Olive Oil Quality of Cultivars Cultivated in Super-High-Density Orchard under Cold Weather Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Site and Orchard
2.2. Oil Characteristics and Components
2.3. Statistical Analysis
3. Results and Discussion
3.1. Oil Analysis
3.2. Photosynthetic Pigments
3.3. Fatty Acid Composition
3.4. Phenolic Composition
3.5. Correlations among Oxidative Stability and Possible Related Variables
3.6. Principal Component Analysis (PCA) of the Phenolic Compound Contents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rallo, L.; Barranco, D.; Castro-Gacía, S.; Connor, D.J.; Gómez del Campo, M.; Rallo, P. High-density olive plantations. Hortic. Rev. 2014, 41, 303–382. [Google Scholar]
- Rius, X.; Lacarte, J.M. La Revolución del Olivar: El Cultivo en Seto; Ediciones Paraninfo: Madrid, Spain, 2015; pp. 1–518. [Google Scholar]
- Connor, D.J.; Gomez-del-Campo, M.; Rousseaux, M.C.; Searles, P.S. Structure, management and productivity of hedgerow olive orchards: A review. Sci. Hortic. 2014, 169, 71–93. [Google Scholar] [CrossRef]
- Polari, J.J.; Mori, M.; Wang, S.C. Virgin olive oils from super-high-density orchards in california: Impact of cultivar, harvest time, and crop season on quality and chemical composition. Eur. J. Lipid Sci. Tech. 2020, 123, 2000180. [Google Scholar] [CrossRef]
- Rallo, L.; Barranco, D.; de la Rosa, R.; Leon, L. “Chiquitita” olive. HortScience 2008, 43, 529–531. [Google Scholar] [CrossRef]
- Allalout, A.; Krichène, D.; Methenni, K.; Taamalli, A.; Daoud, D.; Zarrouk, M. Behavior of super-intensive spanish and greek olive cultivars grown in northern tunisia. J. Food Biochem. 2011, 35, 27–43. [Google Scholar] [CrossRef]
- Marino, G.; Macaluso, L.; Marra, F.P.; Ferguson, L.; Marchese, A.; Campisi, G.; Volo, P.; Laudicina, V.A.; Caruso, T. Horticultural performance of 23 Sicilian olive genotypes in hedgerow systems: Vegetative growth, productive potential and oil quality. Sci. Hortic. 2017, 217, 217–225. [Google Scholar] [CrossRef]
- Usanmaz, S.; Kahramanoglu, I.; Alas, T.; Okatan, V. Performance and oil quality of seven olive cultivars under high density planting system in Northern Cyprus. Pak. J. Bot. 2019, 51, 1775–1781. [Google Scholar] [CrossRef]
- Rodrigues, N.; Casal, S.; Pinho, T.; Cruz, R.; Baptista, P.; Martín, H.; Asensio-Manzanera, M.C.; Peres, A.M.; Pereira, J.A. Olive oil characteristics of eleven cultivars produced in a high-density grove in Valladolid province (Spain). Eur. Food Res. Technol. 2021, 247, 3113–3122. [Google Scholar] [CrossRef]
- Morales-Sillero, A.; García, J.M. Impact assessment of mechanical harvest on fruit physiology and consequences on oil physicochemical and sensory quality from “Manzanilla de Sevilla” and “Manzanilla “Cacereña” super-high-density hedgerows. A preliminary study. J. Sci. Food Agric. 2015, 95, 2445–2453. [Google Scholar] [CrossRef] [Green Version]
- Connor, D.J.; Fereres, E. The physiology of adaptation and yield expression in olive. Hortic. Rev. 2005, 31, 155–156. [Google Scholar]
- Criado, M.N.; Motilva, M.J.; Goni, M.; Romero, M.P. Comparative study of the effect of the maturation process of the olive fruit on the chlorophyll and carotenoid fractions of drupes and virgin oils from “Arbequina” and Farga cultivars. Food Chem. 2007, 100, 748–755. [Google Scholar] [CrossRef]
- Centeno, A.; Hueso, A.; Gómez-del-Campo, M. Long-term evaluation of growth and production of olive cultivars in super high-density orchard under cold-weather conditions. Sci. Hortic. 2019, 257, 108657. [Google Scholar] [CrossRef]
- Martinez, J.M.; Muñoz, E.; Alba, J.; Lanzón, A. Report about the use of the ‘’Abencor’’ analyzer. Grasas Aceites 1975, 26, 379–385. [Google Scholar]
- Läubli, W.; Bruttel, P.A. Determination of the oxidative stability of fats and oils by the Rancimat method. J. Am. Oil Chem. Soc. 1986, 63, 792–794. [Google Scholar] [CrossRef]
- Mínguez-Mosquera, M.I.; Rejano-Navarro, L.; Gándul-Rojas, B.; Sánchez-Gómez, A.H.; Garrido-Fernández, J. Color pigment correlation invirgin olive oils. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- Mancha, M.; Sánchez, J. lncorporation of free fatty acids into acylthioesters and lipids of developing sunflower seeds. Phytochemistry 1981, 20, 2139–2142. [Google Scholar] [CrossRef]
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Rios, J.J.; Leon-Camacho, M.; Alcudia, F.; Cert, A. Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef]
- Pérez, A.G.; León, L.; Pascual, M.; Romero-Segura, C.; Sánchez-Ortiz, A.; De La Rosa, R.; Sanz, C. Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications. PLoS ONE 2014, 9, e92898. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, L.; Shehzad, Q.; Kong, W.; Wu, G.; Jin, Q.; Zhang, H.; Wang, X. A comprehensive comparison of Chinese olive oils from different cultivars and geographical origins. Food Chem. 2023, 18, 100665. [Google Scholar] [CrossRef]
- Yousfi, K.; Weiland, C.M.; Garcia, J.M. Effect of harvesting system and fruit cold storage on virgin olive oil chemical composition and quality of superintensive cultivated “Arbequina” olives. J. Agric. Food Chem. 2012, 60, 4743–4750. [Google Scholar] [CrossRef]
- Grilo, F.; Novara, M.E.; D’Oca, M.C.; Rubino, S.; Lo Bianco, R.; Di Stefano, V. Quality evaluation of extra-virgin olive oils from Sicilian genotypes grown in a high-density system. Int. J. Food Sci. Nutr. 2020, 71, 397–409. [Google Scholar] [CrossRef]
- Dos Santos, M.M.O.; Gama, R.S.; de Carvalho, I.M.; Santos, P.H.; Gonçalves, M.S.; de Carvalho, M.S.; de Barros, E.V.; de Oliveira, J.R.; Mendes, A.A.; Franco, M. Sensory variations in olive oils from the “Arbequina” variety elaborated with changes in fruit selection and process. Food Anal. Meth. 2021, 14, 1645–1653. [Google Scholar] [CrossRef]
- García, J.M.; Morales-Sillero, A.; Pérez-Rubio, A.G.; Diaz-Espejo, A.; Montero, A.; Fernández, J.E. Virgin olive oil quality of hedgerow “Arbequina” olive trees under deficit irrigation. J. Sci. Food Agric. 2017, 97, 1018–1026. [Google Scholar] [CrossRef] [Green Version]
- Tous, J.; Romero, A.; Plana, J.; Hermoso, J.F. Olive oil cultivars suitable for very-high density planting conditions. Acta Hortic. 2008, 791, 403–408. [Google Scholar] [CrossRef]
- Sena-Moreno, E.; Alvarez-Ortí, M.; Zied, D.C.; Pardo-Giménez, A.; Pardo, J.E. Olive oils from Campos de Hellin (Spain) exhibit significant varietal differences in fatty acid composition, sterol action, and oxidative stability. Eur. J. Lipid Sci. Technol. 2015, 117, 967–975. [Google Scholar] [CrossRef]
- Alvarruiz, A.; Álvarez-Ortí, M.; Mateos, B.; Sena, E.; Pardo, J.E. Quality and composition of virgin olive oil from Portuguese grown in Castilla-La Mancha (Spain). J. Oleo Sci. 2015, 64, 1075–10822. [Google Scholar] [CrossRef] [Green Version]
- Montaño, A.; Hernández, M.; Garrido, I.; Llerena, J.L.; Espinosa, F. Fatty acid and phenolic compound concentrations in eight different monovarietal virgin olive oils from extremadura and the relationship with oxidative stability. Int. J. Mol. Sci. 2016, 17, 1960. [Google Scholar] [CrossRef] [Green Version]
- Roca, M.; Minguez-Mosquera, M.I. Involvement of chlorophyllase in chlorophyll metabolism in olive varieties with high and low chlorophyll content. Physiol. Plant. 2003, 117, 459–466. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Badeka, A.; Casiello, G.; Longobardi, F.; Kontominas, M.G. Rapid screening of olive oil cultivar differentiation based on selected physicochemical parameters, pigment content and fatty acid composition using advanced chemometrics. Eur. Food Res. Technol. 2019, 245, 2027–2038. [Google Scholar] [CrossRef]
- Criado, M.N.; Romero, M.P.; Casanovas, M.; Motilva, M.J. Pigment profile and colour of monovarietal virgin olive oils from “Arbequina” cultivar obtained during two consecutive crop seasons. Food Chem. 2008, 110, 873–880. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Jímenez, B.; Ruíz, A.; Albi, M.A. Effect of olive ripeness on the oxidative stability of virgin olive oil extracted from the varieties Picual and Hojiblanca and on the different components involved. J. Agric. Food Chem. 1999, 47, 121–127. [Google Scholar] [CrossRef]
- Bodoira, R.; Torres, M.; Pierantozzi, P.; Aguate, F.; Taticchi, A.; Servili, M.; Maestri, D. Dynamics of fatty acids, tocopherols and phenolic compounds biogenesis during olive (Olea europaea L.) fruit ontogeny. J. Am. Oil Chem. Soc. 2016, 93, 1289–1299. [Google Scholar] [CrossRef]
- Morelló, J.R.; Romero, M.P.; Motilva, M.J. Effect of the maturation of the olive fruit on the phenolic fraction of drupes and oils from “Arbequina”, Farga, and Morrut cultivars. J. Agric. Food Chem. 2004, 52, 6002–6009. [Google Scholar] [CrossRef]
- Wang, J.W.; Ma, L.Y.; Gómez-del-Campo, M.; Zhang, D.S.; Deng, Y.; Jia, Z.K. Youth tree behavior of olive (Olea europaea L.) cultivars in Wudu, China: Cold and drought resistance, growth, fruit production, and oil quality. Sci. Hortic. 2018, 236, 106–122. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, M.B.P.P.; Casal, S.; Alves, M.R. Discrimination of varietal olive oils of the Portuguese Cultivars “Cobrançosa”, madural and verdeal based on their fatty acids composition. Acta Hortic. 2002, 586, 591–594. [Google Scholar] [CrossRef] [Green Version]
- Amaral, J.; Mafra, I.; Oliveira, M.; Beatriz, P.P. Characterization of three Portuguese varietal olive oils based on fatty acids, triacylglycerols, phytosterols and vitamin E profiles: Application of chemometrics. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.S., Eds.; Academic Press: London, UK, 2010; pp. 581–589. [Google Scholar]
- Di Vaio, C.; Nocerino, S.; Paduano, A.; Sacchi, R. Influence of some environmental factors on drupe maturation and olive oil composition. J. Sci. Food Agric. 2012, 93, 1134–1139. [Google Scholar] [CrossRef]
- Miho, H.; Moral, J.; Barranco, D.; Ledesma-Escobar, C.A.; Priego-Capote, F.; Díez, C.M. Influence of genetic and interannual factors on the phenolic profiles of virgin olive oils. Food Chem. 2021, 342, 128357. [Google Scholar] [CrossRef]
- García-González, D.L.; Tena, N.; Aparicio, R. Quality Characterization of the New Virgin Olive Oil Var. “Chiquitita” by Phenols and Volatile Compounds. J. Agric. Food Chem. 2010, 58, 8357–8364. [Google Scholar] [CrossRef]
- Pérez, A.G.; León, L.; Sanz, C.; de la Rosa, R. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs. Front. Plant Sci. 2018, 9, 241. [Google Scholar] [CrossRef] [Green Version]
Free Acidity (Oleic Acid%) | Peroxide Value (meq O2 kg−1) | K232 | K270 | |
---|---|---|---|---|
2014 | ||||
“Arbequina” | 0.5 | 7.0 d | 1.92 | 0.11 e |
“Arbosana” | 0.4 | 9.7 bc | 2.16 | 0.14 c |
“Cobrançosa” | 0.4 | 11.4 a | 2.02 | 0.15 c |
“Cornicabra” | 0.5 | 8.4 cd | 2.30 | 0.20 a |
“Koroneiki” | 0.5 | 8.7 c | 2.18 | 0.18 b |
“Cacereña” | 0.5 | 8.3 cd | 1.80 | 0.08 f |
“Chiquitita” | 0.3 | 10.6 ab | 2.24 | 0.12 d |
2015 | ||||
“Arbequina” | 0.2 | 4.8 | 1.39 c | 0.10 |
“Arbosana” | 0.3 | 6.0 | 1.50 bc | 0.13 |
“Cobrançosa” | 0.2 | 6.7 | 1.58 b | 0.15 |
“Cornicabra” | 0.3 | 5.8 | 1.78 a | 0.14 |
“Koroneiki” | 0.2 | 5.1 | 1.53 bc | 0.12 |
“Cacereña” | 0.2 | 5.2 | 1.58 b | 0.11 |
“Chiquitita” | 0.2 | 6.4 | 1.42 bc | 0.11 |
2016 | ||||
“Arbequina” | 0.4 | 10.4 c | 1.80 | 0.10 |
“Arbosana” | 0.4 | 11.4 b | 1.50 | 0.10 |
“Cobrançosa” | 0.5 | 11.0 bc | 1.70 | 0.20 |
“Cornicabra” | 0.5 | 10.7 bc | 1.70 | 0.20 |
“Koroneiki” | 0.4 | 14.2 a | 1.60 | 0.10 |
“Cacereña” | 0.3 | 9.0 d | 1.70 | 0.10 |
“Chiquitita” | 0.4 | 11.1 b | 1.50 | 0.10 |
MEAN | ||||
“Arbequina” | 0.4 | 7.4 | 1.70 b | 0.11 de |
“Arbosana” | 0.3 | 9.0 | 1.72 b | 0.14 bc |
“Cobrançosa” | 0.4 | 9.7 | 1.77 b | 0.15 b |
“Cornicabra” | 0.4 | 8.3 | 2.01 a | 0.17 a |
“Koroneiki” | 0.4 | 9.3 | 1.89 ab | 0.14 b |
“Cacereña” | 0.3 | 7.5 | 1.69 b | 0.10 e |
“Chiquitita” | 0.3 | 9.4 | 1.73 b | 0.12 cd |
2014 | 0.4 a | 9.2 b | 2.09 a | 0.14 a |
2015 | 0.2 b | 5.7 c | 1.54 b | 0.12 b |
2016 | 0.4 a | 11.1 a | 1.64 b | 0.13 ab |
Fruity | Bitter | Pungent | Descriptive Profile | |
---|---|---|---|---|
2014 | ||||
“Arbequina” | 5.9 | 1.5 | 0.7 | Banana, tomato, and dried fruits |
“Arbosana” | 4.8 | 1.3 | 2.8 | Banana, tomato, dried fruits, apple, and citric fruits |
“Cobrançosa” | 6.8 | 2.0 | 2.5 | Dried fruits |
“Cornicabra” | 5.7 | 2.6 | 4.4 | Dried fruits, apple, and banana |
“Koroneiki” | 5.6 | 3.2 | 5.5 | Banana and apple |
“Cacereña” | 5.9 | 0.0 | 0.5 | Banana and apple |
“Chiquitita” | 5.7 | 0.6 | 2.3 | Banana and citric fruits |
2015 | ||||
“Arbequina” | 5.1 | 1.1 | 2.1 | Banana and leaf |
“Arbosana” | 4.9 | 2.2 | 2.6 | Mature tomato and banana |
“Cobrançosa” | 5.7 | 2.6 | 4.9 | Grass and leaf |
“Cornicabra” | 5.1 | 3.5 | 4.1 | Grass and leaf |
“Koroneiki” | 4.5 | 2.2 | 4.5 | Grass and dried fruits |
“Cacereña” | 5.2 | 3.7 | 3.6 | Banana and dried fruits |
“Chiquitita” | 5.6 | 2.4 | 2.6 | Apple, banana, tomato, grass, and dried fruits |
Oxidative Stability (h) | Carotenoids (mg kg−1) | Chlorophylls (mg kg−1) | |
---|---|---|---|
2014 | |||
“Arbequina” | 40 d | 3.4 c | 4 d |
“Arbosana” | 55 c | 7.8 b | 10.0 c |
“Cobrançosa” | 38 de | 4.0 c | 8.0 c |
“Cornicabra” | 117 a | 7.2 b | 15.6 b |
“Koroneiki” | 86 b | 11.4 a | 23.9 a |
“Cacereña” | 30 f | 1.7 c | 1.7 d |
“Chiquitita” | 33 ef | 11.5 a | 17.4 b |
2015 | |||
“Arbequina” | 56 d | 13.9 ab | 17.1 c |
“Arbosana” | 84 bc | 11.0 bc | 15.6 c |
“Cobrançosa” | 76 c | 10.2 bc | 20.6 bc |
“Cornicabra” | 113 a | 8.1 c | 13.5 c |
“Koroneiki” | 79 bc | 18.7 a | 34.5 a |
“Cacereña” | 93 b | 6.7 c | 9.1 c |
“Chiquitita” | 59 d | 17.8 a | 30.0 ab |
2016 | |||
“Arbequina” | 77 bc | 12.4 a | 17.4 b |
“Arbosana” | 109 ab | 8.4 b | 12.7 bc |
“Cobrançosa” | 74 bc | 5.4 bc | 8.4 cd |
“Cornicabra” | 144 a | 8.8 b | 16.0 b |
“Koroneiki” | 74 bc | 15.0 a | 26.4 a |
“Cacereña” | 72 c | 3.8 c | 3.5 d |
“Chiquitita” | 66 c | 14.6 a | 27.3 a |
MEAN | |||
“Arbequina” | 58 d | 9.91 b | 12.9 b |
“Arbosana” | 82 b | 9.06 b | 12.8 b |
“Cobrançosa” | 63 d | 6.53 c | 12.3 b |
“Cornicabra” | 125 a | 8.02 bc | 15.0 b |
“Koroneiki” | 80 bc | 15.04 a | 28.2 a |
“Cacereña” | 65 cd | 4.06 d | 4.8 c |
“Chiquitita” | 52 d | 14.62 a | 24.9 a |
2014 | 60 b | 6.7 c | 11.5 c |
2015 | 80 a | 12.3 a | 20.1 a |
2016 | 88 a | 9.8 b | 17.2 b |
Palmitic | Palmitoleic | Estearic | Oleic | Linoleic | |
---|---|---|---|---|---|
2014 | |||||
“Arbequina” | 16.4 a | 2.3 a | 1.3 e | 63.5 e | 12.7 a |
“Arbosana” | 14.1 ab | 1.3 cd | 2.1 cd | 73.3 c | 7.3 c |
“Cobrançosa” | 14.9 a | 1.5 c | 4.1 a | 63.2 e | 14.3 a |
“Cornicabra” | 11.2 b | 1.2 d | 2.7 b | 79.9 a | 3.1 d |
“Koroneiki” | 13.2 ab | 0.9 e | 2.2 bc | 75.9 b | 5.7 c |
“Cacereña” | 14.7 a | 1.9 b | 1.9 cd | 69.0 d | 10.5 b |
“Chiquitita” | 16.3 a | 2.0 b | 1.7 de | 67.8 d | 10.5 b |
2015 | |||||
“Arbequina” | 13.8 a | 1.1 | 2.4 de | 72.5 c | 8.6 a |
“Arbosana” | 13.7 a | 1.1 | 3.2 bc | 75.3 b | 5.6 d |
“Cobrançosa” | 13.3 ab | 1.1 | 4.3 a | 73.5 c | 6.9 c |
“Cornicabra” | 12.1 c | 1.1 | 3.4 b | 78.3 a | 3.5 e |
“Koroneiki” | 11.9 c | 0.7 | 2.7 cd | 77.8 a | 5.7 d |
“Cacereña” | 12.4 bc | 1.1 | 2.4 de | 79.0 a | 3.7 e |
“Chiquitita” | 13.7 a | 1.2 | 2.2 e | 73.1 c | 8.2 b |
2016 | |||||
“Arbequina” | 14.5 a | 1.1 b | 2.3 c | 71.0 c | 9.7 a |
“Arbosana” | 14.0 a | 1.0 c | 3.3 b | 75.0 b | 5.2 b |
“Cobrançosa” | 12.6 b | 0.9 cd | 4.7 a | 70.1 c | 9.8 a |
“Cornicabra” | 11.8 b | 0.9 cd | 3.4 b | 79.0 a | 3.4 b |
“Koroneiki” | 12.4 b | 0.7 d | 2.6 c | 77.4 ab | 5.3 b |
“Cacereña” | 12.7 b | 1.1 b | 2.6 c | 76.6 ab | 5.3 b |
“Chiquitita” | 14.3 a | 1.4 a | 1.9 d | 71.5 c | 9.0 a |
Mean | |||||
“Arbequina” | 14.9 a | 1.5 a | 2.0 e | 69.0 c | 10.3 a |
“Arbosana” | 14.1 bc | 1.1 b | 2.9 c | 74.5 b | 6.0 c |
“Cobrançosa” | 13.6 c | 1.2 b | 4.4 a | 68.9 c | 10.3 a |
“Cornicabra” | 11.7 f | 1.1 b | 3.2 b | 79.1 a | 3.3 d |
“Koroneiki” | 12.5 e | 0.8 c | 2.5 cd | 77.0 ab | 5.5 c |
“Cacereña” | 13.3 d | 1.4 a | 2.3 d | 74.9 b | 6.5 c |
“Chiquitita” | 14.8 a | 1.5 a | 1.9 e | 70.8 c | 9.2 b |
2014 | 14.4 a | 1.6 a | 2.3 b | 70.4 c | 9.2 a |
2015 | 13.0 b | 1.1 b | 2.9 a | 75.6 a | 6.0 b |
2016 | 13.2 b | 1.0 | 3.0 a | 74.4 b | 6.8 b |
OLR | SAFA | MUFA | PUFA | UNFA | UNFA/SAFA | MUFA/PUFA | |
---|---|---|---|---|---|---|---|
2014 | |||||||
“Arbequina” | 5.0 e | 18.4 | 66.2 d | 13.1 a | 79.3 | 4.5 | 5.1 e |
“Arbosana” | 10.1 c | 16.9 | 75.4 b | 7.6 c | 83.0 | 4.9 | 9.9 c |
“Cobrançosa” | 4.5 e | 19.9 | 65.7 d | 14.5 a | 80.2 | 4.0 | 4.5 e |
“Cornicabra” | 25.5 a | 14.7 | 81.8 a | 3.5 d | 85.3 | 5.8 | 23.4 a |
“Koroneiki” | 13.3 b | 16.3 | 77.5 b | 6.1 c | 83.7 | 5.1 | 12.7 b |
“Cacereña” | 6.7 d | 17.4 | 71.8 c | 10.8 b | 82.6 | 4.8 | 6.7 d |
“Chiquitita” | 6.5 d | 18.6 | 70.6 c | 10.8 b | 81.4 | 4.4 | 6.6 d |
2015 | |||||||
“Arbequina” | 14.0 d | 16.6 bc | 77.0 d | 6.4 a | 83.4 | 5.1 | 12.0 c |
“Arbosana” | 13.5 b | 17.2 ab | 77.0 c | 5.7 c | 82.7 | 4.8 | 13.5 b |
“Cobrançosa” | 10.7 c | 17.9 a | 75.3 d | 6.9 b | 82.2 | 4.6 | 10.9 c |
“Cornicabra” | 22.2 a | 16.2 c | 80.1 ab | 3.7 d | 83.8 | 5.2 | 21.6 a |
“Koroneiki” | 13.7 b | 14.9 d | 79.3 b | 5.8 c | 85.1 | 5.7 | 13.7 b |
“Cacereña” | 21.4 a | 15.2 d | 80.8 a | 4.1 d | 84.9 | 5.6 | 19.7 a |
“Chiquitita” | 9.0 cd | 16.5 bc | 75.0 d | 8.5 a | 83.5 | 5.1 | 8.8 c |
2016 | |||||||
“Arbequina” | 7.3 c | 17.4 ab | 72.8 d | 9.9 a | 82.7 | 4.8 | 7.4 c |
“Arbosana” | 14.6 b | 17.9 a | 76.7 bc | 5.4 b | 82.1 | 4.6 | 14.2 b |
“Cobrançosa” | 7.5 c | 18.1 a | 72.0 d | 10.0 a | 82.0 | 4.5 | 7.2 c |
“Cornicabra” | 23.1 a | 15.9 bc | 80.6 a | 3.5 c | 84.1 | 5.3 | 23.0 a |
“Koroneiki” | 14.5 b | 15.5 c | 78.8 ab | 5.7 b | 84.5 | 5.4 | 13.8 b |
“Cacereña” | 15.8 b | 15.9 bc | 78.5 ab | 5.6 b | 84.1 | 5.3 | 14.0 b |
“Chiquitita” | 8.0 c | 16.8 abc | 73.8 cd | 9.4 a | 83.2 | 5.0 | 7.9 c |
MEAN | |||||||
“Arbequina” | 8.8 c | 17.5 b | 72.0 c | 9.8 a | 81.8 | 4.8 | 8.2 c |
“Arbosana” | 12.7 b | 17.3 b | 76,4 b | 6.2 b | 82.6 | 4.8 | 12.5 b |
“Cobrançosa” | 7.5 c | 18.6 a | 71.0 c | 10.5 a | 81.5 | 4.4 | 7.5 c |
“Cornicabra” | 23.6 a | 15.6 c | 80.8 a | 3.6 d | 84.2 | 5.4 | 22.7 a |
“Koroneiki” | 13.8 b | 15.6 c | 78.2 ab | 5.9 c | 84.4 | 5.4 | 13.4 b |
“Cacereña” | 14.6 b | 16.2 c | 77.0 ab | 6.8 b | 83.9 | 5.2 | 13.5 b |
“Chiquitita” | 7.8 c | 17.3 b | 73.1 bc | 9.6 a | 82.7 | 4.8 | 7.8 c |
2014 | 10.2 b | 17.5 a | 72.7 b | 9.5 | 82.2 | 4.8 | 9.8 b |
2015 | 14.9 a | 16.4 c | 77.8 a | 5.9 | 83.7 | 5.2 | 14.3 a |
2016 | 13.0 ab | 16.8 bc | 76.6 ab | 7.1 | 83.2 | 5.0 | 12.5 ab |
2014 | “Arbequina” | “Arbosana” | “Cobrançosa” | “Cornicabra” | “Koroneiki” | “Cacereña” | “Chiquitita” |
Hydroxytyrosol | 3.8 bc | 2.9 bc | 6.2 bc | 8.2 b | 8.5 b | 18.2 a | 1.7 c |
Tyrosol | 4.7 c | 4.0 c | 5.8 bc | 11.2 a | 10.7 ab | 14.2 a | 4.9 c |
Vanillic acid | 0.5 d | 0.8 b | 0.4 de | 0.2 f | 0.6 c | 0.3 ef | 0.9 a |
Vainillin | 0.2 b | 0.4 a | 0.1 c | 0.1 c | 0.1 c | 0.1 c | 0.3 a |
p-coumaric acid | 0.8 a | 0.2 d | 0.3 cd | 0.7 b | 0.3 cd | 0.3 cd | 0.5 c |
Hydroxytyrosol ac. | 32.6 a | 6.3 c | 0.1 c | 0.0 c | 4.4 c | 4.4 c | 20.0 b |
3.4-DHPEA-EDA a | 136.9 b | 108.9 bc | 150.5 b | 214.6 a | 208.7 a | 126.0 bc | 83.7 c |
p-HPEA-EDA b | 77.5 c | 87.9 c | 93.5 c | 322.9 a | 193.3 b | 10.1 d | 81.1 c |
Pinoresinol | 3.6 c | 3.6 c | 2.6 cd | 11.1 a | 5.8 b | 1.5 d | 1.9 d |
Cinnamic acid | 0.0 c | 0.0 c | 0.0 c | 2.3 a | 1.7 ab | 0.2 bc | 0.2 bc |
Acetoxypinoresinol | 29.8 c | 36.6 b | 9.6 de | 49.3 a | 30.3 bc | 4.2 e | 12.1 d |
3.4-DHPEA-EA c | 18.1 d | 52.5 cd | 69.8 c | 264.2 a | 208.2 b | 23.4 d | 20.7 d |
p-HPEA-EA d | 16.7 c | 17.0 c | 18.1 c | 163.8 a | 100.2 b | 15.9 c | 24.5 c |
Ferulic acid | 0.7 | 0.3 | 0.1 | 0.0 | 0.1 | 0.0 | 0.5 |
Luteolin | 14.7 a | 7.6 bcd | 8.5 bcd | 5.1 d | 6.0 cd | 10.1 bc | 10.9 ab |
Apigenin | 2.6 bcd | 8.8 a | 2.2 cd | 1.1 d | 2.7 bcd | 3.7 bc | 4.1 b |
2015 | “Arbequina” | “Arbosana” | “Cobrançosa” | “Cornicabra” | “Koroneiki” | “Cacereña” | “Chiquitita” |
Hydroxytyrosol | 1.1 b | 4.1 b | 2.7 b | 2.4 b | 44.4 a | 2.9 b | 2.7 b |
Tyrosol | 1.4 b | 3.0 b | 4.9 b | 3.3 b | 61.3 a | 7.2 b | 3.5 b |
Vanillic acid | 0.7 ab | 1.1 a | 0.7 ab | 0.3 c | 0.7 abc | 0.4 bc | 1.0 a |
Vainillin | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
p-coumaric acid | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 |
Hydroxytyrosol ac. | 29.0 a | 1.7 b | 3.2 b | 3.1 b | 1.7 b | 6.8 b | 6.9 b |
3.4-DHPEA-EDA a | 124.8 cd | 184.1 abc | 224.3 ab | 255.3 a | 86.0 d | 179.2 abcd | 171.5 bcd |
p-HPEA-EDA b | 57.4 d | 87.7 cd | 142.5 bc | 314.1 a | 114.8 bcd | 151.3 b | 113.6 bcd |
Pinoresinol | 1.2 d | 1.8 b | 0.7 e | 2.2 a | 0.7 ef | 1.4 c | 0.5 f |
Cinnamic acid | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 |
Acetoxypinoresinol | 18.1 b | 26.1 a | 6.6 d | 18.9 b | 12.3 c | 13.1 c | 15.6 bc |
3.4-DHPEA-EA c | 33.7 b | 47.9 b | 147.1 a | 173.9 a | 59.7 b | 186.7 a | 55.8 b |
p-HPEA-EA d | 8.14 d | 15.7 cd | 39.6 b | 80.8 a | 39.5 bc | 48.6 b | 13.5 cd |
Ferulic acid | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 |
Luteolin | 10.3 | 11.9 | 12.3 | 6.2 | 6.6 | 14.6 | 14.3 |
Apigenin | 3.3 bc | 11.4 a | 5.9 b | 1.6 c | 4.7 bc | 4.9 bc | 6.9 b |
2016 | “Arbequina” | “Arbosana” | “Cobrançosa” | “Cornicabra” | “Koroneiki” | “Cacereña” | “Chiquitita” |
Hydroxytyrosol | 0.9 | 1.6 | 2.3 | 2.4 | 1.9 | 2.8 | 2.3 |
Tyrosol | 1.2 | 1.6 | 4.3 | 1.9 | 2.4 | 1.6 | 2.8 |
Vanillic acid | 0.6 bc | 0.8 ab | 0.8 ab | 0.4 c | 1.0 a | 0.5 c | 0.9 a |
Vainillin | 0.2 b | 0.5 a | 0.4 ab | 0.2 b | 0.4 ab | 0.3 b | 0.5 a |
p-coumaric acid | 1.1 a | 0.3 e | 0.5 cd | 0.6 bc | 0.5 de | 0.8 b | 0.4 de |
Hydroxytyrosol ac. | 15.4 b | 8.6 bc | 1.3 c | 1.5 c | 4.4 c | 5.2 c | 30.4 a |
3.4-DHPEA-EDA a | 406.9 a | 291.9 bc | 223.3 bc | 316.0 ab | 172.3 c | 179.6 c | 252.1 bc |
p-HPEA-EDA b | 178.5 b | 166.6 b | 221.3 b | 330.6 a | 207 b | 151.2 b | 170.2 b |
Pinoresinol | 3.2 cd | 3.9 bc | 4.7 b | 6.2 a | 3.5 bcd | 4.9 ab | 2.0 d |
Cinnamic acid | 0.2 c | 0.3 c | 1.0 a | 1.2 a | 1.1 a | 0.9 ab | 0.3 c |
Acetoxypinoresinol | 33.5 | 33.2 | 47.0 | 52.1 | 40.9 | 53.3 | 21.4 |
3.4-DHPEA-EA c | 78.5 cd | 112.0 cd | 306.1 ab | 331.8 ab | 212.2 bc | 386.3 a | 54.0 d |
p-HPEA-EA d | 34.0 c | 35.4 c | 94.3 ab | 136.2 a | 77.4 bc | 106.0 ab | 28.4 c |
Ferulic acid | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Luteolin | 7.8 | 9.5 | 9.7 | 4.1 | 4.6 | 8.3 | 16.4 |
Apigenin | 2.8 c | 11.8 a | 6.0 bc | 1.6 c | 3.9 bc | 4.5 bc | 9.9 b |
Mean Values | “Arbequina” | “Arbosana” | “Cobrançosa” | “Cornicabra” | “Koroneiki” | “Cacereña” | “Chiquitita” | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|---|
Hydroxytyrosol | 1.9 b | 2.9 b | 3.7 b | 4.3 b | 18.3 a | 8.0 b | 2.2 b | 7.1 a | 8.6 a | 2.0 b |
Tyrosol | 2.4 b | 2.9 b | 5.0 b | 5.5 b | 24.8 a | 7.7 b | 3.7 b | 7.9 a | 12 a | 2.3 b |
Vanillic acid | 0.6 c | 0.9 ab | 0.6 c | 0.3 d | 0.8 bc | 0.4 d | 1.0 a | 0.6 b | 0.7 a | 0.7 a |
Vainillin | 0.1 c | 0.3 a | 0.2 b | 0.1 c | 0.2 b | 0.1 c | 0.3 a | 0.2 b | 0.0 c | 0.4 a |
p-coumaric acid | 0.7 a | 0.2 d | 0.4 c | 0.5 b | 0.3 cd | 0.4 c | 0.4 c | 0.6 b | 0.1 c | 0.7 a |
Hydroxytyrosol ac. | 25.7 a | 5.6 c | 1.5 c | 1.5 c | 3.5 c | 5.3 c | 19.1 b | 9.7 | 7.5 | 9.5 |
3.4-DHPEA-EDA a | 222.9 ab | 194.9 bc | 199.4 bc | 262.0 a | 155.6 c | 161.6 c | 169.1 c | 147 b | 184 b | 263 a |
p-HPEA-EDA b | 104.5 d | 114.1 d | 152.4 bc | 322.6 a | 171.7 b | 104.2 d | 121.6 cd | 124 c | 166 b | 204 a |
Pinoresinol | 2.7 c | 3.1 bc | 2.7 c | 6.5 a | 3.3 b | 2.6 c | 1.5 d | 4.6 a | 1.2 b | 4.3 a |
Cinnamic acid | 0.1 c | 0.1 c | 0.4 bc | 1.2 a | 1.0 ab | 0.4 bc | 0.2 c | 0.6 a | 0.0 b | 0.7 a |
Acetoxypinoresinol | 27.2 bc | 32.0 ab | 21.1 cd | 40.1 a | 27.8 bc | 23.6 cd | 16.4 d | 27 b | 16 c | 40 a |
3.4-DHPEA-EA c | 43.4 c | 70.8 c | 174.3 b | 256.6 a | 160.0 b | 198.8 b | 43.5 c | 101 b | 101 b | 258 a |
p-HPEA-EA d | 19.62 d | 22.66 d | 50.65 c | 126.9 a | 72.34 b | 56.5 bc | 22.1 d | 51 b | 43 c | 73 a |
Ferulic acid | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 | 0.2 | 0.2 | 0.0 | 0.1 |
Luteolin | 10.9 ab | 9.7 b | 10.2 b | 5.1 c | 5.7 c | 11.0 ab | 13.9 a | 10.2 | 10.9 | 8.6 |
Apigenin | 2.9 cd | 10.7 a | 4.7 c | 1.4 d | 3.8 c | 4.4 c | 6.9 b | 4.4 b | 5.5 a | 5.8 a |
Peroxide Index | K232 | K270 | Carotenes | Chlorophylls | Oxidative Stability (h) | Oleic Acid | Linoleic Acid | Oleic/Linoleic | MUFA/PUFA | 3,4-DHPEA-EDA | p-HPEA-EDA | Acetoxypinoresinol | 3,4-DHPEA-EA | p-HPEA-EA | Total Phenolics | o-diphenols | Total Secoiridoids | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peroxide index | 1.000 | |||||||||||||||||
K232 | 0.194 | 1.000 | ||||||||||||||||
K270 | 0.203 | 0.505 * | 1.000 | |||||||||||||||
Carotenes | −0.109 | −0.356 * | −0.026 | 1.000 | ||||||||||||||
Chlorophylls | −0.039 | −0.237 | 0.144 | 0.931 * | 1.000 | |||||||||||||
Oxidative stability (h) | −0.054 | −0.017 | 0.605 * | 0.121 | 0.198 | 1.000 | ||||||||||||
Oleic acid | −0.189 | −0.072 | 0.432 * | 0.328 * | 0.353 * | 0.793 * | 1.000 | |||||||||||
Linoleic acid | 0.181 | 0.029 | −0.465 * | −0.241 | −0.278 | −0.824 * | −0.972 * | 1.000 | ||||||||||
oleic/linoleic | 0.213 | −0.007 | 0.202 | 0.089 | 0.125 | 0.381 * | 0.511 * | −0.517 * | 1.000 | |||||||||
MUFA/PUFA | −0.231 | 0.116 | 0.561 * | 0.025 | 0.106 | 0.871 * | 0.840 * | −0.880 * | 0.344 * | 1.000 | ||||||||
3,4-DHPEA-EDA | 0.217 | −0.101 | 0.394 * | 0.066 | 0.090 | 0.588 * | 0.359 * | −0.367 * | 0.085 | 0.302 | 1.000 | |||||||
p-HPEA-EDA | 0.208 | 0.189 | 0.700 * | 0.030 | 0.145 | 0.802 * | 0.614 * | −0.626 * | 0.418 * | 0.722 * | 0.590 * | 1.000 | ||||||
Acetoxypinores | 0.348 * | 0.222 | 0.499 * | −0.105 | −0.104 | 0.514 * | 0.379 * | −0.389 * | 0.249 | 0.364 * | 0.326 * | 0.609 * | 1.000 | |||||
3,4-DHPEA-EA | 0.196 | 0.172 | 0.570 * | −0.169 | −0.064 | 0.652 * | 0.521 * | −0.517 * | 0.300 | 0.548 * | 0.379 * | 0.706 * | 0.669 * | 1.000 | ||||
p-HPEA-EA | 0.200 | 0.380 | 0.717 * | −0.133 | 0.010 | 0.702 * | 0.579 * | −0.578 * | 0.388 * | 0.667 * | 0.355 * | 0.842 * | 0.681 * | 0.862 * | 1.000 | |||
Total phenolics | 0.460 * | 0.226 | 0.676 * | −0.069 | 0.052 | 0.797 * | 0.554 * | −0.564 * | 0.329* | 0.638 * | 0.670 * | 0.912 * | 0.717 * | 0.875 * | 0.900 * | 1.000 | ||
o-diphenols | 0.240 | 0.059 | 0.562 * | −0.008 | 0.076 | 0.760 * | 0.483 * | −0.487 * | 0.239 | 0.521 * | 0.774 * | 0.797 * | 0.639 * | 0.859 * | 0.755 * | 0.946 * | 1.000 | |
Total secoiridoids | 0.240 | 0.155 | 0.673 * | −0.024 | 0.080 | 0.816 * | 0.578 * | −0.583 * | 0.343 * | 0.648 * | 0.697 * | 0.923 * | 0.679 * | 0.872 * | 0.873 * | 0.988 * | 0.960 * | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-del-Campo, M.; Pérez, A.G.; García, J.M. Olive Oil Quality of Cultivars Cultivated in Super-High-Density Orchard under Cold Weather Conditions. Horticulturae 2023, 9, 824. https://doi.org/10.3390/horticulturae9070824
Gomez-del-Campo M, Pérez AG, García JM. Olive Oil Quality of Cultivars Cultivated in Super-High-Density Orchard under Cold Weather Conditions. Horticulturae. 2023; 9(7):824. https://doi.org/10.3390/horticulturae9070824
Chicago/Turabian StyleGomez-del-Campo, Maria, Ana G. Pérez, and José M. García. 2023. "Olive Oil Quality of Cultivars Cultivated in Super-High-Density Orchard under Cold Weather Conditions" Horticulturae 9, no. 7: 824. https://doi.org/10.3390/horticulturae9070824
APA StyleGomez-del-Campo, M., Pérez, A. G., & García, J. M. (2023). Olive Oil Quality of Cultivars Cultivated in Super-High-Density Orchard under Cold Weather Conditions. Horticulturae, 9(7), 824. https://doi.org/10.3390/horticulturae9070824