Efficacy of Agricultural and Food Wastes as the Growing Media for Sunflower and Water Spinach Microgreens Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Designs and Growing Media Preparation
2.2. Plant Materials and Growing Conditions
2.3. Data Collection and Analysis
2.3.1. Physicochemical Properties of Growing Media
2.3.2. Germination Test
- n = the number of seeds which were germinated on day D,
- D = the number of days counted from the beginning of germination [24].
2.3.3. Yield Assessment
2.3.4. Phytochemical Analysis
- A663, A645, and A470 = the absorbances at 663, 645, and 470 nm, respectively;
- V = the volume of the extraction solution;
- W = the mass of the fresh shoot sample.
- Ac = control reaction absorbance; As = sample reaction absorbance
2.3.5. Microbiological Analysis
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Growing Media
3.2. Germination Index
3.3. Yield Characteristics
3.4. Phytochemical Composition and Nitrate Accumulation
3.5. Microbial Populations on Microgreens
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; Rouphael, Y.; Gioia, F.D.; Kyratzis, A.; Serio, F.; Renna, M.; Pascale, S.D.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Turner, E.R.; Luo, Y.; Buchanan, R.L. Microgreen nutrition, food safety, and shelf life. J. Food Sci. 2020, 85, 870–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlando, M.; Trivellini, A.; Incrocci, L.; Ferrante, A.; Mensuali, A. The inclusion of green light in a red and blue light background impact the growth and functional quality of vegetable and flower microgreen species. Horticulturae 2022, 8, 217. [Google Scholar] [CrossRef]
- Priti; Sangwan, S.; Kukreja, B.; Mishra, G.P.; Dikshit, H.K.; Singh, A.; Aski, M.; Kumar, A.; Taak, Y.; Stobdan, T.; et al. Yield optimization, microbial load analysis, and sensory evaluation of mungbean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris), and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions. PLoS ONE 2022, 17, e0268085. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Lalk, G.T.; Bi, G. Fertilization and pre-sowing seed soaking affect yield and mineral nutrients of ten microgreen species. Horticulturae 2021, 7, 14. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; El-Nakhel, C.; Graziani, G.; Kyriacou, M.C.; Rouphael, Y. The Effects of nutrient solution feeding regime on yield, mineral profile, and phytochemical composition of spinach microgreens. Horticulturae 2021, 7, 162. [Google Scholar] [CrossRef]
- Kowitcharoen, L.; Phornvillay, S.; Lekkham, P.; Pongprasert, N.; Srilaong, V. Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl. Sci. 2021, 11, 7981. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, T.; Singh, S.P.; Bhardwaj, A.; Srivastava, D.; Kumar, R. Prospects of microgreens as budding living functional food: Breeding and biofortification through OMICS and other approaches for nutritional security. Front. Genet. 2023, 14, 1053810. [Google Scholar] [CrossRef] [PubMed]
- Muchjajib, U.; Muchjajib, S.; Suknikom, S.; Butsai, J. Evaluation of organic media alternatives for the production of microgreens in Thailand. Acta Hortic. 2015, 1102, 157–162. [Google Scholar] [CrossRef]
- Di Gioia, F.; Bellis, P.D.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef]
- Bulgari, R.; Negri, M.; Santoro, P.; Ferrante, A. Quality evaluation of indoor-grown microgreens cultivated on three different substrates. Horticulturae 2021, 7, 96. [Google Scholar] [CrossRef]
- Di Gioia, F.; Mininni, C.; Santamaria, P. How to grow microgreens. In Microgreens; Di Gioia, F., Santamaria, P., Eds.; Ecologica: Bari, Italy, 2015; pp. 51–79. [Google Scholar]
- Işık, H.; Topalcengiz, Z.; Güner, S.; Aksoy, A. Generic and shiga toxin-producing Escherichia coli (O157:H7) contamination of lettuce and radish microgreens grown in peat moss and perlite. Food Control 2020, 111, 107079. [Google Scholar] [CrossRef]
- Chandra, D.; Kim, J.G.; Kim, Y.P. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic. Environ. Biotechnol. 2012, 53, 32–40. [Google Scholar] [CrossRef]
- Ahmed, R.R.; Abdulla, A.I. Recycling of food waste to produce the plant fertilizer. Int. J. Eng. Technol. 2018, 7, 173–178. [Google Scholar] [CrossRef]
- Kang, S.M.; Shaffique, S.; Kim, L.R.; Kwon, E.H.; Kim, S.H.; Lee, Y.H.; Kalsoom, K.; Aaqil Khan, M.; Lee, I.J. Effects of organic fertilizer mixed with food waste dry powder on the growth of Chinese cabbage seedlings. Environments 2021, 8, 86. [Google Scholar] [CrossRef]
- Torrijos, V.; Dopico, D.C.; Soto, M. Integration of food waste composting and vegetable gardens in the university campus. J. Clean. Prod. 2021, 312, 128175. [Google Scholar] [CrossRef]
- Popradit, A.; Wiangnon, J.; Jitrabiab, P.; Pakvilai, N. Organic fertilizer application using leaf waste according to Maejo engineering method 1. Thai Environ. Eng. J. 2022, 36, 47–54. [Google Scholar]
- Mu, D.; Hawks, J.; Diaz, A. Impacts on vegetable yields, nutrient contents and soil fertility in a community garden with different compost amendments. AIMS Environ. Sci. 2020, 7, 350–365. [Google Scholar] [CrossRef]
- Oracz, K.; El-Maarouf-Bouteau, H.; Kranner, I.; Bogatek, R.; Corbineau, F.; Bailly, C. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 2009, 150, 494–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1934, 63, 251–263. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Abas, N.A.; Zahra, S.M. Impact of salinity stress on germination of water spinach (Ipomoea aquatica). Annu. Res. Rev. Biol. 2019, 31, 47891. [Google Scholar] [CrossRef] [Green Version]
- Thepsilvisut, O.; Chutimanukul, P.; Sae-Tan, S.; Ehara, H. Effect of chicken manure and chemical fertilizer on the yield and qualities of white mugwort at dissimilar harvesting times. PLoS ONE 2022, 17, e0266190. [Google Scholar] [CrossRef]
- Mackinney, G. Absorption of light by chlorophyll solutions. J. Biol. Chem. 1941, 140, 315–322. [Google Scholar] [CrossRef]
- Yu, X.L.; Hu, Q.L.; Huang, Y. Study on extracting methods and characteristics of chlorophyll in peony. J. Luoyang Norm. Univ. 2005, 5, 113–115. [Google Scholar]
- Chutimanukul, P.; Wanichananan, P.; Janta, S.; Toojinda, T.; Clive, D.; Kriengkrai, M. The influence of different light spectra on physiological responses, antioxidant capacity and chemical compositions in two holy basil cultivars. Sci. Rep. 2022, 12, 588. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Haroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Soil Sci. Plant Anal. 1975, 6, 71–86. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, W.; Yang, T.; Luo, Y.; Chen, P. Preharvest UVB application increases glucosinolate contents and enhances postharvest quality of broccoli microgreens. Molecules 2021, 26, 3247. [Google Scholar] [CrossRef] [PubMed]
- Toscano, S.; Cavallaro, V.; Ferrante, A.; Romano, D.; Patané, C. Effects of different light spectra on final biomass production and nutritional quality of two microgreens. Plants 2021, 10, 1584. [Google Scholar] [CrossRef]
- Fernandes, C.; Corá, J.E. Bulk density and relationship air/water of horticultural substrate. Sci. Agric. 2004, 61, 446–450. [Google Scholar] [CrossRef] [Green Version]
- Kołodziejek, J. Effect of seed position and soil nutrients on seed mass, germination and seedling growth in Peucedanum oreoselinum (Apiaceae). Sci. Rep. 2017, 7, 1959. [Google Scholar] [CrossRef] [Green Version]
- Follmer, C.M.; Hummes, A.P.; Lângaro, N.C.; Petry, C.; Moterle, D.F.; Bortoluzzi, E.C. Nutrient availability and pH level affect germination traits and seedling development of Conyza canadensis. Sci. Rep. 2021, 11, 15607. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Change Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. Overview of plant pigments. In Pigments in Fruits and Vegetables; Springer: New York, NY, USA, 2015; pp. 1–7. [Google Scholar]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef] [PubMed]
- Spinardi, A.; Ferrante, A. Effect of storage temperature on quality changes of minimally processed baby lettuce. J. Food Agric. Environ. 2012, 10, 38–42. [Google Scholar]
- Ketehouli, T.; Idrice Carther, K.F.; Noman, M.; Wang, F.W.; Li, X.W.; Li, H.Y. Adaptation of plants to salt stress: Characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response. Agronomy 2019, 9, 687. [Google Scholar] [CrossRef] [Green Version]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Lenzi, A.; Orlandini, A.; Bulgari, R.; Ferrante, A.; Bruschi, P. Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods 2019, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- Pinto, E.; Almeida, A.A.; Aguiar, A.A.; Ferreira, I.M.P.L.V.O. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J. Food Compos. Anal. 2015, 37, 38–43. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Y.; Xu, G. How does nitrogen shape plant architecture? J. Exp. Bot. 2020, 71, 4415–4427. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Koo, M.; Hwang, D.; Choi, J.H.; Kim, S.M.; Oh, S. Contamination patterns and molecular typing of Bacillus cereus in fresh-cut vegetable salad processing. Appl. Biol. Chem. 2016, 59, 573–577. [Google Scholar] [CrossRef]
- Galieni, A.; Falcinelli, B.; Stagnari, F.; Datti, A.; Benincasa, P. Sprouts and microgreens: Trends, opportunities, and horizons for novel research. Agronomy 2020, 10, 1424. [Google Scholar] [CrossRef]
- Deng, W.; Misra, G.M.; Baker, C.A.; Gibson, K.E. Persistence and transfer of foodborne pathogens to sunflower and pea shoot microgreens during production in soil-free cultivation matrix. Horticulturae 2021, 7, 446. [Google Scholar] [CrossRef]
- Granum, P.E.; Lund, T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 1997, 157, 223–228. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus spp. in foodstuffs. EFSA J. 2005, 3, 175. [Google Scholar]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, D.; Rosell, C.M.; Martinez, A. Risk of Bacillus cereus in relation to rice and derivatives. Foods 2021, 10, 302. [Google Scholar] [CrossRef] [PubMed]
Treatment | Bulk Density (kg m−3) | Total Pore Space (%) | pH (1:10 H2O) | EC (1:10 H2O) (dS m−1) | Organic Matter (%) |
---|---|---|---|---|---|
T1 (Control) | 251.86 ± 9.40 f | 37.61 ± 1.84 c | 5.98 ± 0.03 b | 1.59 ± 0.06 d | 35.42 ± 5.83 b |
T2 | 67.64 ± 3.64 e | 60.27 ± 0.74 a | 5.50 ± 0.44 c | 3.44 ± 0.19 a | 40.54 ± 1.05 a |
T3 | 482.66 ± 4.57 c | 36.17 ± 4.33 c | 6.59 ± 0.11 a | 1.67 ± 0.10 d | 14.03 ± 1.60 cd |
T4 | 594.26 ± 4.26 a | 14.05 ± 2.71 e | 6.77 ± 0.02 a | 3.61 ± 0.42 a | 10.06 ± 0.52 d |
T5 | 263.62 ± 10.91 f | 46.80 ± 5.65 b | 6.53 ± 0.05 a | 2.09 ± 0.10 c | 17.66 ± 0.68 c |
T6 | 347.96 ± 15.83 e | 15.70 ± 0.08 e | 6.70 ± 0.07 a | 3.41 ± 0.39 a | 11.69 ± 0.50 d |
T7 | 543.63 ± 5.93 b | 22.97 ± 1.21 d | 6.82 ± 0.00 a | 2.43 ± 0.18 bc | 10.01 ± 2.21 d |
T8 | 396.46 ± 2.82 d | 22.61 ± 7.10 d | 6.68 ± 0.07 a | 2.67 ± 0.16 b | 10.92 ± 1.61 d |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Treatment | N (mg g−1) | P (mg g−1) | K (mg g−1) | Ca (mg g−1) | Mg (mg g−1) | Na (mg kg−1) |
---|---|---|---|---|---|---|
T1 (Control) | 13.60 ± 0.10 cd | 12.45 ± 3.04 e | 3.65 ± 0.22 b | 57.15 ± 1.52 b | 1.99 ± 0.00 g | 5.46 ± 0.58 abc |
T2 | 5.99 ± 0.36 e | 9.68 ± 3.59 e | 9.91 ± 1.16 a | 19.37 ± 1.72 f | 1.49 ± 0.00 h | 4.64 ± 1.31 bcd |
T3 | 16.11 ± 0.16 a | 53.65 ± 6.05 a | 8.46 ± 0.33 a | 34.37 ± 3.95 e | 5.65 ± 0.01 a | 3.58 ± 0.55 d |
T4 | 14.41 ± 1.78 bc | 38.45 ± 2.99 d | 7.56 ± 1.00 a | 64.19 ± 1.79 a | 5.31 ± 0.01 d | 7.06 ± 0.55 a |
T5 | 15.05 ± 0.05 ab | 52.91 ± 2.95 ab | 9.02 ± 0.19 a | 37.60 ± 3.59 de | 5.46 ± 0.01 c | 3.89 ± 1.00 cd |
T6 | 14.33 ± 0.08 bc | 43.26 ± 0.89 cd | 8.22 ± 1.15 a | 56.42 ± 2.24 b | 4.59 ± 0.01 f | 6.11 ± 0.55 ab |
T7 | 13.81 ± 0.75 bc | 51.41 ± 1.33 ab | 8.93 ± 2.11 a | 42.47 ± 2.29 c | 5.50 ± 0.01 b | 6.74 ± 1.00 a |
T8 | 12.51 ± 0.46 d | 47.08 ± 3.06 bc | 7.88 ± 2.09 a | 40.54 ± 2.83 cd | 4.80 ± 0.01 e | 4.84 ± 1.00 bcd |
p-value | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 |
Treatment | Sunflower | Water Spinach | ||||
---|---|---|---|---|---|---|
Germination Rate (%) | Germination Index | Mean Germination Time (Day) | Germination Rate (%) | Germination Index | Mean Germination Time (Day) | |
T1 (Control) | 77.33 ± 2.31 ab | 29.12 ± 1.00 a | 2.83 ± 0.16 d | 77.33 ± 4.62 a | 16.47 ± 2.13 c | 5.24 ± 0.73 b |
T2 | 80.00 ± 6.93 ab | 31.56 ± 3.42 a | 2.75 ± 0.06 d | 90.67 ± 16.17 a | 29.65 ± 5.06 a | 3.46 ± 0.14 c |
T3 | 81.33 ± 14.05 ab | 20.72 ± 4.16 b | 4.13 ± 0.29 bc | 76.00 ± 6.93 a | 21.95 ± 3.11 b | 4.03 ± 0.72 c |
T4 | 60.00 ± 8.00 c | 11.05 ± 2.27 c | 5.89 ± 0.97 a | 42.67 ± 7.57 b | 7.11 ± 0.93 d | 6.73 ± 0.68 a |
T5 | 89.33 ± 2.31 a | 32.08 ± 3.35 a | 3.38 ± 0.54 cd | 82.67 ± 5.03 a | 25.51 ± 2.43 ab | 3.93 ± 0.92 c |
T6 | 68.00 ± 6.93 bc | 18.38 ± 1.16 b | 4.16 ± 0.56 b | 78.67 ± 9.24 a | 22.70 ± 0.80 b | 3.92 ± 0.18 c |
T7 | 68.00 ± 10.58 bc | 16.39 ± 4.43 bc | 4.51 ± 0.50 bc | 77.33 ± 8.33 a | 24.60 ± 3.72 ab | 3.49 ± 0.23 c |
T8 | 81.33 ± 12.86 ab | 22.53 ± 4.73 b | 3.97 ± 0.54 bc | 74.67 ± 15.14 a | 14.80 ± 2.86 c | 5.38 ± 0.26 b |
p-value | 0.021 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 |
Treatment | Shoot Fresh Weight (g m−2) | Shoot Dry Weight (g m−2) | Non-Marketable Yield (g m−2) | Waste Yield Percentage (%) | Shoot Water Content (%) | Shoot Dry Matter (%) |
---|---|---|---|---|---|---|
T1 (Control) | 8714.8 ± 146.7 b | 342.9 ± 12.6 a | 614.8 ± 51.3 c | 6.58 ± 0.42 e | 96.06 ± 0.09 ab | 3.94 ± 0.09 de |
T2 | 8440.7 ± 555.3 b | 307.7 ± 7.0 ab | 666.7 ± 163.7 c | 7.33 ± 1.86 e | 96.34 ± 0.28 ab | 3.66 ± 0.28 de |
T3 | 6837.0 ± 702.4 c | 309.7 ± 30.5 ab | 974.1 ± 115.7 b | 12.51 ± 1.60 de | 95.45 ± 0.47 ab | 4.55 ± 0.47 cde |
T4 | 0.0 ± 0.00 f | 0.0 ± 0.0 d | 251.9 ± 6.4 d | 100.00 ± 0.00 a | 75.68 ± 5.00 c | 24.32 ± 1.92 a |
T5 | 10,114.8 ± 734.5 a | 303.4 ± 35.3 ab | 666.7 ± 80.1 c | 6.23 ± 1.11 e | 97.00 ± 0.27 a | 3.00 ± 0.27 e |
T6 | 3911.1 ± 416.8 de | 225.6 ± 15.2 c | 1044.4 ± 72.9 ab | 21.12 ± 0.70 c | 94.20 ± 0.53 ab | 5.80 ± 0.53 c |
T7 | 3344.5 ± 147.3 e | 230.4 ± 68.2 c | 1174.1 ± 100.2 a | 27.86 ± 9.39 b | 92.24 ± 4.27 b | 7.76 ± 0.85 b |
T8 | 4988.9 ± 100.8 d | 242.3 ± 65.1 bc | 770.4 ± 67.0 c | 13.54 ± 1.31 d | 95.17 ± 0.78 ab | 4.83 ± 0.78 cd |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Treatment | Shoot Fresh Weight (g m−2) | Shoot Dry Weight (g m−2) | Non-Marketable Yield (g m−2) | Waste Yield Percentage (%) | Shoot Water Content (%) | Shoot Dry Matter (%) |
---|---|---|---|---|---|---|
T1 (Control) | 10,855.6 ± 211.1 a | 358.8 ± 28.8 a | 966.7 ± 111.1 ab | 8.18 ± 0.03 c | 96.69 ± 0.11 a | 3.31 ± 0.11 c |
T2 | 10,966.7 ± 266.7 a | 343.4 ± 45.6 ab | 844.4 ± 66.7 ab | 7.28 ± 1.10 c | 96.87 ± 0.06 a | 3.13 ± 0.06 c |
T3 | 8655.6 ± 77.8 b | 317.4 ± 24.1 ab | 922.2 ± 88.9 ab | 9.62 ± 0.77 bc | 96.33 ± 0.25 ab | 3.67 ± 0.25 bc |
T4 | 72.2 ± 5.6 d | 4.5 ± 0.3 c | 500.0 ± 44.4 c | 87.30 ± 1.84 a | 93.72 ± 0.87 c | 6.28 ± 0.87 a |
T5 | 10,059.3 ± 50.6 ab | 354.8 ± 30.4 a | 833.3 ± 131.0 b | 7.59 ± 1.13 c | 96.48 ± 0.13 ab | 3.52 ± 0.13 bc |
T6 | 6633.3 ± 1628.9 c | 270.8 ± 89.8 b | 559.3 ± 44.9 c | 8.14 ± 0.96 c | 95.97 ± 0.37 b | 4.03 ± 0.37 b |
T7 | 6533.3 ± 742.0 c | 269.6 ± 21.1 b | 933.3 ± 77.8 ab | 12.25 ± 2.92 b | 95.86 ± 0.21 b | 4.14 ± 0.21 b |
T8 | 9800.0 ± 423.5 ab | 328.7 ± 15.5 ab | 1000.0 ± 80.1 a | 9.28 ± 2.58 bc | 96.65 ± 0.03 a | 3.35 ± 0.03 c |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Treatment | Total Chlorophyll (mg 100 g−1 FW) | Carotenoid (mg 100 g−1 FW) | Total Phenolic (mg GAE g−1 DW) | Flavonoid (mg g−1 DW) | DPPH Radical Scavenging (%) | Nitrate Content (mg kg−1 FW) |
---|---|---|---|---|---|---|
T1 (Control) | 17.76 ± 0.89 a | 194.4 ± 12.0 a | 11.43 ± 1.07 | 25.63 ± 0.06 | 41.73 ± 1.95 | 495.8 ± 48.3 cd |
T2 | 13.79 ± 2.12 b | 146.8 ± 12.7 b | 11.09 ± 0.44 | 25.51 ± 0.41 | 41.59 ± 0.68 | 588.8 ± 46.4 bc |
T3 | 13.48 ± 1.15 b | 135.6 ± 28.8 b | 11.48 ± 0.68 | 24.91 ± 0.18 | 42.67 ± 1.88 | 1283.0 ± 171.3 a |
T4 | ND | ND | ND | ND | ND | ND |
T5 | 18.69 ± 1.24 a | 187.6 ± 10.4 a | 11.06 ± 0.63 | 26.83 ± 1.51 | 43.71 ± 2.38 | 1166.2 ± 13.9 a |
T6 | 4.93 ± 0.45 d | 49.0 ± 5.5 c | 9.44 ± 0.19 | 27.66 ± 2.58 | 42.68 ± 0.29 | 505.4 ± 31.1 cd |
T7 | 4.81 ± 0.26 d | 54.7 ± 5.1 c | 10.25 ± 1.63 | 27.58 ± 1.07 | 44.13 ± 2.26 | 377.3 ± 41.9 d |
T8 | 7.05 ± 1.01 c | 66.2 ± 7.2 c | 10.41 ± 0.57 | 27.09 ± 1.21 | 44.69 ± 2.38 | 676.4 ± 104.6 b |
p-value | 0.000 | 0.000 | 0.103 | 0.112 | 0.357 | 0.000 |
Treatment | Total Chlorophyll (mg 100 g−1 FW) | Carotenoid (mg 100 g−1 FW) | Total Phenolic (mg GAE g−1 DW) | Flavonoid (mg g−1 DW) | DPPH Radical Scavenging (%) | Nitrate Content (mg kg−1 FW) |
---|---|---|---|---|---|---|
T1 (Control) | 32.54 ± 2.20 a | 401.2 ± 53.7 a | 12.47 ± 0.65 ab | 24.33 ± 0.26 bcd | 43.72 ± 1.13 a | 527.3 ± 33.3 de |
T2 | 32.79 ± 5.80 a | 386.6 ± 44.3 a | 13.72 ± 0.74 a | 24.50 ± 0.76 bcd | 42.80 ± 1.64 a | 534.4 ± 13.8 d |
T3 | 22.20 ± 0.40 b | 283.7 ± 15.2 b | 12.44 ± 0.98 ab | 24.64 ± 0.10 bc | 44.66 ± 0.55 a | 826.3 ± 24.8 b |
T4 | 0.08 ± 0.01 e | 0.9 ± 0.1 d | 11.34 ± 1.74 bc | 24.92 ± 0.77 ab | 36.13 ± 3.20 b | 478.8 ± 22.3 ef |
T5 | 30.12 ± 4.10 a | 359.3 ± 38.8 a | 11.63 ± 1.30 abc | 25.56 ± 0.69 a | 43.29 ± 1.91 a | 1009.6 ± 56.6 a |
T6 | 8.74 ± 0.95 c | 113.8 ± 11.8 c | 11.57 ± 2.00 abc | 24.08 ± 0.13 bcd | 44.82 ± 0.72 a | 553.2 ± 11.2 d |
T7 | 7.66 ± 0.65 c | 90.7 ± 5.7 c | 9.82 ± 0.53 cd | 23.85 ± 0.24 cd | 42.55 ± 1.08 a | 472.3 ± 32.5 f |
T8 | 20.43 ± 2.60 b | 249.0 ± 23.6 b | 8.89 ± 0.81 d | 23.63 ± 0.30 d | 42.11 ± 0.43 a | 647.0 ± 23.2 c |
p-value | 0.000 | 0.000 | 0.004 | 0.004 | 0.000 | 0.000 |
Treatment | Bacillus cereus (CFU g−1) | Clostridium perfringens (CFU g−1) | Salmonella spp. (CFU g−1) | Staphylococcus aureus (CFU g−1) |
---|---|---|---|---|
T1 | 2.8 × 102 | <10 | Non-detected | <10 |
T2 | 1.0 × 102 | <10 | Non-detected | <10 |
T3 | 4.2 × 103 | <10 | Non-detected | <10 |
T4 | 7.0 × 103 | <10 | Non-detected | <10 |
T5 | 2.6 × 103 | <10 | Non-detected | <10 |
T6 | 1.2 × 104 | <10 | Non-detected | <10 |
T7 | 1.2 × 104 | <10 | Non-detected | <10 |
T8 | 4.3 × 103 | <10 | Non-detected | <10 |
Thailand standard * | ≤5.0 × 102 CFU g−1 | ≤1.0 × 102 CFU g−1 | Non-detected in 25 g | ≤1.0 × 102 CFU g−1 |
Treatment | Bacillus cereus (CFU g−1) | Clostridium perfringens (CFU g−1) | Salmonella spp. (CFU g−1) | Staphylococcus aureus (CFU g−1) |
---|---|---|---|---|
T1 | 5.8 × 102 | <10 | Non-detected | <10 |
T2 | 1.2 × 103 | <10 | Non-detected | <10 |
T3 | 6.0 × 103 | <10 | Non-detected | <10 |
T4 | 1.8 × 104 | <10 | Non-detected | <10 |
T5 | 4.5 × 103 | <10 | Non-detected | <10 |
T6 | 5.7 × 103 | <10 | Non-detected | <10 |
T7 | 6.2 × 103 | <10 | Non-detected | <10 |
T8 | 5.6 × 103 | <10 | Non-detected | <10 |
Thailand standard * | ≤5.0 × 102 CFU g−1 | ≤1.0 × 102 CFU g−1 | Non-detected in 25 g | ≤1.0 × 102 CFU g−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thepsilvisut, O.; Sukree, N.; Chutimanukul, P.; Athinuwat, D.; Chuaboon, W.; Poomipan, P.; Vachirayagorn, V.; Pimpha, N.; Chutimanukul, P.; Ehara, H. Efficacy of Agricultural and Food Wastes as the Growing Media for Sunflower and Water Spinach Microgreens Production. Horticulturae 2023, 9, 876. https://doi.org/10.3390/horticulturae9080876
Thepsilvisut O, Sukree N, Chutimanukul P, Athinuwat D, Chuaboon W, Poomipan P, Vachirayagorn V, Pimpha N, Chutimanukul P, Ehara H. Efficacy of Agricultural and Food Wastes as the Growing Media for Sunflower and Water Spinach Microgreens Production. Horticulturae. 2023; 9(8):876. https://doi.org/10.3390/horticulturae9080876
Chicago/Turabian StyleThepsilvisut, Ornprapa, Nipawadee Sukree, Preuk Chutimanukul, Dusit Athinuwat, Wilawan Chuaboon, Phakpen Poomipan, Vorapat Vachirayagorn, Nuttaporn Pimpha, Panita Chutimanukul, and Hiroshi Ehara. 2023. "Efficacy of Agricultural and Food Wastes as the Growing Media for Sunflower and Water Spinach Microgreens Production" Horticulturae 9, no. 8: 876. https://doi.org/10.3390/horticulturae9080876
APA StyleThepsilvisut, O., Sukree, N., Chutimanukul, P., Athinuwat, D., Chuaboon, W., Poomipan, P., Vachirayagorn, V., Pimpha, N., Chutimanukul, P., & Ehara, H. (2023). Efficacy of Agricultural and Food Wastes as the Growing Media for Sunflower and Water Spinach Microgreens Production. Horticulturae, 9(8), 876. https://doi.org/10.3390/horticulturae9080876