Quantitative Perturbation Analysis of Plant Factory LED Heat Dissipation on Crop Microclimate
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Plant Factory
2.2. Experimental Measurements and Data Analysis
2.3. Theory
2.3.1. Crop Canopy Microclimate Model
Crop Canopy Microclimate Energy Balance
Plant Crop Energy Balance
2.3.2. CFD Theory
CFD Control Equation
Crop Canopy Parameters
LED Simulation Model and Boundary Conditions
2.4. Monitoring Point Layout
2.5. Data Analysis
3. Results
3.1. Relative Humidity (RH) Fields
3.2. Airflow Fields
3.3. Temperature Fields
3.4. Simulation Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
WC | energy consumption of air conditioning ventilation systems |
WL | energy consumption of LED lights |
QSL | heat exchange between light sources and surrounding air |
S | effective radiation energy for photosynthesis |
L | net long-wave radiant energy |
QLP | latent heat exchange between crop canopy and surrounding air |
QSP | latent heat exchange between plants and the surrounding air |
QL | latent heat generated within the system. |
QS | sensible heat generated internally within the system |
QC | the heat rejected by a heat pump in the form of sensible heat |
QAP | chemical energy contained in plants |
Rnet | net radiation |
H | sensible heat flux |
λE | latent heat exchange |
Ta | air temperature of microclimate, K |
Tcrop | temperature of crop canopy, K |
ρ | air density, kg/m3 |
ωcrop | the saturated water content of the air at canopy, g/kg |
ω | air water vapor content, g/kg |
cρ | atmospheric pressure heat rati, J/kg·K |
Lv | latent heat of vaporization of water, J/kg |
LAI | plant leaf area index |
ra | aerodynamic resistance, s/m |
rs | leaf stomatal resistance, s/m |
Ui | interior air speed, m/s |
λ | air thermal conductivity, W/m·K |
μ | air viscosity, 17.9 × 10−6 Pa·s |
D | coefficient representing the viscous loss term |
C2 | coefficient representing the inertial loss term |
UI | disturbance coefficient |
θ | uniformity coefficient |
LEDS | seedling area LED light intensity, 250 μmol/m2·s |
LEDG | growth area LED light intensity, 250 μmol/m2·s |
W | wet air quality score |
References
- Ahmad, I.; Ahmad, B.; Boote, K.; Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 2020, 115, 126040. [Google Scholar] [CrossRef]
- Berquist, J.; Cassidy, N.; Touchie, M.; O’Brien, W.; Fine, J. High-rise residential building ventilation in cold climates: A review of ventilation system types and their impact on measured building performance. Indoor Air 2022, 32, e13158. [Google Scholar] [CrossRef]
- Cagri Tolga, A.; Basar, M. The assessment of a smart system in hydroponic vertical farming via fuzzy MCDM methods. IFS 2021, 42, 1–12. [Google Scholar] [CrossRef]
- Bouhoun Ali, H.; Bournet, P.-E.; Cannavo, P.; Chantoiseau, E. Development of a CFD crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Comput. Electron. Agric. 2018, 149, 26–40. [Google Scholar] [CrossRef]
- Fatnassi, H.; Poncet, C.; Bazzano, M.M.; Brun, R.; Bertin, N. A numerical simulation of the photovoltaic greenhouse microclimate. Sol. Energy 2015, 120, 575–584. [Google Scholar] [CrossRef]
- Li, K.; Fang, H.; Zou, Z.; Cheng, R. Optimization of rhizosphere cooling airflow for microclimate regulation and its effects on lettuce growth in plant factory. J. Integr. Agric. 2021, 20, 2680–2695. [Google Scholar] [CrossRef]
- Tadj, N.; Bartzanas, T.; Fidaros, D.; Draoui, B.; Kittas, C. Influence of Heating System on Greenhouse Microclimate Distribution. Trans. ASABE 2010, 53, 225–238. [Google Scholar] [CrossRef]
- Xi, C.; Ding, J.; Wang, J.; Feng, Z.; Cao, S.-J. Nature-based solution of greenery configuration design by comprehensive benefit evaluation of microclimate environment and carbon sequestration. Energy Build. 2022, 270, 112264. [Google Scholar] [CrossRef]
- Baek, M.S.; Kim, K.M.; Kwon, S.Y.; Kong, H.; Lim, J.-H. CFD Based Internal Fan Control Simulation for Improvement of Cultivation Environment in Plant Factory. Adv. Sci. Technol. Lett. 2015, 120, 550–553. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.A.; Yu-Xin, T.; Qi-Chang, Y. Lettuce plant growth and tipburn occurrence as affected by airflow using a multi-fan system in a plant factory with artificial light. J. Therm. Biol. 2020, 88, 102496. [Google Scholar] [CrossRef]
- Assimakopoulou, A.; Kotsiras, A.; Nifakos, K. Incidence of Lettuce Tipburn as Related to Hydroponic System and Cultivar. J. Plant Nutr. 2013, 36, 1383–1400. [Google Scholar] [CrossRef]
- Borkowski, J.; Dyki, B.; Oskiera, M.; Machlańska, A.; Felczyńska, A. The Prevention of Tipburn on Chinese Cabbage (Brassica rapa L. var. pekinensis (Lour.) Olson) with Foliar Fertilizers and Biostimulators. J. Hortic. Res. 2016, 24, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Folta, K.M. Contributions of green light to plant growth and development. Am. J. Bot. 2013, 100, 70–78. [Google Scholar] [CrossRef]
- Tamimi, E.; Kacira, M. Analysis of Climate Uniformity in a Naturally Ventilated Greenhouse Equipped with High Pressure Fogging System Using Computational Fluid Dynamics. Acta Hortic. 2013, 177–183. [Google Scholar] [CrossRef]
- Bian, Z.H.; Yang, Q.C.; Liu, W.K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review: Effects of Light on Vegetable Phytochemicals. J. Sci. Food Agric. 2015, 95, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Boulard, T.; Wang, S. Greenhouse crop transpiration simulation from external climate conditions. Agric. For. Meteorol. 2000, 100, 25–34. [Google Scholar] [CrossRef]
- Katzin, D.; van Mourik, S.; Kempkes, F.; van Henten, E.J. GreenLight—An open source model for greenhouses with supplemental lighting: Evaluation of heat requirements under LED and HPS lamps. Biosyst. Eng. 2020, 194, 61–81. [Google Scholar] [CrossRef]
- Morgan Pattison, P.; Hansen, M.; Tsao, J.Y. LED lighting efficacy: Status and directions. Comptes Rendus Phys. 2018, 19, 134–145. [Google Scholar] [CrossRef]
- Al Murad, M.; Razi, K.; Jeong, B.R.; Samy, P.M.A.; Muneer, S. Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. Sustainability 2021, 13, 1985. [Google Scholar] [CrossRef]
- Graamans, L.; van den Dobbelsteen, A.; Meinen, E.; Stanghellini, C. Plant factories; crop transpiration and energy balance. Agric. Syst. 2017, 153, 138–147. [Google Scholar] [CrossRef]
- Fang, H.; Li, K.; Wu, G.; Cheng, R.; Zhang, Y.; Yang, Q. A CFD analysis on improving lettuce canopy airflow distribution in a plant factory considering the crop resistance and LEDs heat dissipation. Biosyst. Eng. 2020, 200, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Jin, L.; Yang, B.; Chen, Z.; Zhang, G. Influence of the Internal Structure Type of a Large-Area Lower Exhaust Workbench on Its Surface Air Distribution. Int. J. Environ. Res. Public Health 2022, 19, 11395. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Heng, T.G. Implementation of Lean Manufacturing Principles in a Vertical Farming System to Reduce Dependency on Human Labour. Int. J. Adv. Trends Comput. Sci. Eng. (IJATCSE) 2020, 9, 512–520. [Google Scholar] [CrossRef]
- Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Yoshida, M.; Kiyota, M. Effects of air current speed on gas exchange in plant leaves and plant canopies. Adv. Space Res. 2003, 31, 177–182. [Google Scholar] [CrossRef]
- Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Kiyota, M. Effects of Air Current Speed, Light Intensity and co2 Concen-Tration on Photosynthesis and Transpiration of Plant Leaves; The University of Hong Kong: Hong Kong, China, 2004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kacira, M. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD). Biosyst. Eng. 2022, 220, 73–86. [Google Scholar] [CrossRef]
- Naranjani, B.; Najafianashrafi, Z.; Pascual, C.; Agulto, I.; Chuang, P.-Y.A. Computational analysis of the environment in an indoor vertical farming system. Int. J. Heat Mass Transf. 2022, 186, 122460. [Google Scholar] [CrossRef]
- Son, Y.W.; Chang, S.-M.; Kim, J. Uniforming thermal distribution by air-convection aspirated in partially hollowed tetrahedral lattice porous cold plates for the drone battery. Int. J. Heat Mass Transf. 2022, 199, 123447. [Google Scholar] [CrossRef]
- Song, X.; Huang, D.; Liu, X.; Chen, Q. Effect of non-uniform air velocity distribution on evaporator performance and its improvement on a residential air conditioner. Appl. Therm. Eng. 2012, 40, 284–293. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, J.-Y.; Kwon, H.-J.; Han, J.-H.; Son, J.E.; Nam, S.-W.; Giacomelli, G.A.; Lee, I.-B. 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers. Biosyst. Eng. 2008, 100, 245–255. [Google Scholar] [CrossRef]
- Sago, Y. Effects of Light Intensity and Growth Rate on Tipburn Development and Leaf Calcium Concentration in Butterhead Lettuce. HortScience 2016, 51, 1087–1091. [Google Scholar] [CrossRef]
- Peiro, E.; Pannico, A.; Colleoni, S.G.; Bucchieri, L.; Rouphael, Y.; De Pascale, S.; Paradiso, R.; Gòdia, F. Air Distribution in a Fully-Closed Higher Plant Growth Chamber Impacts Crop Performance of Hydroponically-Grown Lettuce. Front. Plant Sci. 2020, 11, 537. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. Models of Photosynthesis. Plant Physiol. 2001, 125, 42–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langensiepen, M.; Fuchs, M.; Bergamaschi, H.; Moreshet, S.; Cohen, Y.; Wolff, P.; Jutzi, S.C.; Cohen, S.; Rosa, L.M.G.; Li, Y.; et al. Quantifying the uncertainties of transpiration calculations with the Penman–Monteith equation under different climate and optimum water supply conditions. Agric. For. Meteorol. 2009, 149, 1063–1072. [Google Scholar] [CrossRef]
- Qiu, R.; Kang, S.; Du, T.; Tong, L.; Hao, X.; Chen, R.; Chen, J.; Li, F. Effect of convection on the Penman–Monteith model estimates of transpiration of hot pepper grown in solar greenhouse. Sci. Hortic-Amst. 2013, 160, 163–171. [Google Scholar] [CrossRef]
- Kozai, T. Sustainable Plant Factory: Closed Plant Production Systems with Artificial Light for High Resource Use Efficiencies and Quality Produce. In ISHS Acta Horticulturae 1004-International Symposium on Soilless Cultivation; International Society for Horticultural Science: Shanghai, China. [CrossRef]
- Hassanien, R.; Ming, L. Influences of Greenhouse-Integrated Semi-Transparent Photovoltaics on Microclimate and Lettuce Growth. Int. J. Agric. Biol. Eng. 2017, 10, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Kumazaki, T.; Yamada, Y.; Karaya, S.; Tokumitsu, T.; Hirano, T.; Yasumoto, S.; Katsuta, M.; Michiyama, H. Ef-fects of Day Length and Air Temperature on Stem Growth and Flowering in Sesame. Plant Prod. Sci. 2008, 11, 178–183. [Google Scholar] [CrossRef]
- Sang, G.L.; Chang, S.C.; Lee, H.J.; Jang, Y.A.; Lee, J.G. Effect of Air Temperature on Growth and Phytochemical Content of Beet and Ssamchoo. Wonye Kwahak Kisulchi = Korean J. Hortic. Sci. Technol. 2015, 33, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Bautista, A.S.; Gromaz, A.; Ferrarezi, R.S.; López-Galarza, S.; Pascual, B.; Maroto, J.V. Effect of Cropping System and Humidity Level on Nitrate Content and Tipburn Incidence in Endive. Agronomy 2020, 10, 749. [Google Scholar] [CrossRef]
- Carins Murphy, M.R.; Jordan, G.J.; Brodribb, T.J. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata: VPD Alters the Link between Leaf Size and Anatomy. Plant Cell Environ. 2013, 37, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, J.T.; Berry, J.A. The Ci/Cs Ratio: A Basis for Predicting Stomatal Control of Photosynthesis. In Year Book; Carnegie Institution of Washington: Washington, DC, USA, 1982; Available online: https://agris.fao.org/agris-search/search.do?recordID=US201302596370 (accessed on 8 May 2023).
- Fatnassi, H.; Boulard, T.; Bouirden, L. Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens. Agric. For. Meteorol. 2003, 118, 97–111. [Google Scholar] [CrossRef]
- Haibo, Y.; Lei, Z.; Haiye, Y.; Yucheng, L.; Chunhui, L.; Yuanyuan, S. Sustainable Development Optimization of a Plant Factory for Reducing Tip Burn Disease. Sustainability 2023, 15, 5607. [Google Scholar] [CrossRef]
- Kang, Y.; Wu, Q.; Qin, J.; Zhong, M.; Yang, X.; Chai, X. High relative humidity improves leaf burn resistance in flowering Chinese cabbage seedlings cultured in a closed plant factory. PeerJ 2022, 10, e14325. [Google Scholar] [CrossRef]
- Yoon, C.G.; Choi, H.K. A Study on the Various Light Source Radiation Conditions and use of LED Illumination for Plant Factory. J. Korean Inst. Illum. Electr. Install. Eng. 2011, 25, 14–22. [Google Scholar] [CrossRef]
- Seungmi, M.; Kiyoun, C.; Sookyoun, K.; Kong, H.T.; Jaehyun, L. An Experimental Study on Environmental Elements and Airflow Distribution Characteristics in a Fully Artificial Plant Factory. In Proceedings of the International Conference on Convergence Technology, Seoul, Republic of Korea, 28–30 September 2011. [Google Scholar]
- Zhang, Y.; Kacira, M.; An, L. A CFD study on improving air flow uniformity in indoor plant factory system. Biosyst. Eng. 2016, 147, 193–205. [Google Scholar] [CrossRef]
- Baek, M.-S.; Kwon, S.-Y.; Lim, J.-H. Improvement of the Crop Growth Rate in Plant Factory by Promoting Air Flow inside the CultivationImprovement of the Crop Growth Rate in Plant Factory by Promoting Air Flow inside the Cultivation. Int. J. Smartcare Home (IJSH) 2016, 10, 63–74. [Google Scholar] [CrossRef]
Fluid: Air | ||
---|---|---|
Inlet airflow temperature: 293.15 K | ||
Inlet humidity ratio: 0.0083 | ||
Seedling area | Growth area | |
LED temperature: | TS | TG |
Initial humidity ratio: | 0.0344 | 0.0344 |
Model | Realizable k-ε model | |
Viscous model | ||
Boundary | Type | Settings |
Inlet | Velocity Inlet | 8 m/s |
Outlet | Pressure Outlet | Gauge pressure: 0 Pa |
Plafond | Wall | Insulation |
Wall | Wall | Insulation |
Floor | Wall | Insulation |
Lamp wall | Wall | Thermal property of glass |
Treatment | Seedling Area PPFD LEDS μmol/m2·s | Growth Area PPFD LEDG μmol/m2·s |
---|---|---|
CK | 0 | 0 |
T1 | 50 | 150 |
T2 | 100 | 200 |
T3 | 150 | 250 |
T4 | 200 | 300 |
T5 | 250 | 350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Yu, H.; Zhang, B.; Chen, M.; Liu, Y.; Sui, Y. Quantitative Perturbation Analysis of Plant Factory LED Heat Dissipation on Crop Microclimate. Horticulturae 2023, 9, 660. https://doi.org/10.3390/horticulturae9060660
Yu H, Yu H, Zhang B, Chen M, Liu Y, Sui Y. Quantitative Perturbation Analysis of Plant Factory LED Heat Dissipation on Crop Microclimate. Horticulturae. 2023; 9(6):660. https://doi.org/10.3390/horticulturae9060660
Chicago/Turabian StyleYu, Haibo, Haiye Yu, Bo Zhang, Meichen Chen, Yucheng Liu, and Yuanyuan Sui. 2023. "Quantitative Perturbation Analysis of Plant Factory LED Heat Dissipation on Crop Microclimate" Horticulturae 9, no. 6: 660. https://doi.org/10.3390/horticulturae9060660
APA StyleYu, H., Yu, H., Zhang, B., Chen, M., Liu, Y., & Sui, Y. (2023). Quantitative Perturbation Analysis of Plant Factory LED Heat Dissipation on Crop Microclimate. Horticulturae, 9(6), 660. https://doi.org/10.3390/horticulturae9060660