Bioresources in Organic Farming: Implications for Sustainable Agricultural Systems
Abstract
:1. Introduction
2. Bioresources as the Principal Components of Soil
3. Bioresources Use as an Organic Amendment
4. Indicators of the Effectiveness of Conventional and Organically Derived Bioresources in Farming
5. Bioresources Uses as Biofertilizers and Biopesticides
Type of Biofertilizers | Mechanisms | Microorganisms | Crop Category | Associated Crops | Rate of Application | References |
---|---|---|---|---|---|---|
Rhizobium | Fixes nitrogen in the soil. Forms symbiotic association with the rhizobium bacteria, leading to formation of root nodules, which fixes atmospheric nitrogen | Rhizobium leguminosarum, R. japonicum, R. lupine orinthopus, R. phaseoli, R. melliloti, R. trifoli | Legumes | Green pea, Lentil, Soybean, Lupinus, Melilotus, Phaseoli, Trifolium, Moong, Redgram, Cowpea, Groundnut, Bengal gram | As a seed treatment, use Rhizobium + Phosphotika at a rate of 200 gm each per 10 kg of seed. | [79] |
Azotobacter | Functions as biofertilizer for non-leguminous plants; the lack of soil organic matter is a limiting factor for its proliferation in the soil since it is only present in the rhizosphere region and not on the rhizosplane | A. chroococcum, A. beijerinchii, A. vinelandii, A. paspali, A. macrocytogenes, A. insignis, A. agilies | Cereals and other non-leguminous plants | Rice, cotton, vegetables, etc. | As a seed treatment, use Azotobacter + Phosphotika at a rate of 200 gm each per 10 kg of seed. | Poorniammal, Prabhu [80] |
Azospirillum | Forms associative symbiosis with the higher plant system and cereals | A. brasilense, A. agricola, A. canadense, A. doebereinerae, A. fermentarium, A. formosense, A. zeae, A. thiophilum, A. griseum, A. halopraeferens, A. humicireducens, A. largimobile, A. lipoferum, A. melinis, A. oryzae, A. palustre, A. picis, A. ramasamyi, A. rugosum, A. soli | Cereals and other non-leguminous plants | Rice, maize, millets, wheat, sorghum, oat, barley, oilseeds, cotton, millets, fodder grasses | It is recommended during the transplanting of rice to soak the seedling’s roots for 8 to 10 h in Azospirillum + Phosphotika solution at 5 kg per ha. | [81,82] |
Nitrogen fixing endophytes | The nitrogen-fixing bacteria occur within the tissues of a host plant that does not show disease symptoms Surface colonization at the site of emergence of root hairs Production of hydrolytic enzymes or endoglucanases during tissue penetration | Azoarcus sp., Gluconacetobacter, and Herbaspirillum | All plant categories | Sugar cane, Miscanthus sinensis | Bhat, Ahmad [83] | |
Silicate-solulizing bacteria (SSB) | Produce indole acetic acid (IAA), promote plant growth, and encourage silicon (Si) uptake and deposit in plants to enhance resistance against biotic and abiotic stressors. | Burkholderia, Bacillus, Proteus, Pseudomonas, Rhizobia, and Enterobacter | All plant categories | Rice, maize, barley, sorghum, tomato, strawberry, pepper, pumpkin, cucumber. | Application of 3–5 tons of SiO 2 (river sand) per hectare | Raturi, Sharma [84], Geetha Thanuja, Reddy Kiran Kalyan [85] |
Phosphate-solubilizing microorganisms | Phosphate-solubilizing microorganisms convert insoluble phosphorus into a plant-available form | Bacillus, Pseudomonas, Mycobacterium, Pantoea, Burkholderia, Enterobacterbacteria Pseudomonas, Mycorrhiza, Rhizobium, Aspergillus, and Penicillium | All plant categories | Wheat, maize, tomato, sorghum, pepper, rice | Anand, Kumari [86], Rawat, Das [87] | |
Blue–Green Algae (BGA) (Cyanobacteria), and Azolla | They are abundant in tropical environment. The majority of nitrogen-fixing BGAs are filamenters, which are chains of vegetative cells. Regarding its nitrogen contribution to rice, Azolla is regarded as a potential biofertilizer. | Tolypothrix, Nostic, Schizothrix, Calothrix, Anoboenosois, and Plectonema | Cereal | Rice, maize, barley, sorghum, millets, wheat, oat | Range of 6.25–10.0 t/ha and incorporated before transplanting of rice. They fix 20–30 kg N/ha in submerged rice fields as they are abundant in paddy, so also referred to as ‘paddy organisms. | Malyan, Bhatia [88], Adhikari, Bhandari [89], Rajesha and Ray [90] |
6. Demerits of Organic Farming Practices
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhardwaj, A.K.; Arya, G.; Kumar, R.; Hamed, L.; Pirasteh-Anosheh, H.; Jasrotia, P.; Kashyap, P.L.; Singh, G.P. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. J. Nanobiotechnology 2022, 20, 19. [Google Scholar] [CrossRef]
- Gohain, K.J.; Mohammad, P.; Goswami, A. Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quat. Int. 2021, 575, 259–269. [Google Scholar] [CrossRef]
- Sunderland, T.; O’Connor, A.; Muir, G.; Nerfa, L.; Nodari, G.; Widmark, C.; Bahar, N.; Ickowitz, A.; Katila, P.; Colfer, C. SDG2: Zero hunger: Challenging the hegmony of monoculture agriculture for forests and people. In Sustainable Development Goals: Their Impacts on Forests and People; Pierce Colfer, C.J., Winkel, G., Galloway, G., Pacheco, P., Katila, P., de Jong, W., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 48–71. [Google Scholar]
- Baweja, P.; Kumar, S.; Kumar, G. Fertilizers and pesticides: Their impact on soil health and environment. In Soil Health; Springer: Berlin/Heidelberg, Germany, 2020; pp. 265–285. [Google Scholar]
- Li, T.; Wang, Z.; Wang, C.; Huang, J.; Feng, Y.; Shen, W.; Zhou, M.; Yang, L. Ammonia volatilization mitigation in crop farming: A review of fertilizer amendment technologies and mechanisms. Chemosphere 2022, 303, 134944. [Google Scholar] [CrossRef]
- Chaitra, A.; Ahuja, R.; Sidhu, S.; Sikka, R. Importance of Nano Fertilizers in Sustainable Agriculture. Environ. Sci. Ecol. Curr. Res. 2021, 5, 1029. [Google Scholar]
- Dlamini, S.P.; Akanmu, A.O.; Babalola, O.O. Rhizospheric microorganisms: The gateway to a sustainable plant health. Front. Sustain. Food Syst. 2022, 6, 925802. [Google Scholar] [CrossRef]
- Abiala, M.; Akanmu, A.; Oribhaboise, A.; Aroge, T. Combined Effects of Ocimum gratissimum and Soil-borne Phytopathogenic Fungi on Seedling Growth of Quality Protein Maize. J. Adv. Biol. Biotechnol. 2020, 23, 25–32. [Google Scholar] [CrossRef]
- Ingle, A.P.; Philippini, R.R.; Martiniano, S.; Marcelino, P.R.F.; Gupta, I.; Prasad, S.; da Silva, S.S. Bioresources and their Significance: Prospects and obstacles. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–40. [Google Scholar]
- Awasthi, M.K.; Sarsaiya, S.; Patel, A.; Juneja, A.; Singh, R.P.; Yan, B.; Awasthi, S.K.; Jain, A.; Liu, T.; Duan, Y. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 2020, 127, 109876. [Google Scholar] [CrossRef]
- Fu, X.-M.; Zhang, M.-Q.; Liu, Y.; Shao, C.-L.; Hu, Y.; Wang, X.-Y.; Su, L.-R.; Wang, N.; Wang, C.-Y. Protective exploitation of marine bioresources in China. Ocean. Coast. Manag. 2018, 163, 192–204. [Google Scholar] [CrossRef]
- Uddin, M.; Mohiuddin, A.; Hossain, S.; Hakim, A. Eco-environmental changes of wetland resources of Hakaluki Haor in Bangladesh using GIS technology. J. Biodivers. Endanger. Species 2013, 1, 1000103. [Google Scholar]
- Akanmu, A.O.; Babalola, O.O.; Venturi, V.; Ayilara, M.S.; Adeleke, B.S.; Amoo, A.E.; Sobowale, A.A.; Fadiji, A.E.; Glick, B.R. Plant Disease Management: Leveraging on the Plant-Microbe-Soil Interface in the Biorational Use of Organic Amendments. Front. Plant Sci. 2021, 12, 1590. [Google Scholar] [CrossRef]
- Chukwuka, K.S.; Akanmu, A.O.; Umukoro, O.B.; Asemoloye, M.D.; Odebode, A.C. Biochar: A Vital Source for Sustainable Agriculture; IntechOpen: London, UK, 2020; p. 86568. Available online: https://www.intechopen.com/online-first/biochar-a-vital-source-for-sustainable-agriculture (accessed on 28 May 2023). [CrossRef]
- Gaurav, N.; Sivasankari, S.; Kiran, G.; Ninawe, A.; Selvin, J. Utilization of bioresources for sustainable biofuels: A review. Renew. Sustain. Energy Rev. 2017, 73, 205–214. [Google Scholar] [CrossRef]
- Asemoloye, M.D.; Ahmad, R.; Jonathan, S.G. Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil. Chemosphere 2017, 187, 1–10. [Google Scholar] [CrossRef]
- Asemoloye, M.D.; Ahmad, R.; Jonathan, S.G. Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action. PLoS ONE 2017, 12, e0183373. [Google Scholar] [CrossRef] [Green Version]
- Brussaard, L. Biodiversity and ecosystem functioning in soil: The dark side of nature and the bright side of life. Ambio 2021, 50, 1286–1288. [Google Scholar] [CrossRef]
- Adedeji, A.A.; Häggblom, M.M.; Babalola, O.O. Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. Sci. Afr. 2020, 9, e00492. [Google Scholar] [CrossRef]
- Igiehon, N.O.; Babalola, O.O. Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. Int. J. Environ. Res. Public Health 2018, 15, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Alori, E.T.; Dare, M.O.; Babalola, O.O. Microbial inoculants for soil quality and plant health. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2017; pp. 281–307. [Google Scholar]
- Babalola, O.O.; Emmanuel, O.C.; Adeleke, B.S.; Odelade, K.A.; Nwachukwu, B.C.; Ayiti, O.E.; Adegboyega, T.T.; Igiehon, N.O. Rhizosphere microbiome cooperations: Strategies for sustainable crop production. Curr. Microbiol. 2021, 78, 1069–1085. [Google Scholar] [CrossRef]
- McKinley, V.L. Effects of land use and restoration on soil microbial communities. In Understanding Terrestrial Microbial Communities; Springer: Berlin/Heidelberg, Germany, 2019; pp. 173–242. [Google Scholar]
- Kay, B. Soil structure and organic carbon: A review. In Soil Processes and the Carbon Cycle; Routledge: Oxford, UK, 2018; pp. 169–197. [Google Scholar]
- Fadiji, A.E.; Kanu, J.O.; Babalola, O.O. Metagenomic profiling of rhizosphere microbial community structure and diversity associated with maize plant as affected by cropping systems. Int. Microbiol. 2021, 24, 325–335. [Google Scholar] [CrossRef]
- Paerl, H.W.; Pinckney, J.L.; Steppe, T.F. Cyanobacterial–bacterial mat consortia: Examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2000, 2, 11–26. [Google Scholar] [CrossRef]
- Akanmu, A.O.; Sobowale, A.A.; Abiala, M.A.; Olawuyi, O.J.; Odebode, A.C. Efficacy of biochar in the management of Fusarium verticillioides Sacc. causing ear rot in Zea mays L. Biotechnol. Rep. 2020, 26, e00474. [Google Scholar] [CrossRef] [PubMed]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; De Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, M.T.; Richards, P.J.; Humphreys, G.S. Breaking ground: Pedological, geological, and ecological implications of soil bioturbation. Earth Sci. Rev. 2009, 97, 257–272. [Google Scholar] [CrossRef]
- Yuan, L.; Moinet, G.Y.; Clough, T.J.; Whitehead, D. Net ecosystem carbon exchange for Bermuda grass growing in mesocosms as affected by irrigation frequency. Pedosphere 2022, 32, 393–401. [Google Scholar]
- Thapa, V.R.; Ghimire, R.; Duval, B.D.; Marsalis, M.A. Conservation systems for positive net ecosystem carbon balance in semiarid drylands. Agrosystems Geosci. Environ. 2019, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Fasusi, O.A.; Cruz, C.; Babalola, O.O. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 2021, 11, 163. [Google Scholar] [CrossRef]
- Walling, E.; Vaneeckhaute, C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef]
- Sánchez, E.; Zabaleta, R.; Fabani, M.P.; Rodriguez, R.; Mazza, G. Effects of the amendment with almond shell, bio-waste and almond shell-based biochar on the quality of saline-alkali soils. J. Environ. Manag. 2022, 318, 115604. [Google Scholar] [CrossRef]
- Rasool, M.; Akhter, A.; Soja, G.; Haider, M.S. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci. Rep. 2021, 11, 6092. [Google Scholar] [CrossRef]
- Agarwal, H.; Kashyap, V.H.; Mishra, A.; Bordoloi, S.; Singh, P.K.; Joshi, N.C. Biochar-based fertilizers and their applications in plant growth promotion and protection. 3 Biotech 2022, 12, 136. [Google Scholar] [CrossRef]
- Dotaniya, M.; Aparna, K.; Dotaniya, C.; Singh, M.; Regar, K. Role of soil enzymes in sustainable crop production. In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 569–589. [Google Scholar]
- Ndambi, O.A.; Pelster, D.E.; Owino, J.O.; De Buisonje, F.; Vellinga, T. Manure management practices and policies in sub-Saharan Africa: Implications on manure quality as a fertilizer. Front. Sustain. Food Syst. 2019, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Usharani, K.; Roopashree, K.; Naik, D. Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. J. Pharmacogn. Phytochem. 2019, 8, 1256–1267. [Google Scholar]
- Chatterjee, R.; Bandyopadhyay, S. Studies on effect of organic, inorganic and biofertilizers on plant nutrient status and availability of major nutrients in tomato. Int. J. Bio-Resour. Stress Manag. 2014, 5, 93–97. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–pathogen warfare under changing climate conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [Green Version]
- Arora, R.; Sharma, S. Pre and Post Harvest Diseases of Potato and Their Management. In Future Challenges in Crop Protection Against Fungal Pathogens; Springer: Berlin/Heidelberg, Germany, 2014; pp. 149–183. [Google Scholar]
- Farrell, G.; Hodges, R.; Wareing, P.; Meyer, A.; Belmain, S. Biological Factors in Post-Harvest Quality. Crop Post-Harvest. Sci. Technol. Princ. Pract. 2002, 1, 93–140. [Google Scholar]
- Neher, D.A.; Hoitink, H.A.; Biala, J.; Rynk, R.; Black, G. Compost use for plant disease suppression. In The Composting Handbook; Elsevier: Amsterdam, The Netherlands, 2022; pp. 847–878. [Google Scholar]
- Gupta, N.; Debnath, S.; Sharma, S.; Sharma, P.; Purohit, J. Role of nutrients in controlling the plant diseases in sustainable agriculture. In Agriculturally Important Microbes for Sustainable Agriculture: Volume 2: Applications in Crop Pro-duction and Protection; Springer: Berlin/Heidelberg, Germany, 2017; pp. 217–262. [Google Scholar]
- Zhang, N.; Wu, K.; He, X.; Li, S.-Q.; Zhang, Z.-H.; Shen, B.; Yang, X.-M.; Zhang, R.-F.; Huang, Q.-W.; Shen, Q.-R. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 2011, 344, 87–97. [Google Scholar] [CrossRef]
- Olowe, O.M.; Nicola, L.; Aemoloye, M.D.; Akanmu, A.O.; Sobowale, A.A.; Babalola, O.O. Characterization and antagonistic potentials of selected rhizosphere Trichoderma species against some Fusarium species. Front. Microbiol. 2022, 13, 3757. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Garg, V. Vermicomposting of waste: A zero-waste approach for waste management. In Sustainable Resource Recovery and Zero Waste Approaches; Elsevier: Amsterdam, The Netherlands, 2019; pp. 133–164. [Google Scholar]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The M icrobial E fficiency-M atrix S tabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [Green Version]
- Weithmann, N.; Möller, J.N.; Löder, M.G.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [Green Version]
- McNeill, A.; Eriksen, J.; Bergström, L.; Smith, K.; Marstorp, H.; Kirchmann, H.; Nilsson, I. Nitrogen and sulphur management: Challenges for organic sources in temperate agricultural systems. Soil Use Manag. 2005, 21, 82–93. [Google Scholar] [CrossRef]
- Kobierski, M.; Lemanowicz, J.; Wojewódzki, P.; Kondratowicz-Maciejewska, K. The effect of organic and conventional farming systems with different tillage on soil properties and enzymatic activity. Agronomy 2020, 10, 1809. [Google Scholar] [CrossRef]
- Pradeepkumar, T.; Bonny, B.P.; Midhila, R.; John, J.; Divya, M.; Roch, C.V. Effect of organic and inorganic nutrient sources on the yield of selected tropical vegetables. Sci. Hortic. 2017, 224, 84–92. [Google Scholar] [CrossRef]
- Akanmu, A.O.; Akol, A.M.; Ndolo, D.O.; Kutu, F.R.; Babalola, O.O. Agroecological techniques: Adoption of safe and sustainable agricultural practices among the smallholder farmers in Africa. Frontiers in Sustainable Food Systems 2023, 7, 310. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Lamine, C. The Role of Interactions Between Organic and Conventional Farming in the Ecological Transition of a Territorial Food System. In Coexistence and Confrontation of Agricultural and Food Models: A New Paradigm of Territorial Development? Springer: Berlin/Heidelberg, Germany, 2023; pp. 185–197. [Google Scholar]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers; Springer: Berlin/Heidelberg, Germany, 2021; Volume 2, pp. 1–20. [Google Scholar]
- Ahirwar, N.K.; Singh, R.; Chaurasia, S.; Chandra, R.; Ramana, S. Effective role of beneficial microbes in achieving the sustainable agriculture and eco-friendly environment development goals: A review. Front. Microbiol. 2020, 5, 111–123. [Google Scholar] [CrossRef]
- Yadav, S.K.; Patel, J.S.; Singh, B.N.; Bajpai, R.; Teli, B.; Rajawat, M.V.S.; Sarma, B.K. Biofertilizers as Microbial Consortium for Sustainability in Agriculture. In Plant, Soil and Microbes in Tropical Ecosystems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 349–368. [Google Scholar]
- Babalola, O.O.; Akanmu, A.O.; Fadiji, A.E. Dataset of shotgun Metagenomic Evaluation of Lettuce (Lactuta sativa L.) Rhizosphere Microbiome. Data in Brief 2023, 48, 4. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Abbey, L.; Abbey, J.; Leke-Aladekoba, A.; Iheshiulo, E.M.A.; Ijenyo, M. Biopesticides and biofertilizers: Types, production, benefits, and utilization. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 479–500. [Google Scholar]
- Essiedu, J.A.; Adepoju, F.O.; Ivantsova, M.N. (Eds.) Benefits and limitations in using biopesticides: A review. In AIP Conference Proceedings; AIP Publishing LLC: Long Island, NY, USA, 2020; p. 080002. [Google Scholar]
- Amoo, A.E.; Enagbonma, B.J.; Ayangbenro, A.S.; Babalola, O.O. Biofertilizer: An eco-friendly approach for sustainable crop production. In Food Security and Safety; Babalola, O.O., Ed.; Springer International Publishing: Cham, Germany, 2021; pp. 647–669. [Google Scholar]
- Asemoloye, M.D.; Jonathan, S.G.; Ahmad, R. Synergistic plant-microbes interactions in the rhizosphere: A potential headway for the remediation of hydrocarbon polluted soils. Int. J. Phytoremediation 2019, 21, 71–83. [Google Scholar] [CrossRef]
- Olowe, O.M.; Nicola, L.; Asemoloye, M.D.; Akanmu, A.O.; Babalola, O.O. Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiol. Res. 2022, 257, 126978. [Google Scholar] [CrossRef]
- Babalola, O.O.; Dlamini, S.P.; Akanmu, A.O. Shotgun Metagenomic Survey of the Diseased and Healthy Maize (Zea mays L.) Rhizobiomes. Microbiol. Resour. Announc. 2022, 11, e00498-22. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Khan, Z.; Kim, S.; Kim, Y. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J. Appl. Microbiol. 2009, 107, 524–532. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, H.-Y.; Zhou, X.-K.; Yang, C.-G.; Zheng, S.-C.; Duo, J.-L.; Mo, M.-H. Biological control tobacco bacterial wilt and black shank and root colonization by bio-organic fertilizer containing bacterium Pseudomonas aeruginosa NXHG29. Appl. Soil Ecol. 2018, 129, 136–144. [Google Scholar] [CrossRef]
- Asemoloye, M.D.; Jonathan, S.G.; Jayeola, A.A.; Ahmad, R. Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq. J. Environ. Manag. 2017, 200, 253–262. [Google Scholar] [CrossRef]
- Woo, S.L.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 2014, 8, 71–126. [Google Scholar] [CrossRef] [Green Version]
- Montesinos, E. Development, registration and commercialization of microbial pesticides for plant protection. Int. Microbiol. 2003, 6, 245–252. [Google Scholar] [CrossRef]
- Olawuyi, O.; Odebode, A.; Olakojo, S.; Popoola, O.; Akanmu, A.; Izenegu, J. Host–pathogen interaction of maize (Zea mays L.) and Aspergillus niger as influenced by arbuscular mycorrhizal fungi (Glomus deserticola). Arch. Agron. Soil Sci. 2014, 60, 1577–1591. [Google Scholar] [CrossRef]
- Olawuyi, O.; Odebode, A.; Oyewole, I.; Akanmu, A.; Afolabi, O. Effect of arbuscular mycorrhizal fungi on Pythium aphanidermatum causing foot rot disease on pawpaw (Carica papaya L.) seedlings. Arch. Phytopathol. Plant Prot. 2014, 47, 185–193. [Google Scholar] [CrossRef]
- Olowe, O.M.; Olawuyi, O.J.; Sobowale, A.A.; Odebode, A.C. Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L.(Maize). Curr. Plant Biol. 2018, 15, 30–37. [Google Scholar] [CrossRef]
- Yang, J.; Lan, L.; Jin, Y.; Yu, N.; Wang, D.; Wang, E. Mechanisms underlying legume–rhizobium symbioses. J. Integr. Plant Biol. 2022, 64, 244–267. [Google Scholar] [CrossRef] [PubMed]
- Poorniammal, R.; Prabhu, S.; Kannan, J.; Janaki, D. Liquid biofertilizer-A boon to sustainable agriculture. Biot. Res. Today 2020, 2, 915–918. [Google Scholar]
- Cassán, F.; Coniglio, A.; López, G.; Molina, R.; Nievas, S.; de Carlan, C.L.N.; Donadio, F.; Torres, D.; Rosas, S.; Pedrosa, F.O. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol. Fertil. Soils 2020, 56, 461–479. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Rev. Bras. Ciência Solo 2021, 45, e0200128. [Google Scholar] [CrossRef]
- Bhat, T.A.; Ahmad, L.; Ganai, M.A.; Khan, O. Nitrogen fixing biofertilizers; mechanism and growth promotion: A review. J. Pure Appl. Microbiol. 2015, 9, 1675–1690. [Google Scholar]
- Raturi, G.; Sharma, Y.; Rana, V.; Thakral, V.; Myaka, B.; Salvi, P.; Singh, M.; Dhar, H.; Deshmukh, R. Exploration of silicate solubilizing bacteria for sustainable agriculture and silicon biogeochemical cycle. Plant Physiol. Biochem. 2021, 166, 827–838. [Google Scholar] [CrossRef]
- Geetha Thanuja, K.; Reddy Kiran Kalyan, V.; Karthikeyan, S.; Anthoniraj, S. Microbial Transformation of Silicon in Soil. In Microbial Metabolism of Metals and Metalloids; Springer: Berlin/Heidelberg, Germany, 2022; pp. 503–525. [Google Scholar]
- Anand, K.; Kumari, B.; Mallick, M. Phosphate solubilizing microbes: An effective and alternative approach as biofertilizers. Int. J. Pharm. Sci. 2016, 8, 37–40. [Google Scholar]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Malyan, S.K.; Bhatia, A.; Tomer, R.; Harit, R.C.; Jain, N.; Bhowmik, A.; Kaushik, R. Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, Blue-green algae, and plant growth–promoting bacteria. Environ. Sci. Pollut. Res. 2021, 28, 51425–51439. [Google Scholar] [CrossRef]
- Adhikari, K.; Bhandari, S.; Acharya, S. An Overview of Azolla in Rice Production: A Review. Rev. Food Agric. RFNA 2021, 2, 4–8. [Google Scholar] [CrossRef]
- Rajesha, G.; Ray, S.K. Microbial Bio-fertilizers: A Functional Key Player in Sustainable Agriculture. In Promotion of Improved Cultivation Practices in Agri & Allied Sector for Food and Nutritional Security; Joint Director ICAR Research Complex for NEH Region, Nagaland Centre: Medziphema, India, 2020; pp. 37–41. [Google Scholar]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef] [PubMed]
- Chengala, L.; Singh, N. Botanical pesticides—A major alternative to chemical pesticides: A review. Int. J. Life Sci. 2017, 5, 722–729. [Google Scholar]
- Akanmu, A.; Abiala, M.; Akanmu, A.; Adedeji, A.; Mudiaga, P.; Odebode, A. Plant extracts abated pathogenic Fusarium species of millet seedlings. Arch. Phytopathol. Plant Prot. 2013, 46, 1189–1205. [Google Scholar] [CrossRef]
- Aroge, T.; Akanmu, A.; Abiala, M.; Odebode, J. Pathogenicity and in vitro extracts inhibition of fungi causing severe leaf blight in Thaumatoccocus danielli (Benn.) Benth. Arch. Phytopathol. Plant Prot. 2019, 52, 54–70. [Google Scholar] [CrossRef]
- Bagheri, A.; Fathipour, Y. Induced Resistance and Defense Primings. In Molecular Approaches for Sustainable Insect Pest Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 73–139. [Google Scholar]
- Jambhulkar, P.P.; Sharma, P.; Yadav, R. Delivery systems for introduction of microbial inoculants in the field. In Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 199–218. [Google Scholar]
- Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Köhl, J.; Marrone, P.; Morin, L.; Stewart, A. Have biopesticides come of age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Adenle, A.A.; Wedig, K.; Azadi, H. Sustainable agriculture and food security in Africa: The role of innovative technologies and international organizations. Technol. Soc. 2019, 58, 101143. [Google Scholar] [CrossRef]
- Schreer, V.; Padmanabhan, M. The many meanings of organic farming: Framing food security and food sovereignty in Indonesia. Org. Agric. 2020, 10, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Durham, T.C.; Mizik, T. Comparative economics of conventional, organic, and alternative agricultural production systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 2021, 36, 919–930. [Google Scholar] [CrossRef]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.-S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Niu, B.; Wang, W.; Yuan, Z.; Sederoff, R.R.; Sederoff, H.; Chiang, V.L.; Borriss, R. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front. Microbiol. 2020, 11, 585404. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An ecological future for weed science to sustain crop production and the environment. A review. Agron. Sustain. Dev. 2020, 40, 24. [Google Scholar] [CrossRef]
- Behera, K.K.; Alam, A.; Vats, S.; Sharma, H.P.; Sharma, V. Organic farming history and techniques. Agroecol. Strateg. Clim. Change 2012, 8, 287–328. [Google Scholar]
- Argyropoulos, C.; Tsiafouli, M.A.; Sgardelis, S.P.; Pantis, J.D. Organic farming without organic products. Land Use Policy 2013, 32, 324–328. [Google Scholar] [CrossRef]
- Pasupulla, A.P.; Pallathadka, H.; Nomani, M.; Salahuddin, G.; Rauf, M. A survey on challenges in organic agricultural practices for sustainable crop production. Ann. Rom. Soc. Cell Biol. 2021, 25, 338–347. [Google Scholar]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological control and integrated pest management in organic and conventional systems. Biol. Control. 2020, 140, 104095. [Google Scholar] [CrossRef]
- Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.; van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G. The future of farming: Who will produce our food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- Kim, N.; Zabaloy, M.C.; Guan, K.; Villamil, M.B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 2020, 142, 107701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akanmu, A.O.; Olowe, O.M.; Phiri, A.T.; Nirere, D.; Odebode, A.J.; Karemera Umuhoza, N.J.; Asemoloye, M.D.; Babalola, O.O. Bioresources in Organic Farming: Implications for Sustainable Agricultural Systems. Horticulturae 2023, 9, 659. https://doi.org/10.3390/horticulturae9060659
Akanmu AO, Olowe OM, Phiri AT, Nirere D, Odebode AJ, Karemera Umuhoza NJ, Asemoloye MD, Babalola OO. Bioresources in Organic Farming: Implications for Sustainable Agricultural Systems. Horticulturae. 2023; 9(6):659. https://doi.org/10.3390/horticulturae9060659
Chicago/Turabian StyleAkanmu, Akinlolu Olalekan, Olumayowa Mary Olowe, Austin Tenthani Phiri, Drocelle Nirere, Adeyinka John Odebode, Noëlla Josiane Karemera Umuhoza, Michael Dare Asemoloye, and Olubukola Oluranti Babalola. 2023. "Bioresources in Organic Farming: Implications for Sustainable Agricultural Systems" Horticulturae 9, no. 6: 659. https://doi.org/10.3390/horticulturae9060659
APA StyleAkanmu, A. O., Olowe, O. M., Phiri, A. T., Nirere, D., Odebode, A. J., Karemera Umuhoza, N. J., Asemoloye, M. D., & Babalola, O. O. (2023). Bioresources in Organic Farming: Implications for Sustainable Agricultural Systems. Horticulturae, 9(6), 659. https://doi.org/10.3390/horticulturae9060659