Biostimulants as a Means to Alleviate the Transplanting Shock in Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Cultivation, and Treatments
2.2. Environmental Conditions
2.3. Determinations
2.3.1. Chlorophyll Content Index (CCI)
2.3.2. Chlorophyll Fluorescence
2.3.3. Quality and Severity of Tip Burn
2.3.4. Leaf Color
2.3.5. Dry Matter
2.3.6. Nitrates
2.3.7. Total Soluble Phenols
2.3.8. Chlorophylls and Total Carotenoids
2.3.9. Total Antioxidant Capacity
2.3.10. Statistical Analysis
3. Results
3.1. Environmental Conditions
3.2. Leaf Number/Plant
3.3. Plant Fresh Weight
3.4. Quality and Tip Burn
3.5. Chlorophyll Content Index (CCI)
3.6. Fluorescence Parameters
3.7. Leaf Color
3.8. Chlorophylls
3.9. Total Carotenoids
3.10. Dry Matter
3.11. Nitrates
3.12. Total Soluble Phenols
3.13. Antioxidant Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schrader, W.L. Using Transplants in Vegetable Production; University of California, Agriculture and Natural Resources (UC ANR): St. Davis, CA, USA, 2000. [Google Scholar]
- Berkowitz, G.A.; Rabin, J. Antitranspirant associated abscisic acid effects on the water relations and yield of transplanted bell peppers. Plant Physiol. 1988, 86, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Aloni, B.; Daie, J.; Karni, L. Water relations, photosynthesis and assimilate partitioning in leaves of pepper (Capsicum annuum) transplants: Effect of water stress after transplanting. J. Hortic. Sci. 1991, 66, 75–80. [Google Scholar] [CrossRef]
- Nitzschel, P.; Berkowitz, G.A.; Rabin, J. Development of a seedling-applied antitranspirant formulation to enhance water status, growth, and yield of transplanted bell pepper. J. Am. Soc. Hortic. Sci. 1991, 116, 405–411. [Google Scholar] [CrossRef]
- Sharma, N.; Abrams, S.R.; Waterer, D.R. Abscisic acid analogs reduce transplant shock in tomato seedlings. J. Veg. Sci. 2005, 11, 41–56. [Google Scholar] [CrossRef]
- Leskovar, D.I.; Goreta, S.; Jifon, J.L.; Agehara, S.; Shinohara, T.; Moore, D. ABA to enhance water stress tolerance of vegetable transplants. Acta Hortic. 2008, 782, 253–264. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Reddy, M.S.; Kloepper, J.W. Survival and colonization of rhizobacteria in a tomato transplant system. Can. J. Microbiol. 2003, 49, 383–389. [Google Scholar] [CrossRef]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Kokalis-Burelle, N.; Vavrina, C.S.; Rosskopf, E.N.; Shelby, R.A. Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 2002, 238, 257–266. [Google Scholar] [CrossRef]
- Kokalis-Burelle, N.; Vavrina, C.; Reddy, M.; Kloepper, J. Amendment of muskmelon and watermelon transplant media with plant growth-promoting rhizobacteria: Effects on seedling quality, disease, and nematode resistance. HortTechnology 2003, 13, 476–482. [Google Scholar] [CrossRef]
- Ekinci, M.; Turan, M.; Yildirim, E.; Güneş, A.; Kotan, R.; Dursun, A. Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplants. Acta Sci. Pol. Hortorum Cultus 2014, 13, 71–85. [Google Scholar]
- Kloepper, J.W.; Reddy, M.S.; Rodríguez-Kabana, R.; Kenney, D.S.; Kokalis-Burelle, N.; Martinez-Ochoa, N. Application for rhizobacteria in transplant production and yield enhancement. Acta Hortic. 2004, 631, 219–229. [Google Scholar] [CrossRef]
- Vetrano, F.; Miceli, C.; Angileri, V.; Frangipane, B.; Moncada, A.; Miceli, A. Effect of bacterial inoculum and fertigation management on nursery and field production of lettuce plants. Agronomy 2020, 10, 1477. [Google Scholar] [CrossRef]
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial biostimulants as response to modern agriculture needs: Composition, role and application of these innovative products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O.; Santoyo, G.; Perazzolli, M. The potential role of microbial biostimulants in the amelioration of climate change-associated abiotic stresses on crops. Front. Microbiol. 2022, 12, 829099. [Google Scholar] [CrossRef]
- Fusco, G.M.; Nicastro, R.; Rouphael, Y.; Carillo, P. The effects of the microbial biostimulants approved by EU Regulation 2019/1009 on yield and quality of vegetable crops. Foods 2022, 11, 2656. [Google Scholar] [CrossRef] [PubMed]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef]
- Amirkhani, M.; Netravali, A.N.; Huang, W. Investigation of soy protein–based biostimulant seed coating for broccoli seedling and plant growth enhancement. Hortscience 2016, 51, 1121–1126. [Google Scholar] [CrossRef]
- Wilson, H.T.; Xu, K.; Taylor, A.G. Transcriptome analysis of gelatin seed treatment as a biostimulant of cucumber plant growth. Sci. World J. 2015, 2015, 391234. [Google Scholar] [CrossRef]
- Koukounararas, A.; Tsouvaltzis, P.; Siomos, A.S. Effect of root and foliar application of amino acids on the growth and yield of greenhouse tomato in different fertilization levels. J. Food Agric. Environ. 2013, 11, 644–648. [Google Scholar]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Kirn, A.; Kashif, S.R.; Yaseen, M. Using indigenous humic acid from lignite to increase growth and yield of okra (Abelmoschus esculentus L.). Soil Environ. 2010, 29, 187–191. [Google Scholar]
- Kunicki, E.; Grabowska, A.; Sȩkara, A.; Wojciechowska, R. The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L). Folia Hortic. 2010, 22, 9–13. [Google Scholar] [CrossRef]
- Gajc-Wolska, J.; Kowalczyk, K.; Nowecka, M.; Mazur, K.; Metera, A. Effect of organic-mineral fertilizers on the yield and quality of endive (Cichorium endivia L.). Acta Sci. Pol. 2012, 11, 189–200. [Google Scholar]
- Grabowska, A.; Kunicki, E.; Sekara, A.; Kalisz, A.; Wojciechowska, R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 2012, 77, 37–48. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Cristofano, F.; Colla, G.; Pii, Y.; Lucini, L.; Rouphael, Y. A Graminaceae-derived protein hydrolysate and its fractions provide differential growth and modulate qualitative traits of lettuce grown under non-saline and mild salinity conditions. Sci. Hortic. 2023, 319, 112130. [Google Scholar] [CrossRef]
- Qin, K.; Leskovar, D.I. Humic substances improve vegetable seedling quality and post-transplant yield performance under stress conditions. Agriculture 2020, 10, 254. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Di Mattia, E.; El-Nakhel, C.; Cardarelli, M. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric. 2014, 95, 1706–1715. [Google Scholar] [CrossRef]
- Bactiva Flyer EN 11.02.20. Available online: https://www.bactiva.de/en/produkte.php?p=Bactiva%3Csup%3E%C2%AE%3C/sup%3E (accessed on 2 November 2022).
- Isabion-etiketa.pdf. Available online: https://www.syngenta.gr/sites/g/files/zhg446/f/media/2021/03/26/isabion-etiketa.pdf?token=1617031072 (accessed on 2 November 2022).
- Kader, A.A.; Lipton, W.J.; Morris, L.L. Systems for scoring quality of harvested lettuce. HortScience 1973, 8, 408–409. [Google Scholar] [CrossRef]
- Siomos, A.S.; Beis, G.; Papadopoulou, P.P.; Nasi, P.; Kaberidou, I. Aerial biomass, root biomass and quality of four lettuce cultivars grown hydroponically in perlite and pumice. Acta Hortic. 2001, 548, 437–444. [Google Scholar] [CrossRef]
- Siomos, A.S.; Beis, G.; Papadopoulou, P.P.; Barbayiannis, N. Quality and composition of lettuce (cv. ‘Plenty’) grown in soil and soilless culture. Acta Hortic. 2001, 548, 445–450. [Google Scholar] [CrossRef]
- Lancaster, J.E.; Lister, C.E.; Reay, P.F.; Triggs, C.M. Influence of pigment composition on skin color in a wide range of fruit and vegetables. J. Am. Soc. Hortic. Sci. 1997, 122, 594–598. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Haroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agr. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soci. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Fish, W.W. Refinements of the attending equations for several spectral methods that provide improved quantification of β-carotene and/or lycopene in selected foods. Postharvest Biol. Technol. 2012, 66, 16–22. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LTW-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Reynaud, H.; Canaguier, R.; Trtílek, M.; Panzarová, K.; et al. Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: A case study on tomato. Front. Plant Sci. 2019, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Banks, J.M. Continuous excitation chlorophyll fluorescence parameters: A review for practitioners. Tree Physiol. 2017, 37, 1128–1136. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenquist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef]
- Lazár, D. Parameters of photosynthetic energy partitioning. J. Plant Physiol. 2015, 175, 131–147. [Google Scholar] [CrossRef]
- Lazár, D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 2006, 33, 9–30. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Guissé, Β.; Greppin, H.; Strasser, R.J. Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim. Biophys. Acta 1997, 1320, 95–106. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: London, UK, 2000; pp. 445–483. [Google Scholar]
- Baker, N.R.; Oxborough, K. Chlorophyll fluorescence as a probe of photosynthetic productivity. In Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, G., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 65–82. [Google Scholar]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Butler, W.L. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta 1975, 376, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef]
- Knighton, N.; Bugbee, B. A Comparison of Opti-Sciences CCM-200 Chlorophyll Meter and the Minolta SPAD 502 Chlorophyll Meter; Crop Physiology Laboratory, Utah State University: Logan, UT, USA, 2004. [Google Scholar]
- Shapiro, C.; Schepers, J.; Francis, D.; Shanahan, J. Using a Chlorophyll Meter to Improve N Management; NebGuide # 1621; University of Nebraska, Lincoln Extension, Institute of Agriculture and Natural Resources: Lincoln, NE, USA, 2013. [Google Scholar]
- Willows, R.D. Chlorophylls. Ann. Plant Rev. 2004, 14, 23–56. [Google Scholar]
- Hikosaka, K.; Terashima, I. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. Plant Cell Environ. 1995, 18, 605–618. [Google Scholar] [CrossRef]
- Terashima, I.; Hikosaka, K. Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 1995, 18, 1111–1128. [Google Scholar] [CrossRef]
- Naikoo, M.I.; Dar, M.I.; Raghib, F.; Jaleel, H.; Ahmad, B.; Raina, A.; Khan, F.A.; Naushin, F. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In Plant Signaling Molecule: Role and Regulation under Stressful Environments; Iqbal, M.R., Khan, F.A., Reddy, P.S., Ferrante, A., Khan, N.A., Eds.; Woodhead Publishing: Duxford, UK, 2019; pp. 157–168. [Google Scholar]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef]
- Lafarga, T.; Villaró, S.; Rivera, A.; Bobo, G.; Aguiló-Aguayo, I. Bioaccessibility of polyphenols and antioxidant capacity of fresh or minimally processed modern or traditional lettuce (Lactuca sativa L.) varieties. J. Food Sci. Technol. 2020, 57, 754–763. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2005, 86, 10–17. [Google Scholar] [CrossRef]
- Ottaiano, L.; Di Mola, I.; Cozzolino, E.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Biostimulant application under different nitrogen fertilization levels: Assessment of yield, leaf quality, and nitrogen metabolism of tunnel-grown lettuce. Agronomy 2021, 11, 1613. [Google Scholar] [CrossRef]
- Siomos, A.S.; Dogras, C.C. Nitrates in vegetables produced in Greece. J. Veg. Crop Prod. 2000, 5, 3–13. [Google Scholar] [CrossRef]
- Ali, S.; Moon, Y.S.; Hamayun, M.; Khan, M.A.; Bibi, K.; Lee, I.J. Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. J. Plant Interact. 2022, 17, 705–718. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
Source of Variance | DF | p | %TV | η2 | |
---|---|---|---|---|---|
Sampling time (A) | 4 | *** | 97 | 39.2 | |
Treatment (B) | 2 | ns | 2 | 1.4 | |
A × B | 8 | ns | 0 | 0.4 | |
Error | 30 | ||||
Sampling time (Days) | |||||
0 | 5.01 | d | |||
14 | 5.99 | cd | |||
21 | 7.24 | c | |||
28 | 13.51 | b | |||
35 | 15.30 | a | |||
Treatment | |||||
Control | 8.86 | a | |||
Bactiva | 9.65 | a | |||
Isabion | 9.72 | a | |||
Sampling time × Treatment | |||||
0 days | Control Bactiva Isabion | 5.03 5.03 4.97 | c c c | ||
14 days | Control Bactiva Isabion | 5.97 6.10 5.90 | c c c | ||
21 days | Control Bactiva Isabion | 6.90 7.23 7.60 | c c c | ||
28 days | Control Bactiva Isabion | 12.03 14.13 14.37 | b ab ab | ||
35 days | Control Bactiva Isabion | 14.37 15.77 15.77 | ab a a |
Source of Variance | DF | p | %TV | η2 | |
---|---|---|---|---|---|
Sampling time (A) | 1 | *** | 100 | 95.5 | |
Treatment (B) | 2 | ns | 0 | 0 | |
A × B | 2 | ns | 0 | 0 | |
Error | 12 | ||||
Sampling time (Days) | |||||
35 | 55.6 | b | |||
63 | 348.5 | a | |||
Treatment | |||||
Control | 199.8 | a | |||
Bactiva | 199.9 | a | |||
Isabion | 206.4 | a | |||
Sampling time × Treatment | |||||
35 days | Control Bactiva Isabion | 53.6 56.6 56.7 | b b b | ||
63 days | Control Bactiva Isabion | 346.0 343.2 356.2 | a a a |
Source of Variance | DF | p | %TV | η2 | |
---|---|---|---|---|---|
Sampling time (A) | 7 | *** | 92 | 40.1 | |
Treatment (B) | 2 | ** | 7 | 5.8 | |
A × B | 14 | ns | 1 | 0.7 | |
Error | 48 | ||||
Sampling time (Days) | |||||
14 | 6.48 | f | |||
21 | 8.41 | d | |||
28 | 8.70 | cd | |||
35 | 9.21 | c | |||
42 | 7.43 | e | |||
49 | 12.98 | a | |||
56 | 11.25 | ab | |||
63 | 10.87 | ab | |||
Treatment | |||||
Control | 9.07 | b | |||
Bactiva | 9.41 | ab | |||
Isabion | 9.77 | a | |||
Sampling time × Treatment | |||||
14 days | Control Bactiva Isabion | 6.31 6.53 6.59 | j j j | ||
21 days | Control Bactiva Isabion | 7.90 8.41 8.92 | ghj fgh efg | ||
28 days | Control Bactiva Isabion | 7.99 8.83 9.27 | fghi efg ef | ||
35 days | Control Bactiva Isabion | 8.72 9.07 9.85 | efg efg de | ||
42 days | Control Bactiva Isabion | 6.85 7.42 8.01 | ij hij fghi | ||
49 days | Control Bactiva Isabion | 12.67 13.30 12.99 | ab a a | ||
56 days | Control Bactiva Isabion | 10.87 11.09 11.79 | cd c bc | ||
63 days | Control Bactiva Isabion | 11.22 10.62 10.77 | c cd cd |
Fo | Fm | Fv | Fv/Fm | Fv/Fo | Fm/Fo | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Variance | DF | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | ||
Sampling time (A) | 1 | *** | 82 | 8.3 | *** | 100 | 76.8 | *** | 100 | 80.1 | *** | 97 | 43.0 | *** | 98 | 60.1 | *** | 97 | 43.0 | ||
Treatment (B) | 2 | ns | 10 | 2.1 | ns | 0 | 0.2 | ns | 0 | 0.3 | * | 2 | 1.7 | ** | 2 | 1.9 | * | 2 | 1.7 | ||
A × B | 2 | ns | 4 | 0.9 | ns | 0 | 0.1 | ns | 0 | 0.1 | ns | 0 | 0.3 | ns | 0 | 0.3 | ns | 0 | 0.3 | ||
Error | 12 | ||||||||||||||||||||
Sampling time (Days) | |||||||||||||||||||||
35 | 20,492 | b | 57,637 | b | 37,145 | b | 0.64 | b | 1.87 | b | 2.87 | b | |||||||||
63 | 22,824 | a | 86,994 | a | 64,170 | a | 0.74 | a | 2.86 | a | 3.86 | a | |||||||||
Treatment | |||||||||||||||||||||
Control | 22,378 | a | 72,842 | a | 50,464 | a | 0.68 | b | 2.27 | b | 3.27 | b | |||||||||
Bactiva | 21,649 | ab | 71,353 | a | 49,704 | a | 0.69 | ab | 2.34 | b | 3.34 | b | |||||||||
Isabion | 20,947 | b | 72,752 | a | 51,805 | a | 0.70 | a | 2.49 | a | 3.49 | a | |||||||||
Sampling time × Treatment | |||||||||||||||||||||
35 days | Control Bactiva Isabion | 21,735 20,119 19,623 | ab bc c | 58,923 56,720 57,269 | b b b | 37,188 36,601 37,646 | c c c | 0.63 0.64 0.66 | c bc b | 1.75 1.89 1.97 | d bc b | 2.75 2.89 2.97 | d cd b | ||||||||
63 days | Control Bactiva Isabion | 23,021 23,180 22,271 | a a a | 86,762 85,987 88,235 | a a a | 63,741 62,806 65,963 | a a a | 0.73 0.73 0.75 | a a a | 2.79 2.79 3.00 | a a a | 3.79 3.79 4.00 | a a a |
Area | ABS/RC | |||||||
---|---|---|---|---|---|---|---|---|
Source of Variance | DF | p | %TV | η2 | p | %TV | η2 | |
Sampling time (A) | 1 | *** | 98 | 53.2 | *** | 79 | 7.7 | |
Treatment (B) | 2 | * | 1 | 1.2 | * | 12 | 2.3 | |
A × B | 2 | ns | 1 | 0.9 | ns | 5 | 0.9 | |
Error | 12 | |||||||
Sampling time (Days) | ||||||||
35 | 13,392,392 | b | 4.29 | a | ||||
63 | 116,939,172 | a | 3.87 | b | ||||
Treatment | ||||||||
Control | 59,914,438 | b | 4.21 | a | ||||
Bactiva | 59,317,866 | b | 4.10 | ab | ||||
Isabion | 76,265,041 | a | 3.93 | b | ||||
Sampling time × Treatment | ||||||||
35 days | Control Bactiva Isabion | 15,118,185 9,575,242 15,483,749 | c c c | 4.52 4.25 4.09 | a ab bc | |||
63 days | Control Bactiva Isabion | 104,710,692 109,060,490 137,046,333 | b b a | 4.52 4.25 4.09 | c bc c |
L* | a* | b* | C* | h° | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Variance | DF | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | |
Sampling time (A) | 1 | *** | 87 | 24.7 | *** | 97 | 73.2 | *** | 95 | 40.69 | *** | 96 | 51.6 | ns | 65 | 2.3 | |
Treatment (B) | 2 | ns | 4 | 2.3 | * | 1 | 1.7 | ns | 2 | 1.8 | ns | 2 | 1.8 | ns | 6 | 0.5 | |
A × B | 2 | ns | 7 | 4.0 | * | 1 | 1.8 | ns | 2 | 1.8 | ns | 2 | 1.9 | ns | 6 | 0.4 | |
Error | 12 | ||||||||||||||||
Sampling time (Days) | |||||||||||||||||
35 | 48.09 | a | −18.74 | a | 24.63 | a | 30.95 | a | 127.29 | b | |||||||
63 | 44.47 | b | −16.08 | b | 21.43 | b | 26.79 | b | 126.89 | a | |||||||
Treatment | |||||||||||||||||
Control | 45.71 | a | −17.23 | a | 22.70 | a | 28.50 | a | 127.20 | a | |||||||
Bactiva | 47.02 | a | −17.69 | b | 23.49 | a | 29.41 | a | 126.98 | a | |||||||
Isabion | 46.11 | a | −17.30 | a | 22.90 | a | 28.70 | a | 127.08 | a | |||||||
Sampling time × Treatment | |||||||||||||||||
35 days | Control Bactiva Isabion | 48.06 47.81 48.39 | a a a | −18.62 −18.75 −18.86 | b b b | −15.84 −16.64 −15.74 | c c c | 24.33 24.66 24.90 | a a a | 127.43 127.27 127.17 | a a a | ||||||
63 days | Control Bactiva Isabion | 43.35 46.24 43.82 | b a b | −15.84 −16.64 −15.74 | a b a | 21.07 22.32 20.89 | bc b c | 26.36 27.84 26.16 | c b c | 126.97 126.70 127.00 | a a a |
Chl a (μg/g fw) | Chl a (mg/g dw) | Chl b (μg/g fw) | Chl b (mg/g dw) | Chl a/b | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Variance | DF | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | |
Sampling time (A) | 1 | ns | 5 | 0.2 | ns | 55 | 3.4 | ns | 51 | 3.1 | ns | 4 | 0.1 | *** | 98 | 50.7 | |
Treatment (B) | 2 | ns | 8 | 0.6 | ns | 2 | 0.2 | ns | 4 | 0.5 | ns | 5 | 0.3 | ns | 1 | 0.9 | |
A × B | 2 | ns | 64 | 4.5 | ns | 31 | 3.8 | ns | 32 | 4.0 | ns | 62 | 3.5 | ns | 1 | 0.9 | |
Error | 12 | ||||||||||||||||
Sampling time (Days) | |||||||||||||||||
35 | 226 | a | 3.34 | a | 64.18 | a | 0.95 | a | 3.52 | a | |||||||
63 | 219 | a | 2.94 | a | 72.34 | a | 0.97 | a | 3.03 | b | |||||||
Treatment | |||||||||||||||||
Control | 231 | a | 3.20 | a | 70.22 | a | 0.97 | a | 3.28 | a | |||||||
Bactiva | 220 | a | 3.14 | a | 68.32 | a | 0.97 | a | 3.23 | a | |||||||
Isabion | 218 | a | 3.08 | a | 66.25 | a | 0.94 | a | 3.31 | a | |||||||
Sampling time × Treatment | |||||||||||||||||
35 days | Control Bactiva Isabion | 252 228 198 | a a a | 3.62 3.41 2.99 | a ab ab | 71.53 64.67 56.33 | ab ab b | 1.03 0.97 0.85 | a a a | 3.52 3.52 3.52 | a a a | ||||||
63 days | Control Bactiva Isabion | 210 212 237 | a a a | 2.78 2.86 3.16 | b ab ab | 68.90 71.97 71.97 | ab ab a | 0.91 0.97 1.02 | a a a | 3.05 2.94 3.10 | b b b |
Chl a + b (μg/g fw) | Chl a + b (mg/g dw) | Total Carotenoids (μg/g fw) | Total Carotenoids (mg/g dw) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Variance | DF | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | |
Sampling time (A) | 1 | ns | 0 | 0.0 | ns | 38 | 1.8 | ns | 0 | 0.0 | ns | 44 | 2.5 | |
Treatment (B) | 2 | ns | 8 | 0.5 | ns | 3 | 0.3 | ns | 12 | 0.9 | ns | 4 | 0.5 | |
A × B | 2 | ns | 67 | 4.4 | ns | 42 | 3.8 | ns | 67 | 5.1 | ns | 39 | 4.4 | |
Error | 12 | |||||||||||||
Sampling time (Days) | ||||||||||||||
35 | 289 | a | 4.27 | a | 61.26 | a | 0.90 | a | ||||||
63 | 292 | a | 3.91 | a | 60.86 | a | 0.81 | a | ||||||
Treatment | ||||||||||||||
Control | 301 | a | 4.17 | a | 63.73 | a | 0.88 | a | ||||||
Bactiva | 288 | a | 4.10 | a | 60.25 | a | 0.86 | a | ||||||
Isabion | 288 | a | 4.00 | a | 59.18 | a | 0.84 | a | ||||||
Sampling time × Treatment | ||||||||||||||
35 days | Control Bactiva Isabion | 322 292 254 | a a a | 4.64 4.36 3.82 | a a a | 68.97 61.50 53.30 | a ab b | 0.99 0.92 0.80 | a ab ab | |||||
63 days | Control Bactiva Isabion | 279 284 312 | b b b | 3.70 3.84 4.18 | a a a | 58.50 59.00 65.07 | ab ab ab | 0.78 0.80 0.87 | b ab ab |
Dry Matter (%) | Nitrates (mg/kg fw) | Nitrates (% dw) | Total Soluble Phenols (μg/kg fw) | Total Soluble Phenols (μg/g dw) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source of Variance | DF | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | p | %TV | η2 | |
Sampling time (A) | 1 | *** | 94 | 32.7 | *** | 95 | 27.2 | *** | 96 | 51.6 | ns | 0 | 0.0 | ns | 22 | 1.8 | |
Treatment (B) | 2 | ns | 4 | 2.6 | ns | 2 | 1.0 | ns | 2 | 1.8 | ** | 88 | 14.0 | ** | 68 | 11.6 | |
A × B | 2 | ns | 1 | 0.5 | ns | 2 | 0.9 | ns | 2 | 1.9 | ns | 3 | 0.5 | ns | 2 | 0.4 | |
Error | 12 | ||||||||||||||||
Sampling time (Days) | |||||||||||||||||
35 | 6.75 | b | 369 | a | 0.55 | a | 247 | a | 3.65 | a | |||||||
63 | 7.47 | a | 266 | b | 0.36 | b | 248 | a | 3.33 | a | |||||||
Treatment | |||||||||||||||||
Control | 7.25 | a | 317 | a | 0.44 | a | 276 | a | 3.81 | a | |||||||
Bactiva | 7.02 | a | 330 | a | 0.48 | a | 261 | a | 3.73 | a | |||||||
Isabion | 7.06 | a | 307 | a | 0.44 | a | 205 | b | 2.93 | b | |||||||
Sampling time × Treatment | |||||||||||||||||
35 days | Control Bactiva Isabion | 6.94 6.68 6.64 | b b b | 366 394 348 | a a a | 0.53 0.59 0.52 | a a a | 279 252 208 | a ab b | 4.02 3.78 3.14 | a ab bc | ||||||
63 days | Control Bactiva Isabion | 7.57 7.37 7.48 | a a a | 268 266 265 | b b b | 0.35 0.36 0.35 | b b b | 273 270 202 | a a b | 3.60 3.68 2.71 | ab ab c |
Antioxidant Capacity (mg AAE/100 g fw) | Antioxidant Capacity (mg AAE/g dw) | |||||||
---|---|---|---|---|---|---|---|---|
Source of Variance | DF | p | %TV | η2 | p | %TV | η2 | |
Sampling time (A) | 1 | ns | 15 | 0.8 | * | 55 | 4.3 | |
Treatment (B) | 2 | ns | 18 | 1.9 | ns | 5 | 0.8 | |
A × B | 2 | ns | 52 | 5.4 | ns | 31 | 4.9 | |
Error | 12 | |||||||
Sampling time (Days) | ||||||||
35 | 11.26 | a | 1.66 | a | ||||
63 | 10.56 | a | 1.42 | b | ||||
Treatment | ||||||||
Control | 11.67 | a | 1.62 | a | ||||
Bactiva | 10.38 | a | 1.49 | a | ||||
Isabion | 10.67 | a | 1.52 | a | ||||
Sampling time × Treatment | ||||||||
35 days | Control Bactiva Isabion | 11.03 11.97 10.77 | ab a ab | 1.59 1.79 1.62 | ab a a | |||
63 days | Control Bactiva Isabion | 12.30 8.80 10.57 | a a ab | 1.64 1.19 1.41 | a b ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krinis, D.I.; Kasampalis, D.S.; Siomos, A.S. Biostimulants as a Means to Alleviate the Transplanting Shock in Lettuce. Horticulturae 2023, 9, 968. https://doi.org/10.3390/horticulturae9090968
Krinis DI, Kasampalis DS, Siomos AS. Biostimulants as a Means to Alleviate the Transplanting Shock in Lettuce. Horticulturae. 2023; 9(9):968. https://doi.org/10.3390/horticulturae9090968
Chicago/Turabian StyleKrinis, Dimitrios I., Dimitrios S. Kasampalis, and Anastasios S. Siomos. 2023. "Biostimulants as a Means to Alleviate the Transplanting Shock in Lettuce" Horticulturae 9, no. 9: 968. https://doi.org/10.3390/horticulturae9090968
APA StyleKrinis, D. I., Kasampalis, D. S., & Siomos, A. S. (2023). Biostimulants as a Means to Alleviate the Transplanting Shock in Lettuce. Horticulturae, 9(9), 968. https://doi.org/10.3390/horticulturae9090968