Volatile Composition and Aroma Description of Tea (Camellia sinensis) Flowers from Albino Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Flower Samples
2.2. HS–SPME–GC–MS Analysis
2.3. Aroma Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Volatile Composition of Tea Flowers from Different Cultivars
3.2. Aroma Attributes of Tea Flowers from Different Cultivars
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.F.; Ma, J.Q.; Huang, D.J.; Ma, C.L.; Jin, J.Q.; Yao, M.Z.; Chen, L. Comprehensive dissection of metabolic changes in albino and green tea cultivars. J. Agric. Food Chem. 2018, 66, 2040–2048. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.H.; Yang, R.; Shi, Y.L.; Li, X.M.; Fu, Q.Y.; Lu, J.L.; Ye, J.H.; Wang, K.R.; Ma, S.C.; Zheng, X.Q.; et al. Light-sensitive albino tea plants and their characterization. HortScience 2018, 53, 144–147. [Google Scholar] [CrossRef]
- Wang, L.; Yue, C.; Cao, H.; Zhou, Y.; Zeng, J.; Yang, Y.; Wang, X. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. BMC Plant Biol. 2014, 14, 352. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.D.; Mei, J.F.; Wang, J.Y.; Tang, R.J.; Chen, L.; Ma, C.L. Research progress on albino trait of tea plant. China Tea 2020, 42, 24–35. [Google Scholar]
- Yin, J.; Fu, Z.; Xu, Y. Tea as a Food Ingredient: Properties, Processing, and Health Aspects, 1st ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2022; 380p. [Google Scholar]
- Wang, L.L. Study on Aroma Components of Tea (Camellia Sinensis) Flowers; Zhejiang Gongshang University: Hangzhou, China, 2008. [Google Scholar]
- Wu, G.H.; Cui, L.; Wang, M.X.; Li, H.H.; Han, B.Y. Attraction of aroma from tea flowers and leaves to the chinese honeybees (Apiscerana cerana). Acta Ecol. Sin. 2020, 40, 4024–4031. [Google Scholar]
- Bai, X.L.; Kong, L.Y.; Gong, R.G.; Peng, G.G.; Zhang, Y.G.; Duan, K. Study on the antioxidant effects of the tea flower essential oils by different extraction and applied to the tobacco. Food Ind. 2013, 34, 110–113. [Google Scholar]
- Chen, Z.; Mei, X.; Jin, Y.; Kim, E.H.; Yang, Z.; Tu, Y. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity. J. Sci. Food Agric. 2014, 94, 316–321. [Google Scholar] [CrossRef]
- Joshi, R.; Poonam; Gulati, A. Biochemical attributes of tea flowers (Camellia sinensis) at different developmental stages in the kangra region of india. Sci. Hortic. 2011, 130, 266–274. [Google Scholar] [CrossRef]
- Han, B.; Zhou, P.; Cui, L.; Fu, J.Y.; Jain, N.K. Characterization of the key aromatic constituents in tea flowers of elite chinese tea cultivars. Int. J. Tea Sci. 2007, 6, 31–36. [Google Scholar]
- Dong, F.; Zeng, L.; Yu, Z.; Li, J.; Tang, J.; Su, X.; Yang, Z. Differential accumulation of aroma compounds in normal green and albino-induced yellow tea (Camellia sinensis) leaves. Molecules 2018, 23, 2677. [Google Scholar] [CrossRef]
- Wang, K.R.; Li, M.; Liang, Y.R.; Zhang, L.J.; Shen, L.M.; Wang, S.B. Study on the breeding of a novel tea cultivar “huangjinya”. China Tea 2008, 4, 21–23. [Google Scholar]
- Wang, K.R.; Han, Z.; Liang, Y.R.; Zhang, L.J.; Li, M.; Wang, S.B. Study on the breeding of a novel light-sensitive albino tea cultivar “yujinxiang”. China Tea 2013, 6, 24–25. [Google Scholar]
- Gherghel, S.; Morgan, R.M.; Arrebola-Liebanas, J.; Romero-Gonzalez, R.; Blackman, C.S.; Garrido-Frenich, A.; Parkin, I.P. Development of a hs-spme/gc-ms method for the analysis of volatile organic compounds from fabrics for forensic reconstruction applications. Forensic. Sci. Int. 2018, 290, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Pawliszyn, J. Applications of solid phase microextraction. J. Agric. Food Chem. 1999, 46, 3721–3726. [Google Scholar]
- Roszkowska, A.; Miekus, N.; Baczek, T. Application of solid-phase microextraction in current biomedical research. J. Sep. Sci. 2019, 42, 285–302. [Google Scholar] [CrossRef]
- Merkle, S.; Kleeberg, K.K.; Fritsche, J. Microextraction (spme) in food and environmental analysis—A review. Chromatography 2015, 2, 293–381. [Google Scholar] [CrossRef]
- Gao, Y.; Cao, Q.Q.; Chen, Y.H.; Granato, D.; Wang, J.Q.; Yin, J.F.; Zhang, X.B.; Wang, F.; Chen, J.X.; Xu, Y.Q. Effects of the baking process on the chemical composition, sensory quality, and bioactivity of tieguanyin oolong tea. Front. Nutr. 2022, 9, 881865. [Google Scholar] [CrossRef]
- Gan, X.H.; Liang, Z.Y.; Wang, D.P.; Wang, R. Analysis of aroma components in flowers of three kinds of camellia by hs-spme/gc-ms. Food Sci. 2013, 34, 204–207. [Google Scholar]
- Joshi, R.; Poonam; Saini, R.; Guleria, S.; Babu, G.D.; Kumari, M.; Gulati, A. Characterization of volatile components of tea flowers (camellia sinensis) growing in kangra by gc/ms. Nat. Prod. Commun. 2011, 6, 1155–1158. [Google Scholar]
- Gu, Y.P.; Qian, H. Analysis and microencapsulation of the essential oil from the flowers of camellia sinensis. Food Res. Dev. 2008, 29, 187–190. [Google Scholar]
- Chen, L.H.; Lv, X.; Wei, H.; Mao, W.L.; Li, Y.R. Analysis of aroma components in flower tea of camellia sinensis by headspace solid phase microextraction combined with gas chromatography-mass spectrometry. J. Food Saf. Qual. 2021, 12, 115–121. [Google Scholar]
- Mei, X.; Lin, C.; Wan, S.; Chen, B.; Wu, H.; Zhang, L. A comparative metabolomic analysis reveals difference manufacture suitability in “yinghong 9” and “huangyu” teas (Camellia sinensis). Front. Plant Sci. 2021, 12, 767724. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Wan, S.; Lin, C.; Zhou, C.; Hu, L.; Deng, C.; Zhang, L. Integration of metabolome and transcriptome reveals the relationship of benzenoid-phenylpropanoid pigment and aroma in purple tea flowers. Front. Plant Sci. 2021, 12, 762330. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Lin, H.; Liu, Z.; Liu, Z. Analysis of young shoots of ‘anji baicha’ (Camellia sinensis) at three developmental stages using nontargeted lc-ms-based metabolomics. J. Food Sci. 2019, 84, 1746–1757. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Zhang, X.Q.; Liu, X.X.; Liu, Z.Y.; He, P.; Zheng, W.J. Aroma components analysis of zheng’an white tea in different stages of whitening process. Food Sci. Technol. 2021, 46, 276–282. [Google Scholar]
- Russo, E.B.; Marcu, J. Chapter three cannabis pharmacology: The usual suspects and a few promising leads. Adv. Pharmacol. 2017, 80, 67–134. [Google Scholar]
- Dong, F.; Yang, Z.; Baldermann, S.; Kajitani, Y.; Ota, S.; Kasuga, H.; Imazeki, Y.; Ohnishi, T.; Watanabe, N. Characterization of l-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of camellia sinensis using stable isotope labeling. J. Plant Physiol. 2012, 169, 217–225. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, Q.; Zeng, L.; Tang, J.; Li, J.; Dong, F.; Yang, Z. Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea (Camellia sinensis (L.) o. Kuntze) flowers and other plants. Food Chem. 2018, 258, 352–358. [Google Scholar] [CrossRef]
- Ji, W.B.; Cui, J.X.; Yin, J.; Wang, Z.; Yu, B. Introduction trials of four chlorosis-specific tea cultivars in maoshan area. China Tea 2021, 43, 49–55. [Google Scholar]
- Shu, C. Characterization of Aroma-Active Components of Longjing Tea; Shanghai Institute of Technology: Shanghai, China, 2016. [Google Scholar]
- Niu, Y.; Ma, Y.; Xiao, Z.; Zhu, J.; Xiong, W.; Chen, F. Characterization of the key aroma compounds of three kinds of chinese representative black tea and elucidation of the perceptual interactions of methyl salicylate and floral odorants. Molecules 2022, 27, 1631. [Google Scholar] [CrossRef]
- Xiao, Z.; Luo, J.; Niu, Y.; Wang, P.; Wang, R.; Sun, X. Olfactory impact of esters on rose essential oil floral alcohol aroma expression in model solution. Food Res. Int. 2019, 116, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Xiao, Z. Evaluation of the synergism among volatile compounds in oolong tea infusion by odour threshold with sensory analysis and e-nose. Food Chem. 2017, 221, 1484–1490. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef] [PubMed]
- Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.C. Study of sensory interactions among red wine fruity esters in a model solution. J. Agric. Food Chem. 2013, 61, 8504–8513. [Google Scholar] [CrossRef] [PubMed]
Retention Time (RT) | CAS No. | Molecular | Retention Index (RI) | Name | Relative Abundance | Aroma Properties | Qualitative Method | |||
---|---|---|---|---|---|---|---|---|---|---|
Formula | Baiye No.1 | Huangjinya | Jiukeng | Yujinxiang | ||||||
1.644 | 75-08-1 | C2H6S | 575 | Ethanethiol | 0.18 ± 0.02 b | 0.27 ± 0.01 a | 0.22 ± 0.03 b | <LOQ c | Sulfurous, fruity | MS |
1.719 | 75-18-3 | C2H6S | 582 | Dimethyl sulfide | 0.16 ± 0.03 b | 0.28 ± 0.04 a | 0.23 ± 0.03 a | 0.10 ± 0.01 c | Sulfurous, onion | MS |
2.469 | 590-86-3 | C5H10O | 650 | 3-Methyl butyraldehyde | 0.05 ± 0.00 b | 0.10 ± 0.01 a | 0.09 ± 0.01 a | 0.05 ± 0.01 b | Aldehydic | MS, RI |
2.557 | 96-17-3 | C5H10O | 658 | 2-Methyl butyraldehyde | 0.15 ± 0.01 b | 0.29 ± 0.01 a | 0.26 ± 0.04 a | 0.17 ± 0.02 b | Musty, cocoa | MS, RI |
2.891 | 77-99-6 | C6H14O3 | 689 | Trimethylolpropane | 0.13 ± 0.01 a | 0.12 ± 0.01 ab | 0.14 ± 0.00 a | <LOQ c | MS | |
3.056 | 50551-88-7 | C7H14O | 702 | 5-Methyl-5-hexen-2-ol | <LOQ b | <LOQ b | <LOQ b | 0.19 ± 0.02 a | MS | |
3.060 | 6032-29-7 | C5H12O | 702 | 2-Pentanol | 0.88 ± 0.06 b | 0.98 ± 0.06 b | 1.46 ± 0.26 a | <LOQ c | Mild green | MS, RI |
3.097 | 110-62-3 | C5H10O | 704 | Pentanal | <LOQ b | <LOQ b | <LOQ b | 0.12 ± 0.01 a | Fermented, bready | MS, RI |
4.176 | 89182-08-1 | C5H8O | 752 | Cyclobut-1-enylmethanol | 0.14 ± 0.00 b | 0.20 ± 0.02 a | 0.14 ± 0.02 b | 0.09 ± 0.01 c | MS | |
4.510 | 71-41-0 | C5H12O | 766 | 1-Pentanol | <LOQ b | <LOQ b | <LOQ b | 0.06 ± 0.00 a | Fusel | MS, RI |
4.600 | 1576-95-0 | C5H10O | 770 | (Z)-2-Penten-1-ol | 0.20 ± 0.02 a | <LOQ d | 0.12 ± 0.02 b | 0.07 ± 0.01 c | Green | MS, RI |
4.629 | 111-71-7 | C7H14O | 772 | Heptanal | <LOQ c | 0.16 ± 0.01 a | 0.05 ± 0.00 b | <LOQ c | Fresh, green | MS |
5.375 | 66-25-1 | C6H12O | 803 | Hexanal | 6.65 ± 0.55 b | 7.82 ± 0.05 a | 6.84 ± 1.12 b | 4.04 ± 0.22 c | Green, grassy | MS, RI |
7.330 | 6728-26-3 | C6H10O | 848 | (E)-2-Hexenal | 2.27 ± 0.09 a | 0.87 ± 0.02 c | 1.02 ± 0.04 b | 0.64 ± 0.10 d | Green | MS, RI |
7.454 | 544-12-7 | C6H12O | 851 | 3-Hexen-1-ol | 1.27 ± 0.22 a | 0.54 ± 0.11 b | 1.11 ± 0.17 a | 0.33 ± 0.02 c | Green | MS, RI |
8.126 | 4312-76-9 | C6H14O2 | 867 | Hydroperoxide, hexyl | 0.88 ± 0.12 a | 0.34 ± 0.02 c | 0.56 ± 0.05 b | 0.21 ± 0.03 d | MS | |
8.904 | 71228-22-3 | C7H14O | 885 | 4-Methyl-5-hexen-2-ol | 1.38 ± 0.11 c | 1.89 ± 0.22 b | 2.53 ± 0.28 a | 0.59 ± 0.07 d | MS | |
9.466 | 6728-31-0 | C7H12O | 898 | (Z)-4-Heptenal | 0.06 ± 0.01 a | <LOQ b | <LOQ b | <LOQ b | Green, creamy | MS, RI |
9.642 | 543-49-7 | C7H16O | 902 | 2-Heptanol | 4.78 ± 0.28 a | 3.73 ± 0.14 b | 4.92 ± 0.57 a | 1.75 ± 0.15 c | Fresh, grass, herbal | MS, RI |
12.693 | 57266-86-1 | C7H12O | 953 | (Z)-2-Heptenal | 0.20 ± 0.02 a | 0.26 ± 0.05 a | 0.15 ± 0.00 b | 0.13 ± 0.01 c | Oily | MS, RI |
12.757 | 100-52-7 | C7H6O | 954 | Benzaldehyde | 1.24 ± 0.05 a | 1.38 ± 0.20 a | 1.27 ± 0.14 a | 0.56 ± 0.04 b | Strong sharp almond | MS, RI |
14.179 | 3391-86-4 | C8H16O | 978 | 1-Octen-3-ol | 0.41 ± 0.03 a | 0.44 ± 0.01 a | 0.42 ± 0.03 a | 0.19 ± 0.02 b | Mushroom, earthy | MS, RI |
14.410 | 110-93-0 | C8H14O | 982 | 6-Methyl-5-hepten-2-one | 0.19 ± 0.02 b | 0.24 ± 0.02 a | 0.17 ± 0.02 b | 0.08 ± 0.01 c | Citrus and lemongrass | MS, RI |
14.694 | 127-91-3 | C10H16 | 987 | β-Pinene | 0.97 ± 0.02 b | 0.89 ± 0.15 bc | 0.91 ± 0.03 c | 1.79 ± 0.14 a | Dry woody, pine | MS, RI |
15.116 | 4313-03-5 | C7H10O | 994 | (E, E)-2,4-Heptadienal | 1.09 ± 0.15 a | 1.33 ± 0.23 a | 0.99 ± 0.11 a | 0.42 ± 0.04 b | Fatty, green, oily | MS, RI |
15.582 | 124-13-0 | C8H16O | 1002 | Octanal | 0.56 ± 0.06 a | 0.54 ± 0.01 a | 0.48 ± 0.00 b | 0.36 ± 0.06 c | Orange peel, fatty | MS, RI |
15.776 | 3681-82-1 | C8H14O2 | 1005 | (E)-3-Hexen-1-yl acetate | <LOQ b | <LOQ b | 0.37 ± 0.03 a | <LOQ b | Green, unripe banana | MS, RI |
16.270 | 24524-57-0 | C10H16 | 1012 | Bicyclo[3.1.0]hexane, 6-isopropylidene-1-methyl- | 0.20 ± 0.00 a | 0.18 ± 0.03 a | 0.19 ± 0.01 a | 0.20 ± 0.02 a | MS | |
16.470 | 2808-71-1 | C8H14 | 1015 | 3-Ethyl-cyclohexene | <LOQ b | <LOQ b | 0.11 ± 0.03 a | <LOQ b | MS | |
16.782 | 535-77-3 | C10H14 | 1020 | m-Cymene | 0.14 ± 0.01 a | 0.14 ± 0.00 a | 0.12 ± 0.02 a | 0.14 ± 0.02 a | MS, RI | |
17.086 | 5989-27-5 | C10H16 | 1024 | D-Limonene | 0.59 ± 0.05 b | 0.50 ± 0.05 b c | 0.50 ± 0.03 c | 0.79 ± 0.04 a | Citrus, orange | MS, RI |
17.759 | 3779-61-1 | C10H16 | 1034 | trans-β-Ocimene | 0.22 ± 0.03 b | 0.15 ± 0.02 c | 0.16 ± 0.02 c | 0.40 ± 0.02 a | Sweet herbal | MS, RI |
17.813 | 69668-82-2 | C8H14O | 1035 | 3,5-Octadien-2-ol | 0.09 ± 0.01 a | 0.08 ± 0.00 a | 0.06 ± 0.00 b | <LOQ c | MS, RI | |
17.973 | 122-78-1 | C8H8O | 1037 | Benzeneacetaldehyde | 0.37 ± 0.03 a | 0.33 ± 0.02 a | 0.42 ± 0.07 a | 0.28 ± 0.02 b | Sweet floral, hyacinth | MS, RI |
18.424 | 3338-55-4 | C10H16 | 1044 | (Z)-β-Ocimene | 0.39 ± 0.04 b | 0.30 ± 0.03 c | 0.33 ± 0.01 c | 0.57 ± 0.02 a | Warm floral | MS, RI |
19.042 | 13466-78-9 | C10H16 | 1053 | 3-Carene | <LOQ b | <LOQ b | <LOQ b | 0.10 ± 0.01 a | Citrus, pine, terpenic | MS |
19.212 | 1517-69-7 | C8H10O | 1055 | (R)-1-Phenylethanol | 2.12 ± 0.24 c | 6.98 ± 0.45 a | 5.31 ± 0.97 b | 0.64 ± 0.31 d | Floral, honeysuckle | MS, RI |
19.374 | 98-86-2 | C8H8O | 1058 | Acetophenone | 17.37 ± 0.90 c | 42.99 ± 1.05 a | 27.96 ± 1.79 b | 24.83 ± 2.20 b | Sweet, almond | MS, RI |
20.854 | 514-95-4 | C10H16 | 1080 | 1,5,5-Trimethyl-6-methylene-cyclohexene | 0.36 ± 0.03 b | 0.45 ± 0.05 a | 0.32 ± 0.04 b | 0.30 ± 0.03 b | MS | |
21.036 | 5989-33-3 | C10H18O2 | 1082 | (Z)-Linalool oxide (furanoid) | 0.39 ± 0.02 c | 0.47 ± 0.05 b | 0.62 ± 0.10 a | 0.21 ± 0.02 d | Floral, sweet, woody | MS, RI |
22.153 | 78-70-6 | C10H18O | 1099 | Linalool | 43.88 ± 0.99 b | 18.50 ± 0.66 d | 31.41 ± 1.22 c | 55.08 ± 2.49 a | Floral | MS, RI |
22.307 | 13741-21-4 | C10H18O2 | 1101 | 2,6-Dimethyl-3,7-octadiene-2,6-diol | <LOQ b | <LOQ b | <LOQ b | 0.81 ± 0.16 a | MS | |
22.424 | 124-19-6 | C9H18O | 1103 | Nonanal | 3.03 ± 0.25 a | 2.14 ± 0.18 b | 2.15 ± 0.17 b | 1.46 ± 0.07 c | Waxy, rosy, orange peel | MS, RI |
23.029 | 95452-08-7 | C11H18 | 1111 | 2-Ethenyl-1,1-dimethyl-3-methylenecyclohexane | 0.23 ± 0.03 a | 0.24 ± 0.02 a | 0.24 ± 0.08 a | 0.17 ± 0.02 b | MS | |
24.885 | 4707-07-7 | C11H18O2 | 1136 | 2(1H)-Naphthalenone, octahydro-8a-hydroxy-4a-methyl-, cis- | <LOQ c | 0.46 ± 0.08 a | 0.24 ± 0.04 b | 0.24 ± 0.03 b | MS | |
26.487 | 6712-79-4 | C10H16O | 1157 | Isopinocarveol | <LOQ d | 0.57 ± 0.05 b | 1.43 ± 0.28 a | 0.44 ± 0.00 c | Woody, warm | MS, RI |
28.475 | 119-36-8 | C8H8O3 | 1184 | Methyl salicylate | 2.34 ± 0.23 a | 0.75 ± 0.19 c | 1.61 ± 0.13 b | <LOQ d | Wintergreen mint | MS, RI |
28.861 | 98-55-5 | C10H18O | 1189 | α-Terpineol | 1.06 ± 0.09 a | 0.49 ± 0.01 c | 0.69 ± 0.10 b | 0.21 ± 0.02 d | Pine, lilac | MS, RI |
29.155 | 2226-05-3 | C11H18O | 1193 | Patchouli ethanol | 0.77 ± 0.09 a | <LOQ c | 0.61 ± 0.06 b | <LOQ c | Woody, patchouli, mint | MS |
29.994 | 112-31-2 | C10H20O | 1205 | Decanal | 0.62 ± 0.10 a | 0.48 ± 0.08 ab | 0.41 ± 0.07 b | 0.24 ± 0.03 c | Citrus, waxy | MS, RI |
30.439 | 432-25-7 | C10H16O | 1211 | β-Cyclocitral | 0.26 ± 0.04 b | 0.41 ± 0.04 a | 0.32 ± 0.03 b | 0.30 ± 0.02 b | Woody | MS, RI |
31.168 | 53282-47-6 | C10H16 | 1222 | Bicyclo[4.1.0]heptane, 7-(1-methylethylidene)- | 0.13 ± 0.01 a | 0.12 ± 0.01 ab | 0.10 ± 0.01 b | 0.06 ± 0.02 c | MS | |
32.093 | 35154-45-1 | C11H20O2 | 1236 | cis-3-Hexenyl isovalerate | 0.19 ± 0.02 a | 0.11 ± 0.01 b | 0.19 ± 0.02 a | 0.08 ± 0.01 c | Tropical, pineapple | MS, RI |
42.602 | 621-23-8 | C9H12O3 | 1408 | 1,3,5-Trimethoxybenzene | 0.30 ± 0.04 a | <LOQ b | <LOQ b | <LOQ b | MS, RI | |
43.033 | 6901-97-9 | C13H20O | 1416 | α-Ionone | 0.39 ± 0.05 b | 0.75 ± 0.07 a | 0.47 ± 0.08 b | 0.29 ± 0.03 c | Floral | MS, RI |
Classes of Compounds | Relative Abundances (%) | Numbers of Compounds | ||||||
---|---|---|---|---|---|---|---|---|
Baiye No.1 | Huangjinya | Jiukeng | Yujinxiang | Baiye No.1 | Huangjinya | Jiukeng | Yujinxiang | |
Aldehydes | 16.54 ± 0.45 a | 16.10 ± 0.30 a | 14.49 ± 0.95 a | 8.75 ± 0.60 b | 13 | 13 | 13 | 13 |
Alcohols | 57.95 ± 1.12 a | 34.50 ± 1.52 c | 50.48 ± 0.81 b | 60.88 ± 2.71 a | 14 | 13 | 15 | 14 |
Ketones | 17.95 ± 0.85 c | 44.15 ± 0.75 a | 28.65 ± 1.88 b | 25.20 ± 2.20 b | 3 | 3 | 3 | 3 |
Esters | 2.53 ± 0.25 a | 0.87 ± 0.19 b | 2.17 ± 0.12 a | 0.08 ± 0.01 c | 2 | 2 | 3 | 1 |
Terpenes | 2.69 ± 0.27 b | 2.24 ± 0.32 b | 1.92 ± 0.58 b | 3.99 ± 0.26 a | 5 | 5 | 5 | 6 |
S-containing compounds | 0.34 ± 0.05 c | 0.58 ± 0.07 a | 0.46 ± 0.06 b | 0.10 ± 0.01 d | 2 | 2 | 2 | 1 |
Others | 1.86 ± 0.14 a | 1.44 ± 0.16 b | 1.61 ± 0.19 ab | 0.98 ± 0.07 c | 6 | 6 | 7 | 6 |
Volatiles | Green Attribute | Floral Attribute | Sweet Attribute | |||
---|---|---|---|---|---|---|
VIP | Coefficient | VIP | Coefficient | VIP | Coefficient | |
2-Heptanol | 1.42 | 0.18 | 1.42 | −0.18 | 0.56 | −0.10 |
Methyl salicylate | 1.39 | 0.21 | 1.39 | −0.21 | 1.16 | −0.20 |
2-Pentanol | 1.29 | 0.15 | 1.29 | −0.15 | 0.23 | −0.03 |
Nonanal | 1.20 | 0.17 | 1.20 | −0.17 | 0.91 | −0.12 |
4-Methyl-5-hexen-2-ol | 1.06 | 0.11 | 1.06 | −0.11 | 0.52 | 0.04 |
(E)-2-Hexenal | 1.04 | 0.17 | 1.04 | −0.17 | 1.43 | −0.20 |
Hexanal | 0.96 | 0.08 | 0.96 | −0.08 | 0.55 | 0.13 |
(E)-3-Hexen-1-yl acetate | 0.77 | 0.11 | 0.77 | −0.11 | 0.38 | −0.10 |
Linalool | 0.65 | −0.02 | 0.65 | 0.02 | 1.20 | −0.22 |
(R)-1-Phenylethanol | 0.61 | 0.02 | 0.61 | −0.02 | 1.19 | 0.18 |
Acetophenone | 0.57 | −0.11 | 0.57 | 0.11 | 1.76 | 0.32 |
Isopinocarveol | 0.32 | 0.03 | 0.32 | −0.03 | 0.84 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Chen, Y.; Wang, F.; Chen, J.; Chen, G.; Xu, Y.; Yin, J. Volatile Composition and Aroma Description of Tea (Camellia sinensis) Flowers from Albino Cultivars. Horticulturae 2023, 9, 610. https://doi.org/10.3390/horticulturae9050610
Gao Y, Chen Y, Wang F, Chen J, Chen G, Xu Y, Yin J. Volatile Composition and Aroma Description of Tea (Camellia sinensis) Flowers from Albino Cultivars. Horticulturae. 2023; 9(5):610. https://doi.org/10.3390/horticulturae9050610
Chicago/Turabian StyleGao, Ying, Yuhong Chen, Fang Wang, Jianxin Chen, Gensheng Chen, Yongquan Xu, and Junfeng Yin. 2023. "Volatile Composition and Aroma Description of Tea (Camellia sinensis) Flowers from Albino Cultivars" Horticulturae 9, no. 5: 610. https://doi.org/10.3390/horticulturae9050610
APA StyleGao, Y., Chen, Y., Wang, F., Chen, J., Chen, G., Xu, Y., & Yin, J. (2023). Volatile Composition and Aroma Description of Tea (Camellia sinensis) Flowers from Albino Cultivars. Horticulturae, 9(5), 610. https://doi.org/10.3390/horticulturae9050610