Effect of Organic Fertilizer on the Growth and Physiological Parameters of a Traditional Medicinal Plant under Salinity Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Plant Culture, and Treatment
2.2. Photosynthetic Pigments
2.3. Aldehydes
2.4. Membrane Stability Index (MSI)
2.5. Relative Water Content (RWC)
2.6. Carbohydrate Content
2.7. Proline
2.8. Total Phenol
2.9. Total Flavonoid
2.10. Anthocyanins
2.11. Total Protein and Antioxidant Enzymes
2.12. Phosphate Measurement
2.13. Nitrate Measurement
2.14. Concentration of Minerals
2.15. Statistical Analyses
3. Results and Discussion
3.1. Morphological Traits
3.2. Photosynthetic Pigments
3.3. Aldehydes (Malondialdehyde and Other Aldehydes) and MSI
3.4. RWC
3.5. Proline of Shoots and Roots
3.6. Soluble Sugar and Starch in the Shoots and Roots
3.7. Phenolic Compounds (Total Phenol, Total Flavonoid, and Anthocyanin)
3.8. Total Protein
3.9. The Activity of Antioxidant Enzymes (CAT and GPX)
3.10. Phosphate, Nitrate, Zinc, Molybdenum, Magnesium, Iron, Sodium, Potassium, and Calcium
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Res. Int. 2014, 2014, 842674. [Google Scholar] [CrossRef] [Green Version]
- Amiri, M.S.; Yazdi, M.E.T.; Rahnama, M. Medicinal plants and phytotherapy in Iran: Glorious history, current status and future prospects. Plant Sci. Today 2021, 8, 95–111. [Google Scholar] [CrossRef]
- Amiri, M.S.; Joharchi, M.R. Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna J. Phytomedicine 2016, 6, 621. [Google Scholar]
- Mehrnia, M.; Akaberi, M.; Amiri, M.; Nadaf, M.; Emami, S. Ethnopharmacological studies of medicinal plants in central Zagros, Lorestan Province, Iran. J. Ethnopharmacol. 2021, 280, 114080. [Google Scholar] [CrossRef]
- Emami, S.; Nadjafi, F.; Amine, G.; Amiri, M.; Khosravi Mt, N.M. Les espèces de plantes médicinales utilisées par les guérisseurs traditionnels dans la province de Khorasan, nord-est de l’Iran. J. Ethnopharmacol. 2012, 48, 48–59. [Google Scholar]
- Mohammadi, M.; Pouryousef, M.; Farhang, N. Study on germination and seedling growth of various ecotypes of fennel (Foeniculum vulgare Mill.) under salinity stress. J. Appl. Res. Med. Aromat. Plants 2023, 34, 100481. [Google Scholar] [CrossRef]
- Faisal, M.; Faizan, M.; Tonny, S.H.; Rajput, V.D.; Minkina, T.; Alatar, A.A.; Pathirana, R. Strigolactone-Mediated Mitigation of Negative Effects of Salinity Stress in Solanum lycopersicum through Reducing the Oxidative Damage. Sustainability 2023, 15, 5805. [Google Scholar] [CrossRef]
- Bahmani, K.; Darbandi, A.I.; Ramshini, H.A.; Moradi, N.; Akbari, A. Agro-morphological and phytochemical diversity of various Iranian fennel landraces. Ind. Crops Prod. 2015, 77, 282–294. [Google Scholar] [CrossRef]
- Hafsi, C.; Lakhdhar, A.; Rabhi, M.; Debez, A.; Abdelly, C.; Ouerghi, Z. Interactive effects of salinity and potassium availability on growth, water status, and ionic composition of Hordeum maritimum. J. Plant Nutr. Soil Sci. 2007, 170, 469–473. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, S.; Singh, M.; Srivastava, P.K.; Mishra, R.K.; Singh, V.P.; Prasad, S.M. Transcriptional regulation of salinity stress in plants: A short review. Plant Gene 2017, 11, 160–169. [Google Scholar] [CrossRef]
- Es-sbihi, F.Z.; Hazzoumi, Z.; Aasfar, A.; Amrani Joutei, K. Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chem. Biol. Technol. Agric. 2021, 8, 25. [Google Scholar] [CrossRef]
- Shamili, M.; Esfandiari Ghalati, R.; Samari, F. The impact of foliar salicylic acid in salt-exposed guava (Psidium Guajava L.) seedlings. Int. J. Fruit Sci. 2021, 21, 323–333. [Google Scholar] [CrossRef]
- Nadaf, M.; Amiri, M.S.; Joharchi, M.R.; Omidipour, R.; Moazezi, M.; Mohaddesi, B.; Taghavizadeh Yazdi, M.E.; Mottaghipisheh, J. Ethnobotanical Diversity of Trees and Shrubs of Iran: A Comprehensive Review. Int. J. Plant Biol. 2023, 14, 120–146. [Google Scholar] [CrossRef]
- Nadaf, M.; Halimi Khalil Abad, M.; Gholami, A.; Taghavizadeh Yazdi, M.E.; Iriti, M.; Mottaghipisheh, J. Phenolic content and antioxidant activity of different Iranian populations of Anabasis aphylla L. Nat. Prod. Res. 2022, 1–5. [Google Scholar] [CrossRef]
- Gholami, H.; Saharkhiz, M.J.; Fard, F.R.; Ghani, A.; Nadaf, F. Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory (Cichorium intybus L.). Biocatal. Agric. Biotechnol. 2018, 14, 286–292. [Google Scholar] [CrossRef]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Bio. Technol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Chatterjee, D.; Dutta, S.K.; Kikon, Z.J.; Kuotsu, R.; Sarkar, D.; Satapathy, B.; Deka, B.C. Recycling of agricultural wastes to vermicomposts: Characterization and application for clean and quality production of green bell pepper (Capsicum annuum L.). J. Clean. Prod. 2021, 315, 128115. [Google Scholar] [CrossRef]
- Gupta, C.; Prakash, D.; Gupta, S.; Nazareno, M.A. Role of vermicomposting in agricultural waste management. In Sustainable Green Technologies for Environmental Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 283–295. [Google Scholar]
- Celikcan, F.; Kocak, M.Z.; Kulak, M. Vermicompost applications on growth, nutrition uptake and secondary metabolites of Ocimum basilicum L. under water stress: A comprehensive analysis. Ind. Crops Prod. 2021, 171, 113973. [Google Scholar] [CrossRef]
- Mousavi Kouhi, S.M.; Sarafraz Ardakani, M.R.; Beykkhormizi, A. Irrigation of Helianthus annuus with Pb-polluted water: Improvement of phytoremediation using vermicompost. J. Plant Process Funct. 2019, 8, 77–83. [Google Scholar]
- Bidabadi, S.S.; Dehghanipoodeh, S.; Wright, G.C. Vermicompost leachate reduces some negative effects of salt stress in pomegranate. Int. J. Recycl. Org. Waste Agric. 2017, 6, 255–263. [Google Scholar] [CrossRef]
- Beykkhormizi, A.; Abrishamchi, P.; Ganjeali, A.; Parsa, M. Effect of vermicompost on some morphological, physiological and biochemical traits of bean (Phaseolus vulgaris L.) under salinity stress. J. Plant Nutr. 2016, 39, 883–893. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Liu, X.; Lu, Y.; Wang, Y. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
- Feizi, H.; Moradi, R.; Pourghasemian, N.; Sahabi, H. Assessing saffron response to salinity stress and alleviating potential of gamma amino butyric acid, salicylic acid and vermicompost extract on salt damage. S. Afr. J. Bot. 2021, 141, 330–343. [Google Scholar] [CrossRef]
- Beyk-Khormizi, A.; Hosseini Sarghein, S.; Sarafraz-Ardakani, M.R.; Moshtaghioun, S.M.; Mousavi-Kouhi, S.M.; Ganjeali, A. Ameliorating effect of vermicompost on Foeniculum vulgare under saline condition. J. Plant Nutr. 2022, 46, 1601–1615. [Google Scholar] [CrossRef]
- Beykkhormizi, A.; Sarghein, S.H.; Sarafraz Ardakani, M.R.; Moshtaghioun, S.M.; Mousavi Kouhi, S.M. Alleviation of salinity stress by vermicompost extract: A comparative study on five fennel landraces. Commun. Soil Sci. Plant Anal. 2018, 49, 2123–2130. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; pp. 350–382. [Google Scholar]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Meir, S.; Philosoph-Hadas, S.; Aharoni, N. Ethylene-increased accumulation of fluorescent lipid-peroxidation products detected during senescence of parsley by a newly developed method. J. Am. Soc. Hortic. Sci. 1992, 117, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Sairam, R.; Saxena, D. Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. J. Agron. Crop. Sci. 2000, 184, 55–61. [Google Scholar] [CrossRef]
- Bian, S.; Jiang, Y. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci. Hortic. 2009, 120, 264–270. [Google Scholar] [CrossRef]
- Bates, L.; Waldren, R.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Yazdi, T.; Ehsan, M.; Housaindokht, M.R.; Sadeghnia, H.R.; Esmaeilzadeh Bahabadi, S.; Amiri, M.S.; Darroudi, M. Assessment of phytochemical components and antioxidant activity of Rheum turkestanicum Janisch. Stud. Med. Sci. 2020, 31, 75–81. [Google Scholar]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Wagner, G.J. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiol. 1979, 64, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Hugo, A.; Lester, P. Catalase in vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar]
- Bergmeyer, H. Determination with glucose oxidase and peroxidase. Methods Enzym. Anal. 1974, 1205–1215. [Google Scholar]
- Minocha, R.; Shortle, W.C.; Long, S.L.; Minocha, S.C. A rapid and reliable procedure for extraction of cellular polyamines and inorganic ions from plant tissues. J. Plant Growth Regul. 1994, 13, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.-T.; Liu, C.; Geng, B. Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol. Environ. Saf. 2006, 64, 273–280. [Google Scholar] [CrossRef]
- Walsh, L.M.; Douglas, L.A. Instrumental methods for analysis of soils and plant tissue. Soil Sci. 1972, 114, 500. [Google Scholar] [CrossRef]
- Chapman, H.; Pratt, P. Methods of Plant Analysis. I. Methods of Analysis for Soils, Plants and Wate; Chapman Publishers: Riverside, CA, USA, 1982. [Google Scholar]
- El-Magd, A.; Zaki, M.; Abou-Hussein, S. Effect of organic manure and different levels of saline irrigation water on growth, green yield and chemical content of sweet fennel. Aust. J. Basic Appl. Sci. 2008, 2, 90–98. [Google Scholar]
- SEMİZ, G.; Ünlükara, A.; Yurtseven, E.; Suarez, D.; Telci, I. Salinity impact on yield, water use, mineral and essential oil content of fennel (Foeniculum vulgare Mill.). J. Agric. Sci. 2012, 18, 177–186. [Google Scholar]
- Cucci, G.; Lacolla, G.; Boari, F.; Cantore, V. Yield response of fennel (Foeniculum vulgare Mill.) to irrigation with saline water. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 129–134. [Google Scholar]
- Kiran, S. Effects of vermicompost on some morphological, physiological and biochemical parameters of lettuce (Lactuca sativa var. crispa) under drought stress. Not. Bot. Horti Agrobot. 2019, 47, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Arancon, N.Q.; Edwards, C.A.; Babenko, A.; Cannon, J.; Galvis, P.; Metzger, J.D. Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Appl. Soil Ecol. 2008, 39, 91–99. [Google Scholar] [CrossRef]
- Xu, L.; Yan, D.; Ren, X.; Wei, Y.; Zhou, J.; Zhao, H.; Liang, M. Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress. Ind. Crops Prod. 2016, 94, 574–585. [Google Scholar] [CrossRef]
- Banakar, M.H.; Amiri, H.; Ardakani, M.R.S.; Ranjbar, G.H. Susceptibility and tolerance of fenugreek (Trigonella foenum-graceum L.) to salt stress: Physiological and biochemical inspections. Environ. Exp. Bot. 2022, 194, 104748. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Salachna, P.; Meller, E. Changes in photosynthetic pigments, total phenolic content, and antioxidant activity of Salvia coccinea Buc’hoz Ex Etl. induced by exogenous salicylic acid and soil salinity. Molecules 2018, 23, 1296. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, D.; Yactayo, W.; Gutiérrez, R.; Mares, V.; De Mendiburu, F.; Posadas, A.; Quiroz, R. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci. Hortic. 2014, 168, 202–209. [Google Scholar] [CrossRef]
- Muhammad, A.; Muhammad, Q.; Rafiq, A. Effect of sea salt irrigation on plant growth, yield potential and some biochemical attributes of Carissa carandas. Pak. J. Bot. 2016, 48, 853–859. [Google Scholar]
- Orabi, S.; Salman, S.; Shalaby, M.A. Increasing resistance to oxidative damage in cucumber (Cucumis sativus L.) plants by exogenous application of salicylic acid and paclobutrazol. World J. Agric. Sci. 2010, 6, 252–259. [Google Scholar]
- Bybordi, A.; Tabatabaei, S.J.; Ahmadev, A. Effect of salinity on the growth and peroxidase and IAA oxidase activities in canola. J. Food Agric. Env. 2010, 8, 109–112. [Google Scholar]
- Amiri, H.; Ismaili, A.; Hosseinzadeh, S.R. Influence of vermicompost fertilizer and water deficit stress on morpho-physiological features of chickpea (Cicer arietinum L. cv. karaj). Compos. Sci. Util. 2017, 25, 152–165. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Amiri, H.; Ismaili, A. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica 2016, 54, 87–92. [Google Scholar] [CrossRef]
- Atik, A. Effects of planting density and treatment with vermicompost on the morphological characteristics of oriental beech (Fagus orientalis Lipsky.). Compos. Sci. Util. 2013, 21, 87–98. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khajehpour, M.; Naderi, A.; Nassiri, B.M. Physiological responses of sunflower to water stress under different levels of zinc fertilizer. Int. J. Plant Prod. 2014, 8, 483–504. [Google Scholar]
- Farooq, S.; Azam, F. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J. Plant Physiol. 2006, 163, 629–637. [Google Scholar] [CrossRef]
- Bandeoğlu, E.; Eyidoğan, F.; Yücel, M.; Avni Öktem, H. Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul. 2004, 42, 69–77. [Google Scholar] [CrossRef]
- Daneshbakhsh, B.; Khoshgoftarmanesh, A.H.; Shariatmadari, H.; Cakmak, I. Effect of zinc nutrition on salinity-induced oxidative damages in wheat genotypes differing in zinc deficiency tolerance. Acta Physiol. Plant. 2013, 35, 881–889. [Google Scholar] [CrossRef]
- Sanaeiostovar, A.; Khoshgoftarmanesh, A.H.; Shariatmadari, H.; Afyuni, M.; Schulin, R. Combined effect of zinc and cadmium levels on root antioxidative responses in three different zinc-efficient wheat genotypes. J. Agron. Crop. Sci. 2012, 198, 276–285. [Google Scholar] [CrossRef]
- Colom, M.; Vazzana, C. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ. Exp. Bot. 2003, 49, 135–144. [Google Scholar] [CrossRef]
- Ahmad, R.; Jabeen, N. Demonstration of growth improvement in sunflower (Helianthus annuus L.) by the use of organic fertilizers under saline conditions. Pak. J. Bot. 2009, 41, 1373–1384. [Google Scholar]
- Dejampour, J.; Aliasgarzad, N.; Zeinalabedini, M.; Niya, M.R.; Hervan, E.M. Evaluation of salt tolerance in almond [Prunus dulcis (L.) Batsch] rootstocks. Afr. J. Biotechnol. 2012, 11, 11907–11912. [Google Scholar]
- Rahman, R.A.; Gomaa, S.E.; Abdelsalam, N.R.; El-Wakil, H.; Khaled, A.; Hassan, H. Effect of Sodium Chloride on Tropane Alkaloids Accumulation and Proline content in Datura metel and D. stramonium callus cultures. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 197–210. [Google Scholar]
- Ali, A.; Salim, M.; Ahmad, I.; Mahmood, I. Nutritional role of calcium on the growth of Brassica napus under salineconditions. Pak. J. Agric. Sci. 2003, 40. [Google Scholar]
- Cha-Um, S.; Charoenpanich, A.; Roytrakul, S.; Kirdmanee, C. Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol. Plant. 2009, 31, 477–486. [Google Scholar] [CrossRef]
- Kanai, M.; Higuchi, K.; Hagihara, T.; Konishi, T.; Ishii, T.; Fujita, N.; Nakamura, Y.; Maeda, Y.; Yoshiba, M.; Tadano, T. Common reed produces starch granules at the shoot base in response to salt stress. New Phytol. 2007, 176, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Bartels, D.; Sunkar, R. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Mousavi, A.; Lessani, H.; Babalar, M.; Talaei, A.; Fallahi, E. Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. J. Plant Nutr. 2008, 31, 1906–1916. [Google Scholar] [CrossRef]
- Ashok, P.; Carlos, R.; Christian, L. Current Developments in Solid-State Fermentation; Asiatech Publishers, Inc.: New Delhi, India, 2008; 517p. [Google Scholar]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Pennycooke, J.C.; Cox, S.; Stushnoff, C. Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia× hybrida). Environ. Exp. Bot. 2005, 53, 225–232. [Google Scholar] [CrossRef]
- Rezazadeh, A.; Ghasemnezhad, A.; Barani, M.; Telmadarrehei, T. Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Res. J. Med. Plant 2012, 6, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Bourgou, S.; Kchouk, M.; Bellila, A.; Marzouk, B. Effect of salinity on phenolic composition and biological activity of Nigella sativa. In International Symposium on Medicinal and Aromatic Plants-SIPAM2009 853; International Society for Horticultural Science: Leuven, Belgium, 2009. [Google Scholar]
- Ahmed, N.; Maekawa, M.; Noda, K. Anthocyanin accumulation and expression pattern of anthocyanin biosynthesis genes in developing wheat coleoptiles. Biol. Plant. 2009, 53, 223–228. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.-S. Compost as a soil supplement increases the level of antioxidant compounds and oxygen radical absorbance capacity in strawberries. J. Agric. Food Chem. 2003, 51, 6844–6850. [Google Scholar] [CrossRef]
- Connor, A.M.; Luby, J.J.; Tong, C.B.; Finn, C.E.; Hancock, J.F. Genotypic and environmental variation in antioxidant activity, total phenolic content, and anthocyanin content among blueberry cultivars. J. Am. Soc. Hortic. Sci. 2002, 127, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Suthar, S. Impact of Vermicompost and Composted Farmyard Manure on Growth and Yield of Garlic (Allium stivum L.) Field Crop. Int. J. Plant Prod. 2009. [Google Scholar]
- Pollastri, S.; Tattini, M. Flavonols: Old compounds for old roles. Ann. Bot. 2011, 108, 1225–1233. [Google Scholar] [CrossRef] [Green Version]
- Manaa, A.; Mimouni, H.; Wasti, S.; Gharbi, E.; Aschi-Smiti, S.; Faurobert, M.; Ahmed, H.B. Comparative proteomic analysis of tomato (Solanum lycopersicum) leaves under salinity stress. Plant Omics 2013, 6, 268–277. [Google Scholar]
- Molassiotis, A.; Sotiropoulos, T.; Tanou, G.; Diamantidis, G.; Therios, I. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ. Exp. Bot. 2006, 56, 54–62. [Google Scholar] [CrossRef]
- Khan, M.N.; Siddiqui, M.H.; Mohammad, F.; Khan, M.; Naeem, M. Salinity induced changes in growth, enzyme activities, photosynthesis, proline accumulation and yield in linseed genotypes. World J Agric Sci 2007, 3, 685–695. [Google Scholar]
- Salama, Z.A.; El-Fouly, M.M.; Lazova, G.; Popova, L.P. Carboxylating enzymes and carbonic anhydrase functions were suppressed by zinc deficiency in maize and chickpea plants. Acta Physiol. Plant. 2006, 28, 445–451. [Google Scholar] [CrossRef]
- Carrasco-Ríos, L.; Pinto, M. Effect of salt stress on antioxidant enzymes and lipid peroxidation in leaves in two contrasting corn, ‘Lluteno’ and ‘Jubilee’. Chil. J. Agric. Res. 2014, 74, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Esfandiari, E.; Shekari, F.; Shekari, F.; Esfandiari, M. The effect of salt stress on antioxidant enzymes’activity and lipid peroxidation on the wheat seedling. Not. Bot. Horti Agrobot. 2007, 35, 48. [Google Scholar]
- Sorkheh, K.; Shiran, B.; Rouhi, V.; Khodambashi, M.; Sofo, A. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. Acta Physiol. Plant. 2012, 34, 203–213. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Savasturk, O.; Gunes, A. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci. Hortic. 2007, 114, 5–10. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.R.; Amiri, H.; Ismaili, A. Nutrition and biochemical responses of chickpea (Cicer arietinum L.) to vermicompost fertilizer and water deficit stress. J. Plant Nutr. 2017, 40, 2259–2268. [Google Scholar] [CrossRef]
- Chakrabarti, N.; Mukherji, S. Alleviation of NaCl stress by pretreatment with phytohormones in Vigna radiata. Biol. Plant. 2003, 46, 589–594. [Google Scholar] [CrossRef]
- Tester, M.; Davenport, R. Sodium tolerance sodium transport in higher plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Nenova, V. Growth and mineral concentrations of pea plants under different salinity levels and iron supply. Gen Appl Plant Physiol 2008, 34, 189–202. [Google Scholar]
- Khoshgoftarmanesh, A.; Shariatmadari, H.; Karimian, N.; Kalbasi, M.; Khajehpour, M. Zinc efficiency of wheat cultivars grown on a saline calcareous soil. J. Plant Nutr. 2005, 27, 1953–1962. [Google Scholar] [CrossRef]
- Yousif, B.S.; Nguyen, N.T.; Fukuda, Y.; Hakata, H.; Okamoto, Y.; Masaoka, Y.; Saneoka, H. Effect of salinity on growth, mineral composition, photosynthesis and water relations of two vegetable crops; New Zealand spinach (Tetragonia tetragonioides) and water spinach (Ipomoea aquatica). Int. J. Agric. Biol. 2010, 12, 211–216. [Google Scholar]
- Bachman, G.; Metzger, J. Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresour. Technol. 2008, 99, 3155–3161. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, N.; Ahmad, R. Foliar application of potassium nitrate affects the growth and nitrate reductase activity in sunflower and safflower leaves under salinity. Not. Bot. Horti Agrobot. 2011, 39, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Debouba, M.; Maâroufi-Dghimi, H.; Suzuki, A.; Ghorbel, M.H.; Gouia, H. Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Ann. Bot. 2007, 99, 1143–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | EC (dS m−1) | OC | Mo | Zn | Fe | Na | Mg | Ca | K | P | N |
---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | ||
VC | 7.68 | 15.87 | 150 | 127 | 15,100 | 4200 | 18,900 | 52,000 | 15,900 | 22,200 | 15,400 |
Soil | 3.81 | 0.015 | 0.37 | 0.14 | 0.08 | 547 | 91.7 | 216.4 | 136.4 | 4.3 | 10 |
A mixture of VC and Soil | 4.87 | 0.099 | o.49 | 0.22 | 0.36 | 554 | 131.2 | 368.7 | 390 | 15.62 | 90 |
Sources of Variation | Degrees of Freedom | Plant Height (cm) | Shoot DW (mg) | Leaf Area (mm2) | Root Length (mm) | Root DW (mg) |
---|---|---|---|---|---|---|
Landrace | 1 | ** | ** | ** | ** | ** |
311.993 | 0.142404 | 84,625.62 | 23.831 | 0.029884 | ||
Salinity | 2 | ** | ** | ** | ** | ** |
218.579 | 0.259129 | 58,083.64 | 36.727 | 0.017791 | ||
Landrace × salinity | 2 | ** | ** | ns | ** | ns |
20.14 | 0.013889 | 665.093 | 5.452 | 0.000068 | ||
Vermicompost | 1 | ** | ** | ** | ** | ** |
109.063 | 0.850694 | 481,979.1 | 23.088 | 0.045788 | ||
Landrace × vermicompost | 1 | ns | ** | ** | ** | ** |
0.0001 | 0.025 | 17,109.3 | 2.794 | 0.000321 | ||
Salinity × vermicompost | 2 | ns | ** | ** | ** | ns |
0.766 | 0.114597 | 30,423.42 | 12.341 | 0.000101 | ||
Landrace × salinity × vermicompost | 2 | * | ** | ** | ** | ** |
2.005 | 0.009003 | 1504.115 | 1.798 | 0.000614 | ||
Error | 22 | 0.686 | 0.000072 | 203.66 | 0.148 | 0.000034 |
Fennel Landraces | VC Conc. | Salinity Conc. (mM NaCl) | Plant Height (cm) | Shoot DW (mg) | Leaf Area (mm2) | Root Length (mm) | Root DW (mg) |
---|---|---|---|---|---|---|---|
0 | 14.11 d | 4.900 i | 142.5 g | 5.867 e | 3.100 h | ||
0 | 40 | 11.67 e | 3.200 k | 116.4 h | 9.500 b | 1.867 k | |
Urmia | 80 | 4.33 g | 2.033 l | 90.08 i | 4.167 f | 0.9667 l | |
0 | 19.11 b | 18.70 c | 423.2 c | 10.00 b | 5.567 c | ||
5% | 40 | 14.33 d | 10.10 d | 289.5 d | 8.167 cd | 3.900 f | |
80 | 7.110 f | 5.500 h | 199.7 e | 4.500 f | 2.667 i | ||
0 | 19.00 b | 7.267 e | 182.9 ef | 7.750 d | 5.100 d | ||
0 | 40 | 16.11 c | 5.900 g | 167.8 fg | 8.607 c | 3.400 g | |
Shiraz | 80 | 12.66 e | 3.900 j | 158.3 fg | 6.387 e | 2.333 j | |
0 | 22.11 a | 24.77 a | 561.9 a | 11.28 a | 6.900 a | ||
5% | 40 | 19.66 b | 19.40 b | 466.4 b | 9.667 b | 6.300 b | |
80 | 16.44 c | 7.067 f | 305.9 d | 8.277 cd | 4.967 e |
Sources of Variation | Degrees of Freedom | Chl a | Chl b | Total Chl | Carot | MDA (Nm/gFW) | Other Aldehydes (Nm/gFW) | MSI (%) |
---|---|---|---|---|---|---|---|---|
(mg g−1) | (mg g−1) | (mg g−1) | (mg g−1 FW) | |||||
Landrace | 1 | ** | ** | ** | ** | ** | ** | ** |
0.139 | 0.04 | 0.029 | 0.052 | 657.452 | 191,525.7 | 213.194 | ||
Salinity | 2 | ** | ** | ** | ** | ** | ** | ** |
0.225 | 0.094 | 0.595 | 0.023 | 1976.924 | 671,031.7 | 2829.979 | ||
Landrace × salinity | 2 | ** | * | ** | ** | ns | * | * |
0.086 | 0.0001 | 0.073 | 0.004 | 41.093 | 10,214.61 | 25.624 | ||
Vermicompost | 1 | ** | ** | ** | ** | ** | ** | ** |
0.044 | 0.013 | 0.104 | 0.01 | 3086.451 | 715,880.4 | 757.506 | ||
Landrace × vermicompost | 1 | * | ns | ** | ** | ** | ** | ns |
0.005 | 0.001 | 0.01 | 0.001 | 223.727 | 65,172.03 | 8.146 | ||
Salinity × vermicompost | 2 | * | ** | ** | ** | ns | ns | ** |
0.006 | 0.001 | 0.008 | 0.001 | 31.955 | 5479.736 | 44.851 | ||
Landrace × salinity × vermicompost | 2 | * | ** | * | ** | * | ** | * |
0.001 | 0.002 | 0.001 | 0.001 | 31.962 | 28,303.53 | 22.781 | ||
Error | 22 | 0.001 | 0.0001 | 0.001 | 0.0001 | 19.818 | 1826.999 | 7.006 |
Fennel Landraces | VC Conc. | Salinity Conc. (mM NaCl) | MDA (Nm/gFW) | Other Aldehydes (Nm/gFW) | MSI (%) | RWC (%) | Shoot Proline (μmol/gFW) | Root Proline (μmol/gFW) |
---|---|---|---|---|---|---|---|---|
0 | 34.19 de | 561.6 d | 65.79 c | 63.16 e | 12.54 h | 28.24 g | ||
0 | 40 | 57.69 b | 751.3 c | 49.45 e | 59.17 f | 15.08 f | 88.50 c | |
Urmia | 80 | 66.24 a | 1036.a | 29.71 g | 48.16 h | 16.93 cd | 101.3 b | |
0 | 17.09 g | 306.3 f | 70.89 b | 84.40 b | 15.62 ef | 11.00 h | ||
5% | 40 | 27.78 ef | 561.6 d | 57.10 d | 70.71 d | 19.09 b | 71.38 d | |
80 | 42.73 c | 889.9 b | 47.34 e | 59.77 f | 20.85 a | 89.08 c | ||
0 | 27.78 ef | 452.2 e | 68.73 bc | 76.14 c | 11.58 h | 29.90 g | ||
0 | 40 | 38.46 cd | 714.8 c | 57.42 d | 71.49 d | 13.81 g | 100.3 b | |
Shiraz | 80 | 51.28 b | 999.3 a | 36.26 f | 57.21 g | 16.51 de | 106.5 a | |
0 | 14.96 g | 240.7 f | 76.01 a | 88.34 a | 14.97 f | 12.47 h | ||
5% | 40 | 25.64 f | 306.3 f | 65.36 c | 77.31 c | 16.39 de | 43.87 f | |
80 | 36.32 cd | 517.9 de | 45.71 e | 64.12 e | 17.74 c | 50.14 e |
Sources of Variation | Degrees of Freedom | RWC (%) | Shoot Proline (μmol/gFW) | Root Proline (μmol/gFW) | Shoot Soluble Sugar (mg/gFW) | Shoot Starch (mg/gFW) | Root Soluble Sugar (mg/gFW) | Root Starch (mg/gFW) |
---|---|---|---|---|---|---|---|---|
Landrace | 1 | ** | ** | ** | ** | ** | ns | ** |
605.833 | 20.737 | 538.488 | 4.31 | 5.686 | 0.023 | 32.418 | ||
Salinity | 2 | ** | ** | ** | ** | ** | ** | ** |
1300.854 | 56.385 | 15,219.31 | 4.204 | 0.056 | 9.33 | 1.295 | ||
Landrace × salinity | 2 | ** | ns | ** | ns | ns | ** | ** |
5.846 | 1.174 | 255.343 | 0.022 | 0.002 | 0.981 | 4.764 | ||
Vermicompost | 1 | ** | ** | ** | ** | ** | ** | ** |
1201.061 | 82.771 | 7812.262 | 3.089 | 23.25 | 124.096 | 105.576 | ||
Landrace × vermicompost | 1 | ** | ** | ** | ** | ** | ** | ** |
94.537 | 3.603 | 1746.181 | 0.921 | 2.945 | 1.23 | 19.044 | ||
Salinity × vermicompost | 2 | ** | ns | ** | ** | ** | ** | ** |
60.38 | 0.478 | 335.614 | 0.998 | 0.316 | 5.79 | 2.289 | ||
Landrace × salinity × vermicompost | 2 | * | * | ** | ** | ** | ** | * |
3.863 | 1.696 | 434.979 | 0.212 | 0.223 | 0.375 | 0.182 | ||
Error | 22 | 0.939 | 0.38 | 2.5 | 0.008 | 0.003 | 0.047 | 0.086 |
Sources of Variation | Degrees of Freedom | Total Phenol (mg/gFW) | Total Flavonoid | Anthocyanin | TPC (mg/g FW) | CAT Activity (U Protein−1) | POX Activity (U Protein−1) | Phosphate | Nitrate |
---|---|---|---|---|---|---|---|---|---|
(µg/gFW) | (M/gFW) | (mg/kgFW) | (mg/kgFW) | ||||||
Landrace | 1 | ** | ** | ** | ** | ** | * | ** | ** |
322.083 | 1.329 | 8.313 | 11,085.28 | 10.569 | 1.905 | 37.21 | 37.088 | ||
Salinity | 2 | ** | ** | ** | ** | ** | ns | ** | ** |
142.958 | 0.444 | 18.75 | 22,685.56 | 26.257 | 0.726 | 29.765 | 2622.273 | ||
Landrace × salinity | 2 | ** | ** | ** | ** | ** | ns | ** | * |
40.002 | 0.027 | 1.553 | 1512.943 | 2.189 | 0.107 | 15.017 | 9.585 | ||
Vermicompost | 1 | ** | ** | ** | ** | ** | ns | ** | ** |
29.304 | 1.787 | 5.61 | 5845.112 | 25.182 | 0.087 | 18.674 | 777.109 | ||
Landrace × vermicompost | 1 | ** | ** | ns | ** | ns | ns | ns | ** |
0.846 | 1.335 | 0.009 | 128.142 | 0.0001 | 0.232 | 0.17 | 118.592 | ||
Salinity × vermicompost | 2 | ** | ** | ** | ** | ** | ns | ** | ** |
1.639 | 0.02 | 1.448 | 368.278 | 2.553 | 0.612 | 0.515 | 70.999 | ||
Landrace × salinity × vermicompost | 2 | * | ** | * | ** | ** | ns | ** | ** |
0.001 | 0.013 | 0.026 | 355.366 | 3.631 | 0.37 | 0.56 | 59.309 | ||
Error | 22 | 0.096 | 0.001 | 0.014 | 2.773 | 0.013 | 0.256 | 0.052 | 2.079 |
Fennel Landraces | VC Conc. | Salinity Conc. (mM NaCl) | Total Phenol (mg/gFW) | Total Flavonoid (µg/gFW) | Anthocyanin (M/gFW) | TPC (mg/g FW) | CAT activity (U Protein−1) | POX Activity (U Protein−1) | Phosphate (mg/kgFW) | Nitrate (mg/kgFW) |
---|---|---|---|---|---|---|---|---|---|---|
0 | 4.533 i | 0.7567 h | 2.181 d | 53.13 e | 0.9675 f | 0.1606 ab | 7.929 b | 64.47 c | ||
0 | 40 | 5.033 i | 1.112 ef | 0.3737 hi | 15.70 i | 3.525 d | 0.7257 ab | 5.227 de | 53.93 e | |
Urmia | 80 | 8.267 fg | 1.182 d | 0.2927 i | 11.53 j | 4.844 a | 1.066 a | 3.319 i | 36.13 h | |
0 | 6.833 h | 0.6783 i | 3.838 b | 101.0 c | 0.1406 i | 1.047 a | 10.40 a | 70.60 b | ||
5% | 40 | 7.767 g | 1.062 fg | 0.7370 g | 50.40 ef | 0.3827 h | 0.1045 ab | 6.421 c | 59.50 d | |
80 | 9.567 e | 1.129 de | 0.5450 gh | 16.73 i | 3.793 c | 0.9877 ab | 4.386 g | 41.42 g | ||
0 | 6.967 h | 1.708 c | 2.636 c | 127.5 b | 0.5046 gh | 0.07173 ab | 3.999 h | 59.40 d | ||
0 | 40 | 11.73 d | 1.778 b | 2.030 d | 47.70 f | 1.495 e | 0.2600 ab | 3.912 h | 52.67 e | |
Shiraz | 80 | 18.00 b | 1.874 a | 0.9690 f | 21.73 h | 4.083 b | 0.7222 ab | 2.877 j | 37.67 h | |
0 | 8.693 f | 0.7086 hi | 4.151 a | 147.6 a | 0.1144 i | 0.02713 b | 5.312 d | 83.03 a | ||
5% | 40 | 13.83 c | 1.016 g | 2.615 c | 72.03 d | 0.3044 hi | 0.08487 ab | 4.877 ef | 61.03 d | |
80 | 18.67 a | 1.142 de | 1.333 e | 42.43 g | 0.6485 g | 0.1653 ab | 4.508 fg | 44.43 f |
Sources of Variation | Degrees of Freedom | Shoot Zn (mg kg −1 DW) | Shoot Mo (mg kg −1 DW) | Shoot Mg (mg kg −1 DW) | Shoot Fe (mg kg−1 DW) | Shoot Na (%) | Shoot K (%) | Shoot Ca (%) | Root Na (%) | Root K (%) | Root Ca (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Landrace | 1 | ** | ** | ** | ** | ** | ** | ** | ** | ** | * |
1855.312 | 2983.709 | 154,291.9 | 2817.84 | 0.902 | 5.112 | 0.481 | 9.879 | 5.951 | 0.026 | ||
Salinity | 2 | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
4371.429 | 7150.278 | 1,494,829 | 197,377.1 | 64.375 | 37.022 | 2.105 | 37.016 | 8.431 | 1.192 | ||
Landrace × salinity | 2 | ** | ** | ** | ** | ** | ** | ns | ** | ** | ns |
105.022 | 70.817 | 20,567.36 | 129.722 | 3.629 | 0.814 | 0.019 | 2.664 | 0.664 | 0.008 | ||
Vermicompost | 1 | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
3034.541 | 7652.167 | 262,280.5 | 87,428.64 | 9.203 | 18.855 | 0.968 | 8.754 | 5.179 | 1.839 | ||
Landrace × vermicompost | 1 | ** | ** | ** | ** | ns | ** | ns | ns | ** | ns |
189.521 | 121.073 | 5241.762 | 624.167 | 0.289 | 0.86 | 0.0001 | 0.017 | 0.661 | 0.001 | ||
Salinity × vermicompost | 2 | ** | ** | ** | ** | * | ** | * | ns | * | ** |
564.889 | 1173.674 | 1742.007 | 6346.17 | 0.358 | 0.836 | 0.033 | 0.175 | 0.135 | 0.08 | ||
Landrace × salinity × vermicompost | 2 | ** | ** | ** | ** | * | ** | ** | * | * | * |
22.474 | 350.342 | 4749.172 | 223.214 | 0.49 | 0.702 | 0.052 | 0.283 | 0.113 | 0.003 | ||
Error | 22 | 0.344 | 0.863 | 295.864 | 9.732 | 0.088 | 0.072 | 0.006 | 0.146 | 0.031 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyk-Khormizi, A.; Sarafraz-Ardakani, M.R.; Hosseini Sarghein, S.; Moshtaghioun, S.M.; Mousavi-Kouhi, S.M.; Taghavizadeh Yazdi, M.E. Effect of Organic Fertilizer on the Growth and Physiological Parameters of a Traditional Medicinal Plant under Salinity Stress Conditions. Horticulturae 2023, 9, 701. https://doi.org/10.3390/horticulturae9060701
Beyk-Khormizi A, Sarafraz-Ardakani MR, Hosseini Sarghein S, Moshtaghioun SM, Mousavi-Kouhi SM, Taghavizadeh Yazdi ME. Effect of Organic Fertilizer on the Growth and Physiological Parameters of a Traditional Medicinal Plant under Salinity Stress Conditions. Horticulturae. 2023; 9(6):701. https://doi.org/10.3390/horticulturae9060701
Chicago/Turabian StyleBeyk-Khormizi, Abdollah, Mohammad Reza Sarafraz-Ardakani, Siavash Hosseini Sarghein, Seyed Mohammad Moshtaghioun, Seyed Mousa Mousavi-Kouhi, and Mohammad Ehsan Taghavizadeh Yazdi. 2023. "Effect of Organic Fertilizer on the Growth and Physiological Parameters of a Traditional Medicinal Plant under Salinity Stress Conditions" Horticulturae 9, no. 6: 701. https://doi.org/10.3390/horticulturae9060701
APA StyleBeyk-Khormizi, A., Sarafraz-Ardakani, M. R., Hosseini Sarghein, S., Moshtaghioun, S. M., Mousavi-Kouhi, S. M., & Taghavizadeh Yazdi, M. E. (2023). Effect of Organic Fertilizer on the Growth and Physiological Parameters of a Traditional Medicinal Plant under Salinity Stress Conditions. Horticulturae, 9(6), 701. https://doi.org/10.3390/horticulturae9060701