Google Scholar] [CrossRef]
  70. Karube, K.; Peng, L.; Masell, J.; Hemmida, M.; Krug von Nidda, H.A.; Kézsmárki, I.; Yu, X.; Tokura, Y.; Taguchi, Y. Doping control of magnetic anisotropy for stable antiskyrmion formation in Schreibersite (Fe, Ni)3P with S4 symmetry. Adv. Mater. 2022, 34, 2108770. [Google Scholar] [CrossRef]
  71. Saha, R.; Meyerheim, H.L.; Göbel, B.; Hazra, B.K.; Deniz, H.; Mohseni, K.; Antonov, V.; Ernst, A.; Knyazev, D.; Bedoya-Pinto, A.; et al. Observation of Néel-type skyrmions in acentric self-intercalated Cr1+δTe2. Nat. Commun. 2022, 13, 3965. [Google Scholar] [CrossRef] [PubMed]
  72. Zhang, H.; Raftrey, D.; Chan, Y.T.; Shao, Y.T.; Chen, R.; Chen, X.; Huang, X.; Reichanadter, J.T.; Dong, K.; Susarla, S.; et al. Room-temperature skyrmion lattice in a layered magnet (Fe0.5Co0.5)5GeTe2. Sci. Adv. 2022, 8, eabm7103. [Google Scholar] [CrossRef] [PubMed]
  73. Liu, C.; Zhang, S.; Hao, H.; Algaidi, H.; Ma, Y.; Zhang, X.X. Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2. Adv. Mater. 2024, 36, 2311022. [Google Scholar] [CrossRef] [PubMed]
  74. Zhang, C.; Jiang, Z.; Jiang, J.; He, W.; Zhang, J.; Hu, F.; Zhao, S.; Yang, D.; Liu, Y.; Peng, Y.; et al. Above-room-temperature chiral skyrmion lattice and Dzyaloshinskii–Moriya interaction in a van der Waals ferromagnet Fe3-xGaTe2. Nat. Commun. 2024, 15, 4472. [Google Scholar] [CrossRef] [PubMed]
  75. Martin, I.; Batista, C.D. Itinerant Electron-Driven Chiral Magnetic Ordering and Spontaneous Quantum Hall Effect in Triangular Lattice Models. Phys. Rev. Lett. 2008, 101, 156402. [Google Scholar] [CrossRef]
  76. Wang, Z.; Su, Y.; Lin, S.Z.; Batista, C.D. Skyrmion Crystal from RKKY Interaction Mediated by 2D Electron Gas. Phys. Rev. Lett. 2020, 124, 207201. [Google Scholar] [CrossRef]
  77. Hayami, S.; Motome, Y. Topological spin crystals by itinerant frustration. J. Phys. Condens. Matter 2021, 33, 443001. [Google Scholar] [CrossRef]
  78. Zhang, W.; Balasubramanian, B.; Ullah, A.; Pahari, R.; Li, X.; Yue, L.; Valloppilly, S.R.; Sokolov, A.; Skomski, R.; Sellmyer, D.J. Comparative study of topological Hall effect and skyrmions in NiMnIn and NiMnGa. Appl. Phys. Lett. 2019, 115, 172404. [Google Scholar] [CrossRef]
  79. Inosov, D.S.; Evtushinsky, D.V.; Koitzsch, A.; Zabolotnyy, V.B.; Borisenko, S.V.; Kordyuk, A.A.; Frontzek, M.; Loewenhaupt, M.; Löser, W.; Mazilu, I.; et al. Electronic Structure and Nesting-Driven Enhancement of the RKKY Interaction at the Magnetic Ordering Propagation Vector in Gd2PdSi3 and Tb2PdSi3. Phys. Rev. Lett. 2009, 102, 046401. [Google Scholar] [CrossRef]
  80. Dong, Y.; Arai, Y.; Kuroda, K.; Ochi, M.; Tanaka, N.; Wan, Y.; Watson, M.D.; Kim, T.K.; Cacho, C.; Hashimoto, M.; et al. Fermi Surface Nesting Driving the RKKY Interaction in the Centrosymmetric Skyrmion Magnet Gd2PdSi3. Phys. Rev. Lett. 2024, 133, 016401. [Google Scholar] [CrossRef]
  81. Kurumaji, T.; Nakajima, T.; Hirschberger, M.; Kikkawa, A.; Yamasaki, Y.; Sagayama, H.; Nakao, H.; Taguchi, Y.; Arima, T.h.; Tokura, Y. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 2019, 365, 914–918. [Google Scholar] [CrossRef]
  82. Nomoto, T.; Koretsune, T.; Arita, R. Formation Mechanism of the Helical Q Structure in Gd-Based Skyrmion Materials. Phys. Rev. Lett. 2020, 125, 117204. [Google Scholar] [CrossRef] [PubMed]
  83. Kumar, R.; Iyer, K.K.; Paulose, P.L.; Sampathkumaran, E.V. Magnetic and transport anomalies in R2RhSi3 (R = Gd, Tb, and Dy) resembling those of the exotic magnetic material Gd2PdSi3. Phys. Rev. B 2020, 101, 144440. [Google Scholar] [CrossRef]
  84. Spachmann, S.; Elghandour, A.; Frontzek, M.; Löser, W.; Klingeler, R. Magnetoelastic coupling and phases in the skyrmion lattice magnet Gd2PdSi3 discovered by high-resolution dilatometry. Phys. Rev. B 2021, 103, 184424. [Google Scholar] [CrossRef]
  85. Bouaziz, J.; Mendive-Tapia, E.; Blügel, S.; Staunton, J.B. Fermi-Surface Origin of Skyrmion Lattices in Centrosymmetric Rare-Earth Intermetallics. Phys. Rev. Lett. 2022, 128, 157206. [Google Scholar] [CrossRef]
  86. Paddison, J.A.M.; Rai, B.K.; May, A.F.; Calder, S.; Stone, M.B.; Frontzek, M.D.; Christianson, A.D. Magnetic Interactions of the Centrosymmetric Skyrmion Material Gd2PdSi3. Phys. Rev. Lett. 2022, 129, 137202. [Google Scholar] [CrossRef]
  87. Chandragiri, V.; Iyer, K.K.; Sampathkumaran, E. Magnetic behavior of Gd3Ru4Al12, a layered compound with distorted kagomé net. J. Phys. Condens. Matter 2016, 28, 286002. [Google Scholar] [CrossRef]
  88. Nakamura, S.; Kabeya, N.; Kobayashi, M.; Araki, K.; Katoh, K.; Ochiai, A. Spin trimer formation in the metallic compound Gd3Ru4Al12 with a distorted kagome lattice structure. Phys. Rev. B 2018, 98, 054410. [Google Scholar] [CrossRef]
  89. Hirschberger, M.; Nakajima, T.; Gao, S.; Peng, L.; Kikkawa, A.; Kurumaji, T.; Kriener, M.; Yamasaki, Y.; Sagayama, H.; Nakao, H.; et al. Skyrmion phase and competing magnetic orders on a breathing kagome lattice. Nat. Commun. 2019, 10, 5831. [Google Scholar] [CrossRef]
  90. Hirschberger, M.; Hayami, S.; Tokura, Y. Nanometric skyrmion lattice from anisotropic exchange interactions in a centrosymmetric host. New J. Phys. 2021, 23, 023039. [Google Scholar] [CrossRef]
  91. Khanh, N.D.; Nakajima, T.; Yu, X.; Gao, S.; Shibata, K.; Hirschberger, M.; Yamasaki, Y.; Sagayama, H.; Nakao, H.; Peng, L.; et al. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat. Nanotechnol. 2020, 15, 444. [Google Scholar] [CrossRef] [PubMed]
  92. Yasui, Y.; Butler, C.J.; Khanh, N.D.; Hayami, S.; Nomoto, T.; Hanaguri, T.; Motome, Y.; Arita, R.; Arima, T.-h.; Tokura, Y.; et al. Imaging the coupling between itinerant electrons and localised moments in the centrosymmetric skyrmion magnet GdRu2Si2. Nat. Commun. 2020, 11, 5925. [Google Scholar] [CrossRef]
  93. Khanh, N.D.; Nakajima, T.; Hayami, S.; Gao, S.; Yamasaki, Y.; Sagayama, H.; Nakao, H.; Takagi, R.; Motome, Y.; Tokura, Y.; et al. Zoology of Multiple-Q Spin Textures in a Centrosymmetric Tetragonal Magnet with Itinerant Electrons. Adv. Sci. 2022, 9, 2105452. [Google Scholar] [CrossRef]
  94. Matsuyama, N.; Nomura, T.; Imajo, S.; Nomoto, T.; Arita, R.; Sudo, K.; Kimata, M.; Khanh, N.D.; Takagi, R.; Tokura, Y.; et al. Quantum oscillations in the centrosymmetric skyrmion-hosting magnet GdRu2Si2. Phys. Rev. B 2023, 107, 104421. [Google Scholar] [CrossRef]
  95. Wood, G.D.A.; Khalyavin, D.D.; Mayoh, D.A.; Bouaziz, J.; Hall, A.E.; Holt, S.J.R.; Orlandi, F.; Manuel, P.; Blügel, S.; Staunton, J.B.; et al. Double-Q ground state with topological charge stripes in the centrosymmetric skyrmion candidate GdRu2Si2. Phys. Rev. B 2023, 107, L180402. [Google Scholar] [CrossRef]
  96. Hayami, S.; Kato, Y. Widely-sweeping magnetic field–temperature phase diagrams for skyrmion-hosting centrosymmetric tetragonal magnets. J. Magn. Magn. Mater. 2023, 571, 170547. [Google Scholar] [CrossRef]
  97. Eremeev, S.; Glazkova, D.; Poelchen, G.; Kraiker, A.; Ali, K.; Tarasov, A.V.; Schulz, S.; Kliemt, K.; Chulkov, E.V.; Stolyarov, V.; et al. Insight into the electronic structure of the centrosymmetric skyrmion magnet GdRu2Si2. Nanoscale Adv. 2023, 5, 6678–6687. [Google Scholar] [CrossRef]
  98. Nomoto, T.; Arita, R. Ab initio exploration of short-pitch skyrmion materials: Role of orbital frustration. J. Appl. Phys. 2023, 133, 150901. [Google Scholar] [CrossRef]
  99. Spethmann, J.; Khanh, N.D.; Yoshimochi, H.; Takagi, R.; Hayami, S.; Motome, Y.; Wiesendanger, R.; Seki, S.; von Bergmann, K. SP-STM study of the multi-Q phases in GdRu2Si2. Phys. Rev. Mater. 2024, 8, 064404. [Google Scholar] [CrossRef]
  100. Yoshimochi, H.; Takagi, R.; Ju, J.; Khanh, N.; Saito, H.; Sagayama, H.; Nakao, H.; Itoh, S.; Tokura, Y.; Arima, T.; et al. Multistep topological transitions among meron and skyrmion crystals in a centrosymmetric magnet. Nat. Phys. 2024, 20, 1001. [Google Scholar] [CrossRef]
  101. Kakihana, M.; Aoki, D.; Nakamura, A.; Honda, F.; Nakashima, M.; Amako, Y.; Nakamura, S.; Sakakibara, T.; Hedo, M.; Nakama, T.; et al. Giant Hall resistivity and magnetoresistance in cubic chiral antiferromagnet EuPtSi. J. Phys. Soc. Jpn. 2018, 87, 023701. [Google Scholar] [CrossRef]
  102. Kaneko, K.; Frontzek, M.D.; Matsuda, M.; Nakao, A.; Munakata, K.; Ohhara, T.; Kakihana, M.; Haga, Y.; Hedo, M.; Nakama, T.; et al. Unique Helical Magnetic Order and Field-Induced Phase in Trillium Lattice Antiferromagnet EuPtSi. J. Phys. Soc. Jpn. 2019, 88, 013702. [Google Scholar] [CrossRef]
  103. Tabata, C.; Matsumura, T.; Nakao, H.; Michimura, S.; Kakihana, M.; Inami, T.; Kaneko, K.; Hedo, M.; Nakama, T.; Ōnuki, Y. Magnetic Field Induced Triple-q Magnetic Order in Trillium Lattice Antiferromagnet EuPtSi Studied by Resonant X-ray Scattering. J. Phys. Soc. Jpn. 2019, 88, 093704. [Google Scholar] [CrossRef]
  104. Kakihana, M.; Aoki, D.; Nakamura, A.; Honda, F.; Nakashima, M.; Amako, Y.; Takeuchi, T.; Harima, H.; Hedo, M.; Nakama, T.; et al. Unique Magnetic Phases in the Skyrmion Lattice and Fermi Surface Properties in Cubic Chiral Antiferromagnet EuPtSi. J. Phys. Soc. Jpn. 2019, 88, 094705. [Google Scholar] [CrossRef]
  105. Mishra, A.K.; Ganesan, V. A-phase, field-induced tricritical point, and universal magnetocaloric scaling in EuPtSi. Phys. Rev. B 2019, 100, 125113. [Google Scholar] [CrossRef]
  106. Takeuchi, T.; Kakihana, M.; Hedo, M.; Nakama, T.; Ōnuki, Y. Magnetic field versus temperature phase diagram for H||[001] in the trillium lattice antiferromagnet EuPtSi. J. Phys. Soc. Jpn. 2019, 88, 053703. [Google Scholar] [CrossRef]
  107. Sakakibara, T.; Nakamura, S.; Kittaka, S.; Kakihana, M.; Hedo, M.; Nakama, T.; Ōnuki, Y. Fluctuation-Induced First-Order Transition and Tricritical Point in EuPtSi. J. Phys. Soc. Jpn. 2019, 88, 093701. [Google Scholar] [CrossRef]
  108. Takeuchi, T.; Kakihana, M.; Hedo, M.; Nakama, T.; Ōnuki, Y. Angle Dependence of the Magnetic Phase Diagram in Cubic Chiral Antiferromagnet EuPtSi. J. Phys. Soc. Jpn. 2020, 89, 093703. [Google Scholar] [CrossRef]
  109. Hayami, S.; Yambe, R. Field-Direction Sensitive Skyrmion Crystals in Cubic Chiral Systems: Implication to 4f-Electron Compound EuPtSi. J. Phys. Soc. Jpn. 2021, 90, 073705. [Google Scholar] [CrossRef]
  110. Sakakibara, T.; Nakamura, S.; Kittaka, S.; Kakihana, M.; Hedo, M.; Nakama, T.; Onuki, Y. Magnetic Phase Transitions of the 4f Skyrmion Compound EuPtSi Studied by Magnetization Measurements. J. Phys. Soc. Jpn. 2021, 90, 064701. [Google Scholar] [CrossRef]
  111. Matsumura, T.; Tabata, C.; Kaneko, K.; Nakao, H.; Kakihana, M.; Hedo, M.; Nakama, T.; Ōnuki, Y. Single helicity of the triple-q triangular skyrmion lattice state in the cubic chiral helimagnet EuPtSi. Phys. Rev. B 2024, 109, 174437. [Google Scholar] [CrossRef]
  112. Goetsch, R.J.; Anand, V.K.; Johnston, D.C. Antiferromagnetism in EuNiGe3. Phys. Rev. B 2013, 87, 064406. [Google Scholar] [CrossRef]
  113. Fabrèges, X.; Gukasov, A.; Bonville, P.; Maurya, A.; Thamizhavel, A.; Dhar, S.K. Exploring metamagnetism of single crystalline EuNiGe3 by neutron scattering. Phys. Rev. B 2016, 93, 214414. [Google Scholar] [CrossRef]
  114. Singh, D.; Fujishiro, Y.; Hayami, S.; Moody, S.H.; Nomoto, T.; Baral, P.R.; Ukleev, V.; Cubitt, R.; Steinke, N.J.; Gawryluk, D.J.; et al. Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet. Nat. Commun. 2023, 14, 8050. [Google Scholar] [CrossRef] [PubMed]
  115. Matsumura, T.; Kurauchi, K.; Tsukagoshi, M.; Higa, N.; Nakao, H.; Kakihana, M.; Hedo, M.; Nakama, T.; Ōnuki, Y. Helicity Unification by Triangular Skyrmion Lattice Formation in the Noncentrosymmetric Tetragonal Magnet EuNiGe3. J. Phys. Soc. Jpn. 2024, 93, 074705. [Google Scholar] [CrossRef]
  116. Tokura, Y.; Kanazawa, N. Magnetic Skyrmion Materials. Chem. Rev. 2021, 121, 2857. [Google Scholar] [CrossRef]
  117. Liu, X.; Feng, Q.; Zhang, D.; Deng, Y.; Dong, S.; Zhang, E.; Li, W.; Lu, Q.; Chang, K.; Wang, K. Topological Spin Textures in a Non-Collinear Antiferromagnet System. Adv. Mater. 2023, 35, 2211634. [Google Scholar] [CrossRef]
  118. Liu, X.; Zhang, D.; Deng, Y.; Jiang, N.; Zhang, E.; Shen, C.; Chang, K.; Wang, K. Tunable spin textures in a kagome antiferromagnetic semimetal via symmetry design. ACS Nano 2024, 18, 1013–1021. [Google Scholar] [CrossRef]
  119. Zhang, X.; Zhou, Y.; Song, K.M.; Park, T.E.; Xia, J.; Ezawa, M.; Liu, X.; Zhao, W.; Zhao, G.; Woo, S. Skyrmion-electronics: Writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys. Condens. Matter 2020, 32, 143001. [Google Scholar] [CrossRef]
  120. Hayami, S.; Motome, Y. Square skyrmion crystal in centrosymmetric itinerant magnets. Phys. Rev. B 2021, 103, 024439. [Google Scholar] [CrossRef]
  121. Utesov, O.I. Thermodynamically stable skyrmion lattice in a tetragonal frustrated antiferromagnet with dipolar interaction. Phys. Rev. B 2021, 103, 064414. [Google Scholar] [CrossRef]
  122. Wang, Z.; Su, Y.; Lin, S.Z.; Batista, C.D. Meron, skyrmion, and vortex crystals in centrosymmetric tetragonal magnets. Phys. Rev. B 2021, 103, 104408. [Google Scholar] [CrossRef]
  123. Hayami, S.; Yambe, R. Stabilization mechanisms of magnetic skyrmion crystal and multiple-Q states based on momentum-resolved spin interactions. Mater. Today Quantum 2024, 3, 100010. [Google Scholar] [CrossRef]
  124. Ruderman, M.A.; Kittel, C. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. Phys. Rev. 1954, 96, 99–102. [Google Scholar] [CrossRef]
  125. Kasuya, T. A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model. Prog. Theor. Phys. 1956, 16, 45–57. [Google Scholar] [CrossRef]
  126. Yosida, K. Magnetic Properties of Cu-Mn Alloys. Phys. Rev. 1957, 106, 893–898. [Google Scholar] [CrossRef]
  127. Hayami, S. Multiple skyrmion crystal phases by itinerant frustration in centrosymmetric tetragonal magnets. J. Phys. Soc. Jpn. 2022, 91, 023705. [Google Scholar] [CrossRef]
  128. Yambe, R.; Hayami, S. Effective spin model in momentum space: Toward a systematic understanding of multiple-Q instability by momentum-resolved anisotropic exchange interactions. Phys. Rev. B 2022, 106, 174437. [Google Scholar] [CrossRef]
  129. Hayami, S. Rectangular and square skyrmion crystals on a centrosymmetric square lattice with easy-axis anisotropy. Phys. Rev. B 2022, 105, 174437. [Google Scholar] [CrossRef]
  130. Hayami, S.; Motome, Y. Néel- and Bloch-Type Magnetic Vortices in Rashba Metals. Phys. Rev. Lett. 2018, 121, 137202. [Google Scholar] [CrossRef]
  131. Akagi, Y.; Udagawa, M.; Motome, Y. Hidden Multiple-Spin Interactions as an Origin of Spin Scalar Chiral Order in Frustrated Kondo Lattice Models. Phys. Rev. Lett. 2012, 108, 096401. [Google Scholar] [CrossRef]
  132. Hayami, S.; Motome, Y. Multiple-Q instability by (d-2)-dimensional connections of Fermi surfaces. Phys. Rev. B 2014, 90, 060402. [Google Scholar] [CrossRef]
  133. Takagi, R.; White, J.; Hayami, S.; Arita, R.; Honecker, D.; Rønnow, H.; Tokura, Y.; Seki, S. Multiple-q noncollinear magnetism in an itinerant hexagonal magnet. Sci. Adv. 2018, 4, eaau3402. [Google Scholar] [CrossRef] [PubMed]
  134. Okumura, S.; Hayami, S.; Kato, Y.; Motome, Y. Magnetic hedgehog lattices in noncentrosymmetric metals. Phys. Rev. B 2020, 101, 144416. [Google Scholar] [CrossRef]
  135. Hoffmann, M.; Blügel, S. Systematic derivation of realistic spin models for beyond-Heisenberg solids. Phys. Rev. B 2020, 101, 024418. [Google Scholar] [CrossRef]
  136. Bera, S.; Mandal, S.S. Skyrmions at vanishingly small Dzyaloshinskii–Moriya interaction or zero magnetic field. J. Phys. Condens. Matter 2021, 33, 255801. [Google Scholar] [CrossRef]
  137. Kato, Y.; Motome, Y. Magnetic field–temperature phase diagrams for multiple-Q magnetic ordering: Exact steepest descent approach to long-range interacting spin systems. Phys. Rev. B 2022, 105, 174413. [Google Scholar] [CrossRef]
  138. Hayami, S.; Lin, S.Z.; Kamiya, Y.; Batista, C.D. Vortices, skyrmions, and chirality waves in frustrated Mott insulators with a quenched periodic array of impurities. Phys. Rev. B 2016, 94, 174420. [Google Scholar] [CrossRef]
  139. Hayami, S.; Yambe, R. Degeneracy Lifting of Néel, Bloch, and Anti-Skyrmion Crystals in Centrosymmetric Tetragonal Systems. J. Phys. Soc. Jpn. 2020, 89, 103702. [Google Scholar] [CrossRef]
Figure 1. Feynman diagrams for (a) the bilinear and (b) biquadratic exchange interactions in the original Kondo lattice model with the hopping term and the Kondo coupling terms. The vertices with wavy lines denote the scattering by localized spins and the solid curves denote the bare propagators of the itinerant electrons.
Figure 1. Feynman diagrams for (a) the bilinear and (b) biquadratic exchange interactions in the original Kondo lattice model with the hopping term and the Kondo coupling terms. The vertices with wavy lines denote the scattering by localized spins and the solid curves denote the bare propagators of the itinerant electrons.
Magnetochemistry 10 00078 g001
Figure 2. Low-temperature magnetic phase diagram of the spin model in Equation (1) in the plane of the biquadratic interaction K and the magnetic field H at T = 0.001 . 1Q, 2Q, 2 Q , and SkX stand for the single-Q, isotropic double-Q, anisotropic double-Q, and skyrmion crystal, respectively.
Figure 2. Low-temperature magnetic phase diagram of the spin model in Equation (1) in the plane of the biquadratic interaction K and the magnetic field H at T = 0.001 . 1Q, 2Q, 2 Q , and SkX stand for the single-Q, isotropic double-Q, anisotropic double-Q, and skyrmion crystal, respectively.
Magnetochemistry 10 00078 g002
Figure 3. H dependence of (a,c) the magnetization M and the scalar spin chirality χ sc and (b,d) the squared magnetic moments with Q ν for ν = 1 , 2 and η = x y , z at (a,b) K = 0.1 and (c,d) K = 0.3 . The vertical dashed lines represent the phase boundaries between different magnetic phases.
Figure 3. H dependence of (a,c) the magnetization M and the scalar spin chirality χ sc and (b,d) the squared magnetic moments with Q ν for ν = 1 , 2 and η = x y , z at (a,b) K = 0.1 and (c,d) K = 0.3 . The vertical dashed lines represent the phase boundaries between different magnetic phases.
Magnetochemistry 10 00078 g003
Figure 4. (Leftmost and middle left) real-space spin configurations of (a) the 2 Q state at K = 0.1 and H = 0.1 , (b) the SkX at K = 0.3 and H = 0.7 , and (c) the 2Q state at K = 0.3 and H = 1.0 for (leftmost) z = 0 and (middle left) z = 1 / 2 . The arrows represent the direction of the spin moments and the contour shows the z-spin component. (Middle right and rightmost) real-space scalar spin chirality configurations corresponding to the leftmost and middle left panels.
Figure 4. (Leftmost and middle left) real-space spin configurations of (a) the 2 Q state at K = 0.1 and H = 0.1 , (b) the SkX at K = 0.3 and H = 0.7 , and (c) the 2Q state at K = 0.3 and H = 1.0 for (leftmost) z = 0 and (middle left) z = 1 / 2 . The arrows represent the direction of the spin moments and the contour shows the z-spin component. (Middle right and rightmost) real-space scalar spin chirality configurations corresponding to the leftmost and middle left panels.
Magnetochemistry 10 00078 g004
Figure 5. Low-temperature magnetic phase diagram of the spin model in Equation (1) in the plane of the biquadratic interaction K and the magnetic field H at T = 0.001 . The ordering wave vectors are chosen as Q 1 = ( 7 π / 5 , 0 , π ) and Q 2 = ( 0 , 7 π / 5 , π ) . 1Q, 2Q, 2 Q , and SkX stand for the single-Q, isotropic double-Q, anisotropic double-Q, and skyrmion crystal, respectively.
Figure 5. Low-temperature magnetic phase diagram of the spin model in Equation (1) in the plane of the biquadratic interaction K and the magnetic field H at T = 0.001 . The ordering wave vectors are chosen as Q 1 = ( 7 π / 5 , 0 , π ) and Q 2 = ( 0 , 7 π / 5 , π ) . 1Q, 2Q, 2 Q , and SkX stand for the single-Q, isotropic double-Q, anisotropic double-Q, and skyrmion crystal, respectively.
Magnetochemistry 10 00078 g005
Figure 6. (Leftmost and middle left) real-space spin configurations of (a) the 2 Q state at K = 0.1 and H = 0.1 , (b) the SkX at K = 0.3 and H = 0.7 , and (c) the 2Q state at K = 0.3 and H = 1.0 for the (leftmost) z = 0 and (middle left) z = 1 / 2 for the phase diagram in Figure 5. The arrows represent the direction of spin moments and the contour shows the z-spin component. (Middle right and rightmost) real-space scalar spin chirality configurations corresponding to leftmost and middle left panels.
Figure 6. (Leftmost and middle left) real-space spin configurations of (a) the 2 Q state at K = 0.1 and H = 0.1 , (b) the SkX at K = 0.3 and H = 0.7 , and (c) the 2Q state at K = 0.3 and H = 1.0 for the (leftmost) z = 0 and (middle left) z = 1 / 2 for the phase diagram in Figure 5. The arrows represent the direction of spin moments and the contour shows the z-spin component. (Middle right and rightmost) real-space scalar spin chirality configurations corresponding to leftmost and middle left panels.
Magnetochemistry 10 00078 g006
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hayami, S. Short-Period Skyrmion Crystals in Itinerant Body-Centered Tetragonal Magnets. Magnetochemistry 2024, 10, 78. https://doi.org/10.3390/magnetochemistry10100078

AMA Style

Hayami S. Short-Period Skyrmion Crystals in Itinerant Body-Centered Tetragonal Magnets. Magnetochemistry. 2024; 10(10):78. https://doi.org/10.3390/magnetochemistry10100078

Chicago/Turabian Style

Hayami, Satoru. 2024. "Short-Period Skyrmion Crystals in Itinerant Body-Centered Tetragonal Magnets" Magnetochemistry 10, no. 10: 78. https://doi.org/10.3390/magnetochemistry10100078

APA Style

Hayami, S. (2024). Short-Period Skyrmion Crystals in Itinerant Body-Centered Tetragonal Magnets. Magnetochemistry, 10(10), 78. https://doi.org/10.3390/magnetochemistry10100078

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop