Quantification and Distribution of Primary and Secondary Metabolites in the Inner and Outer Parts of Strawberry Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Physical Measurements
2.3. Dry Matter
2.4. Ascorbic Acid Extraction and Determination
2.5. Extraction and Determination of Sugars and Organic Acids
2.6. Phenolic Extraction and Determination
2.7. Enzyme Activity Measurements
2.7.1. Extraction of Enzymes
2.7.2. POD and PPO Assays
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physical Parameters
3.2. Organic Acid Content
3.3. Sugar Content
3.4. Phenolic Content
Anthocyanin Content
3.5. Enzyme Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hancock, J.F. Strawberries, 2nd ed.; Springer: Dordrecht, The Netherlands, 2020; pp. 445–455. ISBN 9781789242270. [Google Scholar]
- Aaby, K.; Ekeberg, D.; Skrede, G. Characterization of Phenolic Compounds in Strawberry (Fragaria × ananassa) Fruits by Different HPLC Detectors and Contribution of Individual Compounds to Total Antioxidant Capacity. J. Agric. Food Chem. 2007, 55, 4395–4406. [Google Scholar] [CrossRef] [PubMed]
- Steyn, W.J.; Wand, S.J.E.; Holcroft, D.M.; Jacobs, G. Anthocyanins in Vegetative Tissues: A Proposed Unified Function in Photoprotection. N. Phytol. 2002, 155, 349–361. [Google Scholar] [CrossRef]
- Enomoto, H.; Sato, K.; Miyamoto, K.; Ohtsuka, A.; Yamane, H. Distribution Analysis of Anthocyanins, Sugars, and Organic Acids in Strawberry Fruits Using Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 4958–4965. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, H. Mass Spectrometry Imaging of Flavonols and Ellagic Acid Glycosides in Ripe Strawberry Fruit. Molecules 2020, 25, 4600. [Google Scholar] [CrossRef]
- Enomoto, H.; Takahashi, S.; Takeda, S.; Hatta, H. Distribution of Flavan-3-Ol Species in Ripe Strawberry Fruit Revealed by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. Molecules 2020, 25, 103. [Google Scholar] [CrossRef] [PubMed]
- Ikegaya, A.; Toyoizumi, T.; Ohba, S.; Nakajima, T.; Kawata, T.; Ito, S.; Arai, E. Effects of Distribution of Sugars and Organic Acids on the Taste of Strawberries. Food Sci. Nutr. 2019, 7, 2419–2426. [Google Scholar] [CrossRef]
- Wang, J.; Yang, E.; Chaurand, P.; Raghavan, V. Visualizing the Distribution of Strawberry Plant Metabolites at Different Maturity Stages by MALDI-TOF Imaging Mass Spectrometry. Food Chem. 2021, 345, 128838. [Google Scholar] [CrossRef]
- Cebulj, A.; Cunja, V.; Mikulic-Petkovsek, M.; Veberic, R. Importance of Metabolite Distribution in Apple Fruit. Sci. Hortic. 2017, 214, 214–220. [Google Scholar] [CrossRef]
- Horikawa, K.; Hirama, T.; Shimura, H.; Jitsuyama, Y.; Suzuki, T. Visualization of Soluble Carbohydrate Distribution in Apple Fruit Flesh Utilizing MALDI–TOF MS Imaging. Plant Sci. 2019, 278, 107–112. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Enomoto, H.; Moriyama, T.; Kawamura, Y.; Setou, M.; Zaima, N. Visualization of Anthocyanin Species in Rabbiteye Blueberry Vaccinium Ashei by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. Anal. Bioanal. Chem. 2012, 403, 1885–1895. [Google Scholar] [CrossRef]
- Biais, B.; Beauvoit, B.; William Allwood, J.; Deborde, C.; Maucourt, M.; Goodacre, R.; Rolin, D.; Moing, A. Metabolic Acclimation to Hypoxia Revealed by Metabolite Gradients in Melon Fruit. J. Plant Physiol. 2010, 167, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, P.; Han, B.; Qiao, F. Study on the Distribution of Low Molecular Weight Metabolites in Mango Fruit by Air Flow-Assisted Ionization Mass Spectrometry Imaging. Molecules 2022, 27, 5873. [Google Scholar] [CrossRef] [PubMed]
- López-Serrano, M.; Ros Barceló, A. Histochemical Localization and Developmental Expression of Peroxidase and Polyphenol Oxidase in Strawberries. J. Am. Soc. Hortic. Sci. 2001, 126, 27–32. [Google Scholar] [CrossRef]
- Enomoto, H. Unique Distribution of Ellagitannins in Ripe Strawberry Fruit Revealed by Mass Spectrometry Imaging. Curr. Res. Food Sci. 2021, 4, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shrestha, B.; Vertes, A. Atmospheric Pressure Molecular Imaging by Infrared MALDI Mass Spectrometry. Anal. Chem. 2007, 79, 523–532. [Google Scholar] [CrossRef]
- Crespo, P.; Giné Bordonaba, J.; Terry, L.A.; Carlen, C. Characterisation of Major Taste and Health-Related Compounds of Four Strawberry Genotypes Grown at Different Swiss Production Sites. Food Chem. 2010, 122, 16–24. [Google Scholar] [CrossRef]
- Capocasa, F.; Scalzo, J.; Mezzetti, B.; Battino, M. Combining Quality and Antioxidant Attributes in the Strawberry: The Role of Genotype. Food Chem. 2008, 111, 872–878. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zheng, W.; Galletta, G.J. Cultural System Affects Fruit Quality and Antioxidant Capacity in Strawberries. J. Agric. Food Chem. 2002, 50, 6534–6542. [Google Scholar] [CrossRef]
- Palmieri, L.; Masuero, D.; Martinatti, P.; Baratto, G.; Martens, S.; Vrhovsek, U. Genotype-by-Environment Effect on Bioactive Compounds in Strawberry (Fragaria × ananassa Duch.). J. Sci. Food Agric. 2017, 97, 4180–4189. [Google Scholar] [CrossRef]
- Cocco, C.; Magnani, S.; Maltoni, M.L.; Quacquarelli, I.; Cacchi, M.; Corrêa Antunes, L.E.; Filippo D’antuono, L.; Faedi, W.; Baruzzi, G. Effects of Site and Genotype on Strawberry Fruits Quality Traits and Bioactive Compounds. J. Berry Res. 2015, 5, 145–155. [Google Scholar] [CrossRef]
- Bonora, E.; Noferini, M.; Stefanelli, D.; Costa, G. A New Simple Modeling Approach for the Early Prediction of Harvest Date and Yield in Nectarines. Sci. Hortic. 2014, 172, 1–9. [Google Scholar] [CrossRef]
- Ziosi, V.; Noferini, M.; Fiori, G.; Tadiello, A.; Trainotti, L.; Casadoro, G.; Costa, G. A New Index Based on Vis Spectroscopy to Characterize the Progression of Ripening in Peach Fruit. Postharvest. Biol. Technol. 2008, 49, 319–329. [Google Scholar] [CrossRef]
- Simkova, K.; Veberic, R.; Hudina, M.; Grohar, M.C.; Ivancic, T.; Smrke, T.; Pelacci, M.; Jakopic, J. Variability in ‘Capri’ Everbearing Strawberry Quality during a Harvest Season. Foods 2023, 12, 1349. [Google Scholar] [CrossRef] [PubMed]
- Kruger, N.J. The Bradford Method for Protein Quantitation. Methods Mol. Biol. 1994, 32, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Crecelius, A.C.; Hölscher, D.; Hoffmann, T.; Schneider, B.; Fischer, T.C.; Hanke, M.-V.; Flachowsky, H.; Schwab, W.; Schubert, U.S. Spatial and Temporal Localization of Flavonoid Metabolites in Strawberry Fruit (Fragaria × ananassa). J. Agric. Food Chem. 2017, 65, 3559–3568. [Google Scholar] [CrossRef] [PubMed]
- Kallio, H.; Hakala, M.; Pelkkikangas, A.M.; Lapveteläinen, A. Sugars and Acids of Strawberry Varieties. Eur. Food Res. Technol. 2000, 212, 81–85. [Google Scholar] [CrossRef]
- Nizioł, J.; Misiorek, M.; Ruman, T. Mass Spectrometry Imaging of Low Molecular Weight Metabolites in Strawberry Fruit (Fragaria × ananassa Duch.) Cv. Primoris with 109Ag Nanoparticle Enhanced Target. Phytochemistry 2019, 159, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Kader, A.A. Preharvest and Postharvest Factors Influencing Vitamin C Content of Horticultural Crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Li, M.J.; Ma, F.W.; Zhang, M.; Pu, F. Distribution and Metabolism of Ascorbic Acid in Apple Fruits (Malus Domestica Borkh Cv. Gala). Plant Sci. 2008, 174, 606–612. [Google Scholar] [CrossRef]
- Kader, A.A. Quality and Its Maintenance in Relation to the Postharvest Physiology of Strawberry. In The Strawberry into the 21st Century; Timber Press: Portland, OR, USA, 1991; pp. 145–152. [Google Scholar]
- Zheng, J.; Huang, C.; Yang, B.; Kallio, H.; Liu, P.; Ou, S. Regulation of Phytochemicals in Fruits and Berries by Environmental Variation—Sugars and Organic Acids. J. Food Biochem. 2019, 43, e12642. [Google Scholar] [CrossRef]
- Pillet, J.; Folta, K.M. Pigments in Strawberry. In Pigments in Fruits and Vegetables; Springer: New York, NY, USA, 2015; pp. 205–216. [Google Scholar]
- Warner, R.; Wu, B.S.; MacPherson, S.; Lefsrud, M. A Review of Strawberry Photobiology and Fruit Flavonoids in Controlled Environments. Front. Plant Sci. 2021, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Alappat, B.; Alappat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef] [PubMed]
- Chisari, M.; Barbagallo, R.N.; Spagna, G. Characterization of Polyphenol Oxidase and Peroxidase and Influence on Browning of Cold Stored Strawberry Fruit. J. Agric. Food Chem. 2007, 55, 3469–3476. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Ripening Index | Colour Parameters | ||
---|---|---|---|---|
L* | C* | h° | ||
Asia | 0.25 ± 0.01 b | 27.5 ± 0.3 a | 31.2 ± 0.9 a | 31.0 ± 0.7 ab |
Clery | 0.20 ± 0.02 b | 30.5 ± 0.8 b | 45.4 ± 0.9 c | 32.5 ± 0.7 b |
Frederica | 0.24 ± 0.02 b | 29.2 ± 0.3 ab | 36.6 ± 0.9 b | 29.5 ± 0.4 a |
Sandra | 0.12 ± 0.02 a | 36.9 ± 0.5 c | 48.5 ± 0.9 c | 35.7 ± 0.4 c |
Cultivar | Layer | pH | TSS [°Bx] | Colour Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
L* | C* | h° | |||||||||
Asia | Inner | 3.76 ± 0.02 | *** | 7.4 ± 0.1 | ns | 35.4 ± 0.3 | *** | 21.5 ± 0.3 | ns | 35.4 ± 0.3 | * |
Outer | 3.30 ± 0.01 | 7.4 ± 0.1 | 29.7 ± 0.2 | 22.2 ± 0.4 | 29.7 ± 0.1 | ||||||
Clery | Inner | 3.82 ± 0.00 | *** | 9.2 ± 0.0 | * | 32.2 ± 0.7 | ** | 19.1 ± 0.5 | ns | 31.4 ± 0.7 | ns |
Outer | 3.58 ± 0.02 | 9.7 ± 0.2 | 28.7 ± 0.2 | 19.3 ± 0.2 | 31.0 ± 0.4 | ||||||
Frederica | Inner | 3.62 ± 0.01 | *** | 8.3 ± 0.1 | ns | 38.9 ± 0.4 | *** | 20.9 ± 0.3 | *** | 33.8 ± 0.1 | ** |
Outer | 3.34 ± 0.01 | 8.4 ± 0.2 | 31.4 ± 0.2 | 25.3 ± 0.2 | 33.0 ± 0.2 | ||||||
Sandra | Inner | 3.67 ± 0.07 | ns | 9.6 ± 0.4 | ns | 35.5 ± 0.7 | ** | 18.9 ± 0.8 | *** | 36.1 ± 0.7 | * |
Outer | 3.58 ± 0.05 | 9.4 ± 0.3 | 31.9 ± 0.1 | 24.6 ± 0.5 | 33.7 ± 0.4 | ||||||
Cultivar | *** | *** | *** | *** | *** | ||||||
Layer | *** | ns | *** | *** | ns | ||||||
Cultivar:Layer | *** | ns | *** | *** | ** |
Cultivar | Layer | Citric [mg g−1] | Malic [mg g−1] | Shikimic [mg g−1] | Fumaric [mg g−1] | Ascorbic [mg g−1] | Total Organic Acids [mg g−1] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clery | Inner | 45.30 ± 0.58 | *** | 27.78 ± 1.27 | *** | 0.264 ± 0.009 | *** | 0.082 ± 0.002 | *** | 2.68 ± 0.07 | *** | 76.11 ± 1.72 | *** |
Outer | 88.52 ± 1.04 | 39.16 ± 0.35 | 0.323 ± 0.007 | 0.109 ± 0.003 | 5.52 ± 0.08 | 133.63 ± 1.17 | |||||||
Sandra | Inner | 62.24 ± 1.54 | *** | 42.71 ± 1.40 | ** | 0.178 ± 0.009 | ** | 0.076 ± 0.003 | *** | 2.22 ± 0.06 | *** | 107.43 ± 2.49 | *** |
Outer | 104.67 ± 1.87 | 52.67 ± 1.61 | 0.231 ± 0.006 | 0.097 ± 0.002 | 4.33 ± 0.13 | 161.99 ± 3.48 | |||||||
Frederica | Inner | 65.12 ± 1.75 | *** | 52.20 ± 2.20 | ** | 0.283 ± 0.004 | * | 0.173 ± 0.007 | ns | 1.90 ± 0.06 | *** | 119.67 ± 3.88 | *** |
Outer | 137.24 ± 3.87 | 63.96 ± 1.83 | 0.338 ± 0.016 | 0.194 ± 0.009 | 3.86 ± 0.06 | 205.59 ± 5.71 | |||||||
Asia | Inner | 53.71 ± 1.10 | *** | 41.03 ± 1.15 | ** | 0.312 ± 0.025 | ns | 0.136 ± 0.011 | ns | 2.03 ± 0.13 | *** | 97.22 ± 2.25 | *** |
Outer | 119.49 ± 0.60 | 48.40 ± 0.50 | 0.366 ± 0.007 | 0.161 ± 0.005 | 5.24 ± 0.08 | 173.63 ± 0.93 | |||||||
Cultivar | *** | *** | *** | *** | *** | *** | |||||||
Layer | *** | *** | *** | *** | *** | *** | |||||||
Cultivar:Layer | *** | ns | ns | ns | *** | *** |
Cultivar | Layer | Content [mg g−1 of Dry Weight] | |||||||
---|---|---|---|---|---|---|---|---|---|
Sucrose | Glucose | Fructose | Total Sugars | ||||||
Clery | Inner | 85 ± 2 | ** | 333 ± 7 | *** | 366 ± 7 | *** | 785 ± 16 | ** |
Outer | 111 ± 4 | 267 ± 2 | 304 ± 3 | 681 ± 5 | |||||
Sandra | Inner | 251 ± 15 | ns | 283 ± 9 | ** | 292 ± 8 | ** | 827 ± 32 | ns |
Outer | 221 ± 8 | 226 ± 10 | 238 ± 10 | 686 ± 28 | |||||
Frederica | Inner | 123 ± 2 | *** | 315 ± 10 | *** | 333 ± 10 | *** | 772 ± 21 | * |
Outer | 218 ± 6 | 221 ± 6 | 242 ± 7 | 680 ± 19 | |||||
Asia | Inner | 85 ± 2 | *** | 319 ± 8 | *** | 344 ± 8 | *** | 748 ± 17 | ** |
Outer | 143 ± 4 | 232 ± 6 | 256 ± 7 | 630 ± 16 | |||||
Cultivar | *** | *** | *** | *** | |||||
Layer | *** | *** | *** | *** | |||||
Cultivar:Layer | *** | *** | *** | *** |
Cultivar | Layer | Content [mg kg−1 Dry Weight] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hydroxycinnamic Acid Der. | Flavanols | Hydroxybenzoic Acid Der. | Flavonols | Total Phenolics 1 | |||||||
Clery | Inner | 1761 ± 81 | * | 566 ± 53 | ** | 549 ± 7 | *** | 120 ± 12 | *** | 6244 ± 293 | *** |
Outer | 1526 ± 27 | 885 ± 39 | 933 ± 29 | 469 ± 21 | 10,273 ± 126 | ||||||
Sandra | Inner | 940 ± 53 | ns | 420 ± 53 | ns | 518 ± 27 | *** | 74 ± 5 | *** | 3285 ± 27 | *** |
Outer | 769 ± 64 | 632 ± 82 | 1064 ± 59 | 209 ± 7 | 7008 ± 89 | ||||||
Frederica | Inner | 557 ± 35 | *** | 72 ± 7 | ** | 314 ± 13 | *** | 77 ± 11 | *** | 2597 ± 130 | *** |
Outer | 823 ± 38 | 227 ± 27 | 1325 ± 48 | 347 ± 24 | 8736 ± 257 | ||||||
Asia | Inner | 1670 ± 56 | ** | 151 ± 13 | *** | 448 ± 17 | *** | 292 ± 28 | *** | 5707 ± 181 | *** |
Outer | 1281 ± 61 | 409 ± 11 | 837 ± 40 | 692 ± 11 | 11,861 ± 86 | ||||||
Cultivar | *** | *** | *** | *** | *** | ||||||
Layer | ** | *** | *** | *** | *** | ||||||
Cultivar:Layer | *** | ns | *** | *** | *** |
Cultivar | Layer | Content [mg kg−1 Dry Weight] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cy-3-O-glc | Plg-3-O-glc | Plg-3-O-rut | Cy-3-(6”malonyl)glc | Plg-3-(6”malonyl)glc | Plg-3-O-acetylglc | Total Phenolics | |||||||||
Clery | Inner | 18 ± 1 | *** | 2372 ± 22 | *** | 146 ± 7 | *** | 2 ± 1 | ** | 7 ± 2 | ns | 548 ± 4 | *** | 3093 ± 31 | *** |
Outer | 89 ± 3 | 4943 ± 45 | 270 ± 15 | 18 ± 3 | 18 ± 5 | 1140 ± 18 | 6478 ± 81 | ||||||||
Sandra | Inner | 7 ± 0 | *** | 945 ± 54 | *** | 71 ± 1 | *** | nd | 2 ± 0 | ** | 307 ± 16 | *** | 1333 ± 69 | *** | |
Outer | 37 ± 1 | 3100 ± 113 | 192 ± 3 | 5 ± 0 | 6 ± 1 | 993 ± 55 | 4334 ± 163 | ||||||||
Frederica | Inner | 25 ± 5 | *** | 1502 ± 82 | *** | nd | nd | 15 ± 0 | *** | 35 ± 3 | *** | 1578 ± 86 | *** | ||
Outer | 173 ± 8 | 5648 ± 163 | nd | nd | 49 ± 2 | 144 ± 6 | 6013 ± 171 | ||||||||
Asia | Inner | 28 ± 2 | *** | 2840 ± 108 | *** | 183 ± 6 | *** | nd | 12 ± 1 | *** | 85 ± 3 | *** | 3147 ± 118 | *** | |
Outer | 84 ± 1 | 7924 ± 45 | 424 ± 5 | nd | 26 ± 1 | 185 ± 8 | 8642 ± 54 | ||||||||
Cultivar | *** | *** | *** | na | *** | *** | *** | ||||||||
Layer | *** | *** | *** | na | *** | *** | *** | ||||||||
Cultivar:Layer | *** | *** | *** | na | *** | *** | *** |
Cultivar | Layer | Activity [U mg−1 Protein] | Protein Content [mg g−1 Dry Weight] | ||||
---|---|---|---|---|---|---|---|
POX | PPO | ||||||
Clery | Inner | 1.22 ± 0.04 | ** | 1.37 ± 0.09 | ** | 6.28 ± 0.25 | *** |
Outer | 0.95 ± 0.06 | 0.98 ± 0.06 | 4.40 ± 0.23 | ||||
Sandra | Inner | 1.09 ± 0.08 | ** | 1.23 ± 0.06 | *** | 4.59 ± 0.11 | *** |
Outer | 0.60 ± 0.04 | 0.39 ± 0.03 | 2.52 ± 0.07 | ||||
Frederica | Inner | 1.25 ± 0.05 | *** | 1.24 ± 0.02 | *** | 4.84 ± 0.12 | *** |
Outer | 0.54 ± 0.02 | 0.33 ± 0.04 | 2.86 ± 0.32 | ||||
Asia | Inner | 1.41 ± 0.07 | ** | 1.17 ± 0.04 | ** | 10.27 ± 0.14 | *** |
Outer | 1.05 ± 0.05 | 0.94 ± 0.03 | 5.08 ± 0.14 | ||||
Cultivar | *** | *** | *** | ||||
Layer | *** | *** | *** | ||||
Cultivar:Layer | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simkova, K.; Veberic, R.; Hudina, M.; Cvelbar Weber, N.; Smrke, T.; Grohar, M.C.; Ivancic, T.; Pelacci, M.; Medic, A.; Jakopic, J. Quantification and Distribution of Primary and Secondary Metabolites in the Inner and Outer Parts of Strawberry Fruit. Horticulturae 2023, 9, 605. https://doi.org/10.3390/horticulturae9050605
Simkova K, Veberic R, Hudina M, Cvelbar Weber N, Smrke T, Grohar MC, Ivancic T, Pelacci M, Medic A, Jakopic J. Quantification and Distribution of Primary and Secondary Metabolites in the Inner and Outer Parts of Strawberry Fruit. Horticulturae. 2023; 9(5):605. https://doi.org/10.3390/horticulturae9050605
Chicago/Turabian StyleSimkova, Kristyna, Robert Veberic, Metka Hudina, Nika Cvelbar Weber, Tina Smrke, Mariana Cecilia Grohar, Tea Ivancic, Massimiliano Pelacci, Aljaz Medic, and Jerneja Jakopic. 2023. "Quantification and Distribution of Primary and Secondary Metabolites in the Inner and Outer Parts of Strawberry Fruit" Horticulturae 9, no. 5: 605. https://doi.org/10.3390/horticulturae9050605
APA StyleSimkova, K., Veberic, R., Hudina, M., Cvelbar Weber, N., Smrke, T., Grohar, M. C., Ivancic, T., Pelacci, M., Medic, A., & Jakopic, J. (2023). Quantification and Distribution of Primary and Secondary Metabolites in the Inner and Outer Parts of Strawberry Fruit. Horticulturae, 9(5), 605. https://doi.org/10.3390/horticulturae9050605