Effect of Compost Tea in Horticulture
Abstract
:1. Introduction
2. Classification of Compost Tea: Focus on Production Procedures and Composition
3. Effect of Compost Tea on Growth and Field Parameters and Its Use in Control of Phytopathogenic Fungi and Bacteria in Horticulture
4. Influence of Compost Tea on Nutrients and Bioactive Components in Horticulture
5. Conclusions and Further Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mamani, A.I.d.F.; Filippone, M.P. Bioinsumos: Componentes claves de una agricultura sostenible. Rev. Agron. Noroeste Argent. 2018, 38, 9–21. [Google Scholar]
- Curadelli, F.; Alberto, M.; Uliarte, E.M.; Combina, M.; Funes-Pinter, I. Meta-Analysis of Yields of Crops Fertilized with Compost Tea and Anaerobic Digestate. Sustainability 2023, 15, 1357. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, A.I.; Suárez-Fernández, M.B.; Pérez-Sánchez, R.; Gómez-Sánchez, M.Á.; Morales-Corts, M.R. Compost tea induces growth and resistance against Rhizoctonia solani and Phytophthora capsici in pepper. Agronomy 2021, 11, 781. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Villecco, D.; Pane, C.; Ragosta, G.; Palese, A.M.; Celano, G. Realizzazione di un sistema di compostaggio “on farm” dei residui di pomodoro. Biol. Ital. 2010, 1, 63–67. [Google Scholar]
- Zaccardelli, M.; Pane, C.; Scotti, R.; Palese, A.M.; Celano, G. Impiego di compost-tea come bioagrofarmaci e biostimolanti in orto-frutticoltura. Italus Hortus 2012, 19, 17–28. [Google Scholar]
- Giménez, A.; Fernández, J.A.; Pascual, J.A.; Ros, M.; Egea-Gilabert, C. Application of directly brewed compost extract improves yield and quality in baby leaf lettuce grown hydroponically. Agronomy 2020, 10, 370. [Google Scholar] [CrossRef]
- Ros, M.; Hurtado-Navarro, M.; Giménez, A.; Fernández, J.A.; Egea-Gilabert, C.; Lozano-Pastor, P.; Pascual, J.A. Spraying agro-industrial compost tea on baby spinach crops: Evaluation of yield, plant quality and soil health in field experiments. Agronomy 2020, 10, 440. [Google Scholar] [CrossRef]
- Pane, C.; Celano, G.; Villecco, D.; Zaccardelli, M. Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost-tea application. Crop Prot. 2012, 38, 80–86. [Google Scholar] [CrossRef]
- Bali, R.; Pineault, J.; Chagnon, P.L.; Hijri, M. Fresh compost tea application does not change rhizosphere soil bacterial community structure, and has no effects on soybean growth or yield. Plants 2021, 10, 1638. [Google Scholar] [CrossRef]
- Eudoxie, G.; Martin, M. Compost tea quality and fertility. In Organic Fertilizers-History, Production and Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Morales-Corts, M.R.; Pérez-Sánchez, R.; Gómez-Sánchez, M.Á. Efficiency of garden waste compost teas on tomato growth and its suppressiveness against soilborne pathogens. Sci. Agric. 2018, 75, 400–409. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Pane, C.; Villecco, D.; Palese, A.M.; Celano, G. Compost tea spraying increases yield performance of pepper (Capsicum annuum L.) grown in greenhouse under organic farming system. Ital. J. Agron. 2018, 13, 229–234. [Google Scholar] [CrossRef]
- Milinković, M.; Lalević, B.; Jovičić-Petrović, J.; Golubović-Ćurguz, V.; Kljujev, I.; Raičević, V. Biopotential of compost and compost products derived from horticultural waste—Effect on plant growth and plant pathogens’ suppression. Process Saf. Environ. Prot. 2019, 121, 99–306. [Google Scholar] [CrossRef]
- Ingham, E.R. What is compost tea? Part 1. BioCycle 1999, 40, 74–75. [Google Scholar]
- Mengesha, W.K.; Gill, W.M.; Powell, S.M.; Evans, K.J.; Barry, K.M. A study of selected factors affecting efficacy of compost tea against several fungal pathogens of potato. J. Appl. Microbiol. 2017, 123, 732–747. [Google Scholar] [CrossRef]
- Samet, M.; Ghazala, I.; Karray, F.; Abid, C.; Chiab, N.; Nouri-Ellouz, O.; Sayadi, S.; Gargouri-Bouzid, R. Isolation of bacterial strains from compost teas and screening of their PGPR properties on potato plants. Environ. Sci. Pollut. Res. 2022, 29, 75365–75379. [Google Scholar] [CrossRef]
- Hamid, S.; Ahmad, I.; Akhtar, M.J.; Iqbal, M.N.; Shakir, M.; Tahir, M.; Rasool, A.; Sattar, A.; Khalid, M.; Ditta, A.; et al. Bacillus subtilis Y16 and biogas slurry enhanced potassium to sodium ratio and physiology of sunflower (Helianthus annuus L.) to mitigate salt stress. Environ. Sci. Pollut. Res. 2021, 28, 38637–38647. [Google Scholar] [CrossRef]
- Pane, C.; Palese, A.M.; Celano, G.; Zaccardelli, M. Effects of compost tea treatments on productivity of lettuce and kohlrabi systems under organic cropping management. Ital. J. Agron. 2014, 9, 153–156. [Google Scholar] [CrossRef]
- Kim, M.J.; Shim, C.K.; Kim, Y.K.; Hong, S.J.; Park, J.H.; Han, E.J.; Kim, J.H.; Kim, S.C. Effect of aerated compost tea on the growth promotion of lettuce, soybean, and sweet corn in organic cultivation. Plant Pathol. J. 2015, 31, 259. [Google Scholar] [CrossRef]
- Litterick, A.; Wood, M. The use of composts and compost extracts in plant disease control. In Disease Control in Crops: Biological and Environmentally Friendly Approaches; Walters, D., Ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 93–121. [Google Scholar]
- Palmer, A.; Evans, K.; Metcalf, D. Characters of aerated compost tea from immature compost that limit colonization of bean leaflets by Botrytis cinerea. J. Appl. Microbiol. 2010, 109, 1619–1631. [Google Scholar] [CrossRef]
- Scheuerell, S.J.; Mahaffee, W.F. Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium ultimum. Phytopathology 2004, 94, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Koné, S.B.; Dionne, A.; Tweddell, R.J.; Antoun, H.; Avis, T.J. Suppressive effect of non-aerated compost teas on foliar fungal pathogens of tomato. Biol. Control. 2010, 52, 167–173. [Google Scholar] [CrossRef]
- Scheuerell, S.J.; Mahaffee, W.F. Compost Tea: Principles and Prospects for Plant Disease. Compost. Sci. Util. 2002, 10, 313–338. [Google Scholar] [CrossRef]
- Weltzien, H.C. Biocontrol of foliar fungal diseases with compost extracts. In Microbial Ecology of Leaves; Andrews, J.H., Hirano, S.S., Eds.; Springer: New York, NY, USA, 1991; pp. 430–450. [Google Scholar]
- Johnson, E.A. Anaerobic fermentations. In Manual Ofindustrial Microbiology and Biotechnology; Demain, A.L., Davies, J.E., Eds.; ASM Press: Washington, DC, USA, 1999; pp. 139–150. [Google Scholar]
- Brinton, W.F.; Trankner, A.; Droffner, M. Investigations into liquid compost extracts. BioCycle 1996, 37, 68–70. [Google Scholar]
- Ingham, E.R. Brewing compost tea. Kitchen Gard. 2000, 29, 16–19. [Google Scholar]
- Ingham, E.R.; Alms, M. Compost Tea Brewing Manual, 2000 ed.; Soil Foodweb, Inc.: Corvallis, OR, USA, 1999. [Google Scholar]
- Davis, J.C. Waterborne Dissolved Oxygen Requirements and Criteria with Particular Emphasis on the Canadian Environment; National Research Council Canada: Ottawa, ON, Canada, 1975. [Google Scholar]
- Martin, C.C.S. Potential of compost tea for suppressing plant diseases. CAB Rev. 2014, 9, 1–38. [Google Scholar] [CrossRef]
- Scheuerell, S.J.; Mahaffee, W.F. Variability associated with suppression of gray mold (Botrytis cinerea) on Geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis. 2006, 90, 1201–1208. [Google Scholar] [CrossRef]
- Siddiqui, Y.; Islam, T.M.; Naidu, Y.; Meon, S. The conjunctive use of compost tea and inorganic fertiliser on the growth, yield and terpenoid content of Centella asiatica (L.) urban. Sci. Hortic. 2011, 130, 289–295. [Google Scholar] [CrossRef]
- Siddiqui, Y.; Sariah, M.; Ismail, M.R.; Asgar, A. Trichoderma-fortified compost extracts for the control of Choanephora wet rot in okra production. Crop Prot. 2008, 27, 385–390. [Google Scholar] [CrossRef]
- Bernal-Vicente, A.; Ros, M.; Tittarelli, F.; Intrigliolo, F.; Pascual, J.A. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects. Bioresour. Technol. 2008, 99, 8722–8728. [Google Scholar] [CrossRef]
- Durmuş, M.; Kızılkaya, R. The effect of tomato waste compost on yield of tomato and some biological properties of soil. Agronomy 2022, 12, 1253. [Google Scholar] [CrossRef]
- Marín, F.; Diánez, F.; Santos, M.; Carretero, F.; Gea, F.J.; Castañeda, C.; Navarro, M.J.; Yau, J.A. Control of Phytophthora capsici and Phytophthora parasitica on pepper (Capsicum annuum L.) with compost teas from different sources, and their effects on plant growth promotion. Phytopathol. Mediterr. 2014, 53, 216–228. [Google Scholar]
- Kammoun, M.; Ghorbel, I.; Charfeddine, S.; Kamoun, L.; Gargouri-Bouzid, R.; Nouri-Ellouz, O. The positive efect of phosphogypsum supplemented composts on potato plant growth in the feld and tuber yield. J. Environ. Manag. 2017, 20, 475–483. [Google Scholar] [CrossRef]
- López-Martín, J.J.; Morales-Corts, M.R.; Pérez-Sánchez, R.; Gómez-Sánchez, M.A. Efficiency of garden waste compost teas on potato growth and its suppressiveness against Rhizoctonia. Agric. For. 2018, 64, 7–14. [Google Scholar]
- Samet, M.; Charfeddine, M.; Kamoun, L.; Nouri-Ellouze, O.; Gargouri-Bouzid, R. Effect of compost tea containing phosphogypsum on potato plant growth and protection against Fusarium solani infection. Environ. Sci. Pollut. Res. 2018, 25, 18921–18937. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, A.I.; Pérez-Sánchez, R.; Plaza, J.; Morales-Corts, M.R. Compost tea as a sustainable alternative to promote plant growth and resistance against Rhizoctonia solani in potato plants. Sci. Hortic. 2022, 300, 111090. [Google Scholar] [CrossRef]
- Villecco, D.; Pane, C.; Ronga, D.; Zaccardelli, M. Enhancing sustainability of tomato, pepper and melon nursery production systems by using compost tea spray applications. Agronomy 2020, 10, 1336. [Google Scholar] [CrossRef]
- Jasson, T.I. Effects of Compost Tea Extract on Growth, Nutritional Value, Soil Quality of Hypoxis Hemerocallidea and Siphonochilus Aethiopicus. Master’s Thesis, Cape Peninsula University of Technology, Belville, NC, USA, 2017; p. 138. [Google Scholar]
- Indira, S.; Singh, S.J. Effect of vermicompostand biofertilizer on yield and quality of Rabi onion (Allium cepa L.) cv. puna red. Agric. Sci. Dig.-A Res. J. 2014, 34, 144–146. [Google Scholar]
- Abdel-Haleem, E.S.; Farrag, H.M.; Abeer, B.A.K.R.; Abdelrasheed, K.G. Combined use of compost, compost tea, and vermicompost tea improves soil properties, and growth, yield, and quality of (Allium cepa L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12565. [Google Scholar]
- Pant, A.P.; Radovich, T.J.; Hue, N.V.; Paull, R.E. Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Sci. Hortic. 2012, 148, 138–146. [Google Scholar] [CrossRef]
- Pane, C.; Palese, A.M.; Spaccini, R.; Piccolo, A.; Celano, G.; Zaccardelli, M. Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Sci. Hortic. 2016, 202, 117–124. [Google Scholar] [CrossRef]
- Elad, Y.; Shtienberg, D. Effect of compost water extracts on grey mould (Botrytis cinerea). Crop Prot. 1994, 13, 109–114. [Google Scholar] [CrossRef]
- Pane, C.; Valentini, F.; Bonanomi, G.; Cozzolino, L.; Antignani, V.; Puopolo, G.; Zoina, A.; Scala, F. Control of plant pathogens by using a compost tea. J. Plant Pathol. 2007, 89, 52. [Google Scholar]
- Segarra, G.; Reis, M.; Casanova, E.; Trillas, M.I. Control of powdery mildew (Erysiphe polygoni) in tomato by foliar applications of compost tea. J. Plant Pathol. 2009, 91, 683–689. [Google Scholar]
- Al-Dahmani, J.H.; Abbasi, P.A.; Miller, S.A.; Hoitink, H.A. Suppression of bacterial spot of tomato with foliar sprays of compost extracts under green house and field conditions. Plant Dis. 2003, 87, 913–919. [Google Scholar] [CrossRef]
- Al-Mughrabi, K.I. Antibiosis ability of aerobic compost tea against foliar and tuber potato diseases. Biotechnology 2006, 5, 69–74. [Google Scholar] [CrossRef]
- Al-Mughrabi, K.I. Suppression of Phytophthora infestans in potatoes by foliar application of food nutrients and compost tea. Aust. J. Basic Appl. Sci. 2007, 1, 785–792. [Google Scholar]
- Al-Mughrabi, K.I.; Berthélémé, C.; Livingston, T.; Burgoyne, A.; Poirier, R.; Vikram, A. Aerobic compost tea, compost and combination of both reduce the severity of common scab (Streptomyces scabiei) on potato. J. Plant Sci. 2008, 3, 168–175. [Google Scholar] [CrossRef]
- De Corato, U. Compost and Compost Tea from On-Farm Composted Agro-Wastes Improve the Sustainability of Horticultural Organic Cropping Systems. In Agri-Based Bioeconomy; CRC Press: Boca Raton, FL, USA, 2021; pp. 143–162. [Google Scholar]
- El-Masry, M.H.; Khalil, A.I.; Hassouna, M.S.; Ibrahim, H.A.H. In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J. Microbiol. Biotechnololgy 2002, 18, 551–558. [Google Scholar] [CrossRef]
- Siddiqui, Y.; Meon, S.; Ismai, R.; Rahmani, M. Bio-potential of compost tea from agro-waste to suppress Choanephora cucurbitarum L. the causal pathogen of wet rot of okra. Biol. Control 2009, 49, 38–44. [Google Scholar] [CrossRef]
- Hagag, W.M.; Saber, M.S.M. Suppression of early blight on tomato and purple blight on onion by foliar sprays of aerated and non-aerated compost teas. J. Food Agric. Environ. 2007, 5, 302–309. [Google Scholar]
- Joshi, D.; Hooda, K.; Bhatt, J.; Mina, B.; Gupta, H. Suppressive effects of composts on soil-borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Prot. 2009, 28, 608–615. [Google Scholar] [CrossRef]
- Ingham, E.R. The Compost Tea Brewing Manual, 5th ed.; Soil Foodweb, Inc.: Corvallis, OR, USA, 2005. [Google Scholar]
- Nofal, A.M.; Abd El-Rahman, M.; Alharbi, A.; Abdelghany, T.M. Ecofriendly method for suppressing damping-off disease caused by Rhizoctonia solani using compost tea. BioResources 2021, 16, 6378. [Google Scholar] [CrossRef]
- Tegegn, A. Effect of aerated and non-aerated compost steepages on the severity and incidence of major fungal diseases of faba bean; Botrytis fabae, Uromyces vicia fabae and Ascochyta fabae. Plant 2017, 5, 85–92. [Google Scholar] [CrossRef]
- Tian, X.; Zheng, Y. Compost teas and reused nutrient solution suppress plant pathogens in vitro. HortScience 2013, 48, 510–512. [Google Scholar] [CrossRef]
- Boutasknit, A.; Anli, M.; Tahiri, A.; Raklami, A.; Ait-El-Mokhtar, M.; Ben-Laouane, R.; Meddich, A. Potential effect of horse manure-green waste and olive pomace-green waste composts on physiology and yield of garlic (Allium sativum L.) and soil fertility. Gesunde Pflanz. 2022, 72, 285–295. [Google Scholar] [CrossRef]
- Carricondo-Martínez, I.; Berti, F.; Salas-Sanjuán, M.D.C. Different organic fertilisation systems modify tomato quality: An opportunity for circular fertilisation in intensive horticulture. Agronomy 2022, 12, 174. [Google Scholar] [CrossRef]
- Jasson, T.I.; Jimoh, M.O.; Daniels, C.W.; Nchu, F.; Laubscher, C.P. Enhancement of Antioxidant Potential, Phytochemicals, Nutritional Properties, and Growth of Siphonochilus aethiopicus (Schweinf.) BL Burtt with Different Dosages of Compost Tea. Horticulturae 2023, 9, 274. [Google Scholar] [CrossRef]
- Savarese, C.; Cozzolino, V.; Verrillo, M.; Vinci, G.; De Martino, A.; Scopa, A.; Piccolo, A. Combination of humic biostimulants with a microbial inoculum improves lettuce productivity, nutrient uptake, and primary and secondary metabolism. Plant Soil 2022, 481, 285–314. [Google Scholar] [CrossRef]
- Ali, O.A. Role of humic substances and compost tea in improvement of endogenous hormones content, flowering and yield and its components of faba bean (Vicia faba L.). Ann. Agric. Sci. Moshtohor 2015, 53, 373–384. [Google Scholar]
- Khoerunnisa, K.; Putry, R.R.H.; Salsabila, S.A.; Darmawan, M.R.; Nahdatulia, Y.; Budisantoso, I. Growth and Flavonoids Content of Black Rice (Oryza sativa L. indica) with Compost Tea of Oyster Mushroom Waste. Caraka Tani J. Sustain. Agric. 2022, 37, 289–298. [Google Scholar] [CrossRef]
- Lu, S.; Pentico, D.; Castro, R.; Dinh, S.; Love, J.J.; Larom, D.L.; Liu, C. Effect of Ultraviolet Light Exposure and Compost Tea Supplementation on Growth, Antioxidant Activities, and Microbiome of Hydroponically Grown Mustard Greens. ACS Agric. Sci. Technol. 2022, 2, 521–533. [Google Scholar] [CrossRef]
- Santiago-López, G.; Preciado-Rangel, P.; Sánchez-Chavez, E.; Esparza-Rivera, J.R.; Fortis-Hernández, M.; Moreno-Reséndez, A. Organic nutrient solutions in production and antioxidant capacity of cucumber fruits. Emir. J. Food Agric. 2016, 28, 518–521. [Google Scholar] [CrossRef]
- Mostafa, M.F.M.; El-Baz, E.; El-Wahab, A.; Omar, A.S. Using different sources of compost tea on grapes. J. Plant Prod. 2011, 2, 935–947. [Google Scholar] [CrossRef]
- Hargreaves, J.; Adl, M.S.; Warman, P.R.; Rupasinghe, H.V. The effects of organic amendments on mineral element uptake and fruit quality of raspberries. Plant Soil 2008, 308, 213–226. [Google Scholar] [CrossRef]
- Baldotto, L.E.B.; Baldotto, M.A.; Canellas, L.P.; Bressan-Smith, R.; Olivares, F.L. Growth promotion of pineapple’Vitória’by humic acids and Burkholderia spp. during acclimatization. Rev. Bras. Ciência Solo 2010, 34, 1593–1600. [Google Scholar] [CrossRef]
- Kariuki, G.M.; Muriuki, L.K.; Kibiro, E.M. The impact of suppressive soils on plant pathogens and agricultural productivity. In Organic Amendments and Soil Suppressiveness in Plant Disease Management; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–23. [Google Scholar]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef]
Compost Tea (CT) | Crops | Effects on the Crops | Citations |
---|---|---|---|
CT from a compost of mushroom | Star Flower African Ginger | Positive effect on root-associated microorganisms for plant nutrition and nutrient uptake | [45] |
CT from a compost of 78.0% artichoke and 20% woodchips; CT from a compost of 43.5% artichoke, 23.5% fennel, 11.0% escarole residues and 20% woodchips | Lettuce and Kohlrabi | Biostimulation and increase in crop production | [20] |
CT from a compost of rice, straw, and Hinoki cypress bark; CT from a vermicompost | Lettuce, Soybean, and Sweet Corn | Increase plant growth (shoot and root) and yield | [18] |
CT from a Vermicompost | Onion | Improve yield and quality of rabi onion (N content, Total soluble solids (TSS) and pungency) | [46] |
CT from a compost of horticultural crop residues, Poultry litter, and cow dung; CT from a vermicompost | Onion | Increase plant height, number of leaves, and fresh and dry weights; increase chlorophyll content. | [47] |
CT from a compost of chicken manure and green waste | Pak choi | Increase growth and mineral nutrient content | [48] |
CT from a compost of mushroom, grape, and crop residues; CT from a vermicompost | Pepper | Increase plant growth | [39] |
CT from a compost of vegetable wastes | Pepper | Biostimulation and increase in crop production and soil fertility | [14] |
CT from a compost of green and pruning wastes | Pepper | Increase plant growth | [5] |
CT from olive mill pomace, olive oil mill wastewater, and coffee grounds | Potato | Increase tuber yield | [40] |
CT from compost of green and pruning residues | Potato | Increase growth and production characters (plant height, shoots high, yield, tuber size, and weight, number of tubers per plant, fried quality) and chlorophyll content (SPA units) | [41] |
CT from a compost of olive oil mill wastewater, olive pomace, coffee grounds, and phosphogypsum | Potato | Increase plant growth | [42] |
CT from the compost of grass cuttings and pruning debris, leaves and branches of mainly cypress, willow and poplar trees | Potato | Increase yield, shoot number, tuber weight, and tuber size | [43] |
CT from the compost of onion waste and vineyard residue, implemented with beneficial microorganisms | Spinach | Increase plant development, yield, quality, phenolic content, antioxidant propriety, and flavonoid content | [8] |
CT from a compost of agricultural and municipal wastes | Tomato | Biostimulation and increased crop production | [49] |
CT from a compost of leaves and stems of different Cupressaceae species and grass clippings; CT from a vermicompost | Tomato | Increase shoot and root dry weight, stem diameter, chlorophyll content, and crop production | [13] |
CT from a compost of tomato wastes | Tomato | Biostimulation and increase in crop production | [38] |
CT from a compost of horticultural residues, fennel wastes, and commercial biowaste | Tomato, Pepper, and Melon | Biostimulation and increased growth and vegetative development of the plantlets cultivated in nursery | [44] |
Compost Tea (CT) | Crops | Protection Effect | Citations |
---|---|---|---|
CT from compost of grape and animal manure | Bean | Significant decrease in R. solani infection | [63] |
CT from compost of cow and horse dung | Faba bean | Highly suppressivity against Botrytis cinerea, Alternaria alternate, and Pyrenochaeta lycopersici | [64] |
CT from compost of manure, onion, eggshells, and carrot waste; CT from compost of pine bark; CT from vermicompost | Ornamental plants (e.g., Campanula, Aphelandra, Gerbera, and others) | Suppressive effects on six pathogens: Fusarium foetens, Rhizoctonia solani, Sclerotinia sclerotiorum, Phytophthora cryptogea, Pythium intermedium, P. ultimum. | [65] |
CT from compost of mushroom, grape, and crop residues; CT from vermicompost | Pepper | Suppressive effect on Phytophthora capsici and Phytophthora parasitica | [38] |
CT from compost of green and pruning wastes | Pepper | Inhibition effect on Rhizoctonia solani and Phytophthora capsici | [5] |
CT from compost of olive oil mill wastewater, olive pomace, coffee grounds, and phosphogypsum | Potato | Inhibition effect and control of Fusarium solani | [42] |
CT from compost of agricultural waste compost; CT from vermicompost | Potato | Suppressive effect of potato bacterial wilt caused by Ralstonia solanacearum | [17] |
CT from compost of green and pruning residues | Potato | Suppressive effect on Rhizoctonia solani | [41] |
CT from compost of grass cuttings and pruning debris (leaves and branches of cypress, willow and poplar trees) | Potato | Higher resistance against Rhizoctonia solani | [43] |
CT from compost of onion and vineyard implemented with beneficial microorganisms | Spinach | Suppressive effects and protection of the plants against R. solani | [8] |
CT from compost of agricultural and municipal waste | Tomato | Positive impact on health and vegetative status of the plants | [49] |
CT from a compost of leaves and stems of different Cupressaceae species and grass clippings; CT from a vermicompost | Tomato | Suppressive effect on Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici | [13] |
Treatments | Crops | Biostimulating Effect | Citations |
---|---|---|---|
Compost tea | Wild ginger | Maximize accumulation of minerals, phytochemicals, and antioxidant | [68] |
Compost tea and potassium humates | Lettuce | Increased concentration of minerals, primarily amino acids, saccharides, and antioxidants | [69] |
Compost tea and humic acids | Faba bean | Increased nutritional content, total sugars, and crude protein | [70] |
Compost tea from Oyster Mushroom Waste | Black Rice | Increased growth rate and flavonoid content | [71] |
Compost tea and UV exposure | Garnet Giant Mustard | Increased nitrogen and mineral accumulation | [72] |
Compost and vermicompost tea | Cucumber (Cucumis Sativus L.) | Increased antioxidant capacity | [73] |
Compost tea | Grape | Increased N, P, K, and chlorophyll content in petioles, higher production, and total sugar and anthocyanin content in grape skins | [74] |
Compost tea | Blueberry | Increased K concentration in leaves and fruit, increased Na content of leaves | [75] |
Humic acids isolated from vermicompost | Ananas | Improved growth, increased nutrient content (N, P, K, Ca, Mg) | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilla, N.; Tranchida-Lombardo, V.; Gabrielli, P.; Aguzzi, A.; Caputo, M.; Lucarini, M.; Durazzo, A.; Zaccardelli, M. Effect of Compost Tea in Horticulture. Horticulturae 2023, 9, 984. https://doi.org/10.3390/horticulturae9090984
Pilla N, Tranchida-Lombardo V, Gabrielli P, Aguzzi A, Caputo M, Lucarini M, Durazzo A, Zaccardelli M. Effect of Compost Tea in Horticulture. Horticulturae. 2023; 9(9):984. https://doi.org/10.3390/horticulturae9090984
Chicago/Turabian StylePilla, Niccolò, Valentina Tranchida-Lombardo, Paolo Gabrielli, Altero Aguzzi, Michele Caputo, Massimo Lucarini, Alessandra Durazzo, and Massimo Zaccardelli. 2023. "Effect of Compost Tea in Horticulture" Horticulturae 9, no. 9: 984. https://doi.org/10.3390/horticulturae9090984
APA StylePilla, N., Tranchida-Lombardo, V., Gabrielli, P., Aguzzi, A., Caputo, M., Lucarini, M., Durazzo, A., & Zaccardelli, M. (2023). Effect of Compost Tea in Horticulture. Horticulturae, 9(9), 984. https://doi.org/10.3390/horticulturae9090984