[MnIII6MnIINaI2], [MnIII3MnIINaI], and [MnIII3] Clusters Derived from Schiff Bases: Syntheses, Structures, and Magnetic Properties †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical Measurements
2.2. X-ray Crystallography
2.3. Synthesis
3. Results and Discussion
3.1. Description of the Structures
3.1.1. Crystal Structure of [MnIII6MnIINa2(O)2(L1)6Cl6] (1R), [MnIII6MnIINa2(O)2(L1)6I6] (2Ra), and [MnIII6MnIINa2(O)2(L1)6I6] (2Rb)
3.1.2. Crystal Structure of [MnIII3(L2)3(O)(H2O)2(EtOH)]Cl (3) and [MnIII3(L2)3(O)(H2O)(MeOH)2]Br (4)
3.1.3. Crystal Structure of [MnIII3MnIINa(O)(L2)3Cl3(CH3CN)]2[MnIIBr4] (5)
3.2. Structural and Synthetic Comments
3.3. Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andruh, M. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans. 2015, 44, 16633–16653. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Hamon, J.R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coord. Chem. Rev. 2018, 357, 144–172. [Google Scholar] [CrossRef]
- Chen, S.; Fan, R.Q.; Gao, S.; Wang, X.; Yang, Y.L. Synthesis, crystal structure and effect of deuterated solvents and temperature on visible and near infrared luminescence of N4-donor Schiff base lanthanide complexes. J. Lumin. 2014, 149, 75–85. [Google Scholar] [CrossRef]
- Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev. 2018, 370, 42–54. [Google Scholar] [CrossRef]
- Hewitt, I.J.; Tang, J.-K.; Madhu, N.T.; Clerac, R.; Buth, G.; Anson, C.E.; Powell, A.K. A series of new structural models for the OEC in photosystem II. Chem. Commun. 2006, 2650–2652. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.L.; Guo, F.S.; Yun, L.; Lin, Z.J.; Herchel, R.; Leng, J.D.; Ou, Y.C.; Tong, M.L. Chiral transition metal clusters from two enantiomeric schiff base ligands. Synthesis, structures, CD spectra and magnetic properties. Dalton Trans. 2010, 39, 1771–1780. [Google Scholar] [CrossRef]
- Nayak, S.; Nayek, H.P.; Dehnen, S.; Powell, A.K.; Reedijk, J. Trigonal propeller-shaped [MnIII3MIINa] complexes (M = Mn, Ca): Structural and functional models for the dioxygen evolving centre of PSII. Dalton Trans. 2011, 40, 2699–2702. [Google Scholar] [CrossRef]
- Escuer, A.; Mayans, J.; Font-Bardia, M.; Górecki, M.; Di Bari, L. Syntheses, structures, chiroptical and magnetic properties of chiral clusters built from Schiff bases: A novel [MnIIMnIII6NaI2] core. Dalton Trans. 2017, 46, 6514–6517. [Google Scholar] [CrossRef]
- Mayans, J.; Font-Bardia, M.; Escuer, A. Triple halide bridges in chiral MnII2MnIII6NaI2 cages: Structural and magnetic characterization. Inorg. Chem. 2018, 57, 926–929. [Google Scholar] [CrossRef]
- Mayans, J.; Font-Bardia, M.; Di Bari, L.; Escuer, A. Chiral [MnIIMnIII3M’] (M=NaI, CaII, MnII] and [MnII2MnIII6NaI2] clusters built from an enantiomerically pure Schiff base: Synthetic, chiroptical and magnetic properties. Chem. Eur. J. 2018, 24, 18705–18717. [Google Scholar] [CrossRef]
- Liu, J.; Suo, Q.; Song, J.; Zhang, L.; Gao, Y. A series of [Na2MnII2MnIII6] clusters derived from trigonal bipyramidal [NaMnIIMnIII3] subunits bridged by mono-, di- and tri-fold azide groups: Synthesis, crystal structures and magnetic properties. Polyhedron 2019, 161, 34–39. [Google Scholar] [CrossRef]
- Pilichos, E.; Escuer, A.; Font-Bardia, M.; Mayans, J. Chiral versus non-chiral [MnIII6MnIINaI], [MnIII6MnII2NaI2] and [MnIII3MnIINaI] clusters derived from Schiff bases or the fight for symmetry. Chem. Eur. J. 2020, 57, 13053–13062. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, V.; Dey, A.; Das, S.; Kundu, S. Syntheses and structures of a family of heterometallic pentanuclear [MnIII3LnNa] (Ln = Dy, Tb, Gd and Nd) complexes: H-bonding reduces the nuclearity from nine to five. CrystEngComm 2014, 16, 1304–1310. [Google Scholar] [CrossRef]
- Yang, L.G.; Wang, F.; Geng, C.H.; Yu, Z.C.; Wang, X.; Wang, K.; Zhang, Y.H.; Niu, Y.-S.; Li, D.-C. Heptanuclear manganese complexes with Schiff-base ligand: Syntheses, crystal structures and magnetic properties. Chin. J. Inorg. Chem. 2019, 35, 1651–1658. [Google Scholar]
- Yang, L.G.; Wang, X.; Yu, Z.C.; Zhang, Y.H.; Li, S.L.; Wang, K.; Niu, Y.S.; Song, H.X. Synthesis, crystal structure and magnetic properties of heptanuclear manganese complexes with Schiff-base ligands. Chin. J. Struct. Chem. 2019, 38, 2135–2140. [Google Scholar]
- Yang, P.P.; Wang, X.L.; Li, L.C.; Liao, D.Z. Synthesis, structure and magnetic properties of a novel family of heterometallic nonanuclear NaI2MnIII6LnIII (Ln = Eu, Gd, Tb, Dy) complexes. Dalton Trans. 2011, 40, 4155–4161. [Google Scholar] [CrossRef]
- Mayans, J.; Font-Bardia, M.; Escuer, A. Na2MnIII6LnIII clusters with a non-equivalent core: Chiral vs. meso isomerism. Dalton Trans. 2020, 49, 4216–4219. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, Q.; Chen, Y.; Yang, F.; Yu, Y.; Shi, Z.; Feng, S. Constructing octa- and hexadecanuclear manganese clusters from tetrahedral MnIII3MnII cores bridged by quinquedentate Schiff base and versatile azide groups. Dalton Trans. 2010, 39, 5504–5508. [Google Scholar] [CrossRef]
- Gole, B.; Mondal, K.C.; Mukherjee, P.S. Tuning nuclearity of clusters by positional change of functional group: Synthesis of polynuclear clusters, crystal structures and magnetic properties. Inorg. Chim. Acta 2014, 415, 151–164. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, G.; Qin, X.; Gao, Y.; Ding, S.; Wang, Y.; Du, C.; Liu, Z. Chiral [NaMnIIMnIII3] and [Na2MnII2MnIII6] clusters constructed by chiral multidentate Schiff-base ligands: Synthesis, structures, CD spectra and magnetic properties. Dalton Trans. 2014, 43, 3880–3887. [Google Scholar] [CrossRef]
- Mayans, J.; Font-Bardia, M.; Di Bari, L.; Arrico, L.; Zinna, F.; Pescitelli, G.; Escuer, A. From mesocates to helicates: Structural, magnetic and chiro-optical studies on Nickel(II) supramolecular assemblies derived from tetradentate Schiff bases. Chem. Eur. J. 2018, 24, 7653–7663. [Google Scholar] [CrossRef] [PubMed]
- Mayans, J.; Martin, A.; Font-Bardia, M.; Escuer, A. Chiral tetranuclear NiII clusters derived from Schiff bases and azido co-ligands. Polyhedron 2018, 150, 10–14. [Google Scholar] [CrossRef]
- Mayans, J.; Font-Bardia, M.; Escuer, A. Chiroptical and magnetic properties of star-shaped FeIII4 complexes from chiral Schiff bases. Structural and magnetic correlations based on continuous shape measures. Dalton Trans. 2018, 47, 8392–8401. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1165. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL-2014/7: Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Turner, P.; Gunter, M.J.; Skelton, B.W.; White, A.H. Crystal structures of the pentacoordinate bromo, isocyanato, iodo, acetato and isothiocyanato complexes of the meso-tetraphenylporphyrinatomanganese cation. Aust. J. Chem. 1998, 51, 835–852. [Google Scholar] [CrossRef]
- Van Trieste, G.P.; Reid, K.A.; Hicks, M.H.; Das, A.; Figgins, M.T.; Bhuvanesh, N.; Ozarowski, A.; Telser, J.; Powers, D.C. Nitrene photochemistry of manganese N-haloamides. Angew. Chem. Int. Ed. 2021, 60, 26647–26655. [Google Scholar] [CrossRef]
- McKearney, D.; Zhou, W.; Zellman, C.; Williams, V.E.; Leznoff, D.B. Facile tuning of strong near-IR absorption wavelengths in manganese(iii) phthalocyanines via axial ligand exchange. Chem. Commun. 2019, 55, 6696–6699. [Google Scholar] [CrossRef]
- Bone, A.N.; Stavretis, S.E.; Krzystek, J.; Liu, Z.; Chen, Q.; Gai, Z.; Wang, X.; Steren, C.A.; Powers, X.B.; Podlesnyak, A.A.; et al. Manganese tetraphenylporphyrin bromide and iodide. Studies of structures and magnetic properties. Polyhedron 2020, 184, 114488. [Google Scholar] [CrossRef]
- Beagley, B.; McAuliffe, C.A.; Minten, K.; Pritchard, R.G. The co-ordination of small molecules by manganese(II) phosphine complexes. Part 8. Irreversible oxidation of trimethylphosphinemanganese(II) dihalides, [MnX2(PMe3)](X = Cl, Br, or I), to bis(trimethylphosphine)manganese(III) trihalides, [MnX3(PMe3)2]. X-Ray crystal structure of trans-tri-iodobis-(trimethylphosphine)manganese(III), the first example of a trigonal-bipyramidal manganese(III) tertiary phosphine complex. J. Chem. Soc. Dalton Trans. 1987, 1999–2003. [Google Scholar]
- McAuliffe, C.A.; Godfrey, S.M.; Mackie, A.G.; Pritchard, R.G. The reaction of coarse-grain manganese powder with diiodotrimethylphosphorane to form [Mn(PMe3)I2]n, which reacts with trace quantities of molecular oxygen to form the mixed (+2/+3) oxidation state complex [Mn2(PMe3)3I5]PMe3. Chem. Commun. 1992, 483–485. [Google Scholar] [CrossRef]
- Sanders, C.J.; O’Shaughnessy, P.N.; Scott, P. Non-planar manganese Schiff-base complexes; synthesis and molecular structures. Polyhedron 2003, 22, 1617–1625. [Google Scholar] [CrossRef]
- Mossin, S.; Sorensen, H.O.; Weihe, H.; Glerup, J.; Sotofte, I. Manganese(III) cyclam complexes with aqua, iodo, nitrito, perchlorato and acetic acid/acetato axial ligands. Inorg. Chim. Acta 2005, 358, 1096–1106. [Google Scholar] [CrossRef]
- Manoli, M.; Collins, A.; Parsons, S.; Candini, A.; Evangelisti, M.; Brechin, E.K. Mixed-valent Mn supertetrahedra and planar discs as enhanced magnetic coolers. J. Am. Chem. Soc. 2008, 130, 11129–11139. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.F.; Inglis, R.; Cochrane, M.E.; Mason, K.; Collins, A.; Parsons, S.; Perlepes, S.P.; Brechin, E.K. New structural types and different oxidation levels in the family of Mn6-oxime single-molecule magnets. Dalton Trans. 2008, 6205–6210. [Google Scholar] [CrossRef]
- Crassous, J. Chiral transfer in coordination complexes: Towards molecular materials. Chem. Soc. Rev. 2009, 38, 830–845. [Google Scholar] [CrossRef]
- Miyake, H. Supramolecular chirality in dynamic coordination chemistry. Symmetry 2014, 6, 880–895. [Google Scholar] [CrossRef]
1R | 2Ra | |
---|---|---|
Mn1–O2 | 1.900(3) | 1.880(4) |
Mn1–O3 | 1.899(3) | 1.903(3) |
Mn1–O7 | 1.8810(8) | 1.8780(9) |
Mn1–X1 | 2.595(1) | 2.942(1) |
Mn1′–X1 | 2.701(1) | 3.021(1) |
Mn2–O5 | 1.914(3) | 1.891(5) |
Mn2–O6 | 1.886(3) | 1.900(4) |
Mn2–O8 | 1.8761(9) | 1.872(1) |
Mn2–X2 | 2.637(1) | 3.023(1) |
Mn2′–X2 | 2.735(1) | 3.105(1) |
Mn3–O3 | 2.201(3) | 2.202(3) |
Mn3–O6 | 2.196(3) | 2.193(4) |
Mn1–O7–Mn1′ | 119.2(5) | 119.17(5) |
Mn2–O8–Mn2′ | 118.82(6) | 119.04(7) |
Mn1–O3–Mn3 | 122.9(2) | 123.8(2) |
Mn2–O6–Mn3 | 125.4(2) | 126.5(2) |
Mn1–X1–Mn1′ | 75.54(4) | 65.79(3) |
Mn2–X2–Mn2′ | 73.89(4) | 63.51(3) |
3 | 4 | |
---|---|---|
Mn1–O3 | 2.255(2) | 2.227(1) |
Mn1–O5 | 1.902(2) | 1.911(1) |
Mn1–O6 | 1.882(1) | 1.877(1) |
Mn1–O10 | 1.926(1) | 1.929(1) |
Mn1–O11 | 2.293(3) | 2.278(2) |
Mn1–N1 | 1.987(2) | 1.979(2) |
Mn2–O2 | 1.910(2) | 1.908(1) |
Mn2–O2w | 2.270(2) | 2.316(1) |
Mn2–O3 | 1.889(1) | 1.868(1) |
Mn2–O9 | 2.234(2) | 2.240(1) |
Mn2–O10 | 1.921(1) | 1.915(1) |
Mn2–N2 | 1.969(2) | 1.978(1) |
Mn3–O3w | 2.266(2) | 2.279(2) |
Mn3–O6 | 2.253(2) | 2.231(1) |
Mn3–O8 | 1.902(2) | 1.890(1) |
Mn3–O9 | 1.864(2) | 1.878(1) |
Mn3–O10 | 1.929(1) | 1.921(1) |
Mn3–N3 | 1.993(2) | 1.978(2) |
Mn1–O3–Mn2 | 92.22(6) | 93.38(5) |
Mn1-O6-Mn3 | 92.62(6) | 92.83(5) |
Mn2–O9–Mn3 | 93.14(6) | 92.29(5) |
Mn1–O10–Mn2 | 102.36(6) | 102.13(6) |
Mn1–O10–Mn3 | 102.24(6) | 101.69(6) |
Mn2–O10–Mn3 | 101.74(6) | 101.96(5) |
5A | 5B | |
---|---|---|
Mn1–O1 | 1.914(2) | 1.931(3) |
Mn1–O2 | 1.867(3) | 1.883(3) |
Mn1–O10 | 1.920(2) | 1.903(2) |
Mn1–Br1 | 2.7608(7) | 2.7261(7) |
Mn1–Br3 | 2.7725(7) | 2.7938(7) |
Mn3–O7 | 1.921(2) | 1.920(3) |
Mn3–O8 | 1.887(2) | 1.889(3) |
Mn3–O10 | 1.895(2) | 1.890(2) |
Mn3–Br1 | 2.8260(6) | 2.8403(7) |
Mn3–Br2 | 2.7777(7) | 2.7730(7) |
Mn4–O4 | 1.903(2) | 1.906(3) |
Mn4–O5 | 1.890(2) | 1.889(3) |
Mn4–O10 | 1.897(2) | 1.887(3) |
Mn4–Br2 | 2.9163(6) | 2.7651(7) |
Mn4–Br3 | 2.7785(6) | 2.8431(7) |
Mn2–O1 | 2.061(2) | 2.036(3) |
Mn2–O4 | 2.052(2) | 2.050(3) |
Mn2–O7 | 2.054(2) | 2.064(3) |
Mn2–N4 | 2.135(4) | 2.113(5) |
Mn1–O10–Mn3 | 120.0(1) | 119.8(1) |
Mn1–O10–Mn4 | 119.9(1) | 120.0(1) |
Mn3–O10–Mn4 | 120.1(1) | 119.9(1) |
Mn2–O1–Mn1 | 109.3(1) | 113.8(1) |
Mn2–O7–Mn3 | 110.3(1) | 112.7(1) |
Mn2–O4–Mn4 | 111.8(1) | 113.4(2) |
Mn1–Br1–Mn3 | 72.50(2) | 72.22(3) |
Mn1–Br3–Mn4 | 73.09(2) | 71.21(3) |
Mn3–Br2–Mn4 | 70.41(2) | 72.36(3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Löhr, J.; Font-Bardia, M.; Mayans, J.; Escuer, A. [MnIII6MnIINaI2], [MnIII3MnIINaI], and [MnIII3] Clusters Derived from Schiff Bases: Syntheses, Structures, and Magnetic Properties. Magnetochemistry 2024, 10, 76. https://doi.org/10.3390/magnetochemistry10100076
Löhr J, Font-Bardia M, Mayans J, Escuer A. [MnIII6MnIINaI2], [MnIII3MnIINaI], and [MnIII3] Clusters Derived from Schiff Bases: Syntheses, Structures, and Magnetic Properties. Magnetochemistry. 2024; 10(10):76. https://doi.org/10.3390/magnetochemistry10100076
Chicago/Turabian StyleLöhr, Johannes, Mercè Font-Bardia, Júlia Mayans, and Albert Escuer. 2024. "[MnIII6MnIINaI2], [MnIII3MnIINaI], and [MnIII3] Clusters Derived from Schiff Bases: Syntheses, Structures, and Magnetic Properties" Magnetochemistry 10, no. 10: 76. https://doi.org/10.3390/magnetochemistry10100076
APA StyleLöhr, J., Font-Bardia, M., Mayans, J., & Escuer, A. (2024). [MnIII6MnIINaI2], [MnIII3MnIINaI], and [MnIII3] Clusters Derived from Schiff Bases: Syntheses, Structures, and Magnetic Properties. Magnetochemistry, 10(10), 76. https://doi.org/10.3390/magnetochemistry10100076