Effects of Cold Plasma and Ozone Water Treatment on Micronutrient Solubility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Treatment Systems
2.2. Nutrient Solution
2.3. Experimental Design and Statistical Analysis
3. Results
3.1. Effects on Micronutrients
3.2. Effects on Physicochemical Properties of Nutrient Solutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gururani, P.; Bhatnagar, P.; Bisht, B.; Kumar, V.; Joshi, N.C.; Tomar, M.S.; Pathak, B. Cold plasma technology: Advanced and sustainable approach for wastewater treatment. Environ. Sci. Pollut. Res. 2021, 28, 65062–65082. [Google Scholar] [CrossRef] [PubMed]
- Barjasteh, A.; Dehghani, Z.; Lamichhane, P.; Kaushik, N.; Choi, E.H. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl. Sci. 2021, 11, 3372. [Google Scholar] [CrossRef]
- Yan, D.; Sherman, J.H.; Keidar, M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget 2017, 8, 15977–15995. [Google Scholar] [CrossRef]
- Mahanta, S.; Habib, M.R.; Moore, J.M. Effect of high-voltage atmospheric cold plasma treatment on germination and heavy metal uptake by soybeans (Glycine max). Int. J. Mol. Sci. 2022, 23, 1611. [Google Scholar] [CrossRef]
- Niveditha, A.; Pandiselvam, R.; Prasath, V.A.; Singh, S.K.; Khalid, G.; Kothakota, A. Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review. Food Con. 2021, 130, 108338. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Wang, P.; Xian, Y.; Mai-Prochnow, A.; Ostrikov, K.; Bazaka, K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020, 53, 303001. [Google Scholar] [CrossRef]
- Kim, H.S.; Wright, K.; Piccioni, J.; Cho, D.J.; Cho, Y.I. Inactivation of bacteria by the application of spark plasma in produced water. Sep. Purif. Technol. 2015, 156, 544–552. [Google Scholar] [CrossRef]
- Ziuzina, D.; Patil, S.; Cullen, P.J.; Keener, K.M.; Bourke, P. Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J. Appl. Microbiol. 2013, 114, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Kang, C.; Zhao, D.; Niu, L.; Liu, X.; Bai, Y. Influence of organic matters on the inactivation efficacy of plasma-activated water against E. coli O157:H7 and S. aureus. Food Control. 2019, 99, 28–33. [Google Scholar] [CrossRef]
- Cahyani, R.A.; Permata, Y.E.; Karamah, E.F.; Bismoa, S. Removal of organic and inorganic (phenolic and iron compound) pollutants from wastewater using DBD cold plasma reactor. AIP Conf. Proc. 2019, 2175, 020005. [Google Scholar] [CrossRef]
- Camel, V.; Bermond, A. The use of ozone and associated oxidation processes in drinking water treatment. Water Res. 1988, 32, 3208–3222. [Google Scholar] [CrossRef]
- Rodríguez, A.; Rosal, R.; Perdigón-Melón, J.A.; Mezcua, M.; Agüera, A.; Hernando, M.D.; Letón, P.; Fernández-Alba, A.R.; García-Calvo, E. Ozone-based technologies in water and wastewater treatment. Emerging contaminants from industrial and municipal waste. In The Handbook of Environmental Chemistry; Barceló, D., Petrovic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Cuong, L.C.; Dieu, T.V.; Ngu, T.; Oanh, D.T.Y. Ozonation process and water disinfection. Vietnam. J. Chem. 2018, 56, 717–720. [Google Scholar]
- Bancroft, K.; Chrostowski, P.; Wright, R.L.; Suffet, I.H. Ozonation and oxidation competition values: Relationship to disinfection and microorganisms regrowth. Water Res. 1984, 18, 473–478. [Google Scholar] [CrossRef]
- Amirsardari, Y.; Yu, Q.; Williams, P. Effect of Ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursors in drinking water treatment. Environ. Technol. 2001, 22, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- McDonald, G.V. Ozone (O3) Efficacy on Reduction of Phytopththora capsici in Recirculated Horticultural Irrigation Water. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2007. Available online: https://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-1328 (accessed on 31 March 2023).
- Shaddox, T.W.; Fu, H.; Gardner, V.R.; Goss, M.; Guertal, V.W.; Kreuser, C.; Miller, G.L.; Stewart, B.R.; Tang, K.; Unruh, J.B. Solubility of ten iron fertilizers in eleven north American soils. Agron J. 2019, 111, 1498–1505. [Google Scholar] [CrossRef]
- Araby, R.E.; Hawash, S.; Diwani, G.E. Treatment of iron and manganese in simulated groundwater via ozone technology. Desalination 2009, 249, 1345–1349. [Google Scholar] [CrossRef]
- Fisher, P.R.; Mohammad-Pour, G. Interactions of fertilizer and chemical sanitizing agents in water. Acta Hortic. 2022, 1335, 25–31. [Google Scholar] [CrossRef]
- Suslow, T.V. Oxidation-reduction potential (ORP) for water disinfection monitoring, control, and documentation. ANR Pub. 2004. [Google Scholar] [CrossRef]
- Lang, J.M.; Rebits, B.; Newman, S.E.; Tisserat, N. Monitoring mortality of Pythium zoospores in chlorinated water using oxidation reduction potential. Plant Health Prog. 2008, 9, 9. [Google Scholar] [CrossRef]
- Albano, J.P.; Miller, W.B. Ferric ethylenediaminetetraacetic acid (Fe-EDTA) photodegradation in commercially produced soluble fertilizers. Hort. Tech. 2001, 11, 265–267. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. Available online: https://www.R-project.org/ (accessed on 1 May 2023).
- Mendiburu, F.D.; Yasee, M. Agricolae: Statistical Procedures for Agricultural Research. R Package version 1.4.0. 2020. Available online: https://myaseen208.github.io/agricolae (accessed on 1 May 2023).
- Gao, Y.; Francis, K.; Zhang, X. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res. Int. 2022, 157, 111246. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Tian, Y.; Li, Y.; Ma, R.; Zhang, Q.; Zhang, J.; Fang, J. Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 2016, 6, 28505. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhou, R.; Prasad, K.; Fang, Z.; Speight, R.; Bazaka, K.; Ostrikov, K. Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite. Green Chem. 2018, 20, 5276–5284. [Google Scholar] [CrossRef]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Reuter, S.; Graves, D.B.; Ostrikov, K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016, 630, 1–84. [Google Scholar] [CrossRef]
- Sillanpää, M.E.T.; Kurniawan, T.A.; Lo, W. Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP). Chemosphere 2011, 83, 1443–1460. [Google Scholar] [CrossRef] [PubMed]
- Sein, M.M.; Zedda, M.; Tuerk, J.; Schmidt, T.C.; Golloch, A.; Sonntag, C.V. Oxidation of diclofenac with ozone in aqueous solution. Environ. Sci. Technol. 2008, 42, 6656–6662. [Google Scholar] [CrossRef] [PubMed]
- Stemmler, K.; Glod, G.; Gunten, U.V. Oxidation of metal–diethylenetriamine-pentaacetate (DTPA)—Complexes during drinking water ozonation. Water Res. 2001, 35, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Vanachter, A.; Thys, L.; Wambeke, E.V.; Assche, C.V. Possible use of ozone for disinfestation of plant nutrient solutions. Acta Hortic. 1988, 221, 295–302. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Ho, N.M.; Hoang, K.D.; Le, T.V.; Le, V.H. An investigation on treatment of groundwater with cold plasma for domestic water supply. Groundw. Sustain. Dev. 2020, 10, 100309. [Google Scholar] [CrossRef]
- Shrestha, R.; Pradhan, S.; Guragain, R.; Subedi, D.; Pandey, B. Investigating the Effects of Atmospheric Pressure Air DBD Plasma on Physio-Chemical and Microbial Parameters of Groundwater. Open Access Libr. J. 2020, 7, 99162. [Google Scholar] [CrossRef]
- Legube, B.; Leitner, N.K.V. Catalytic ozonation: A promising advanced oxidation technology for water treatment. Catal. Today 1999, 53, 61–72. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Ma, T. Properties of plasma-activated water with different activation time and its effects on the quality of button mushrooms (Agaricus bisporus). LWT 2021, 147, 111633. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Ho, P.Q.; Pham, T.V.; Nguyen, T.V.; Kim, L. Treatment of surface water using cold plasma for domestic water supply. Environ. Eng. Res. 2019, 24, 412–417. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, R.; Zhang, Q.; Feng, H.; Liang, Y.; Zhang, J.; Fang, J. Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface. Plasma Process Polym. 2015, 12, 439–449. [Google Scholar] [CrossRef]
- Shainsky, N.; Dobrynin, D.; Ercan, U.; Joshi, S.; Ji, H.; Brooks, A.; Fridman, G.; Cho, Y.; Fridman, A.; Friedman, G. Plasma Acid: Water treated by dielectric barrier discharge. Plasma Process Polym. 2012, 9, 555–629. [Google Scholar] [CrossRef]
- Wang, T.C.; Hsu, S.Y.; Lai, Y.T.; Duh, J.G. Improving the growth rate of Lettuce sativa young plants via plasma-activated water generated by multitubular dielectric barrier discharge cold plasma system. IEEE Trans. Plasma Sci. 2022, 50, 2104–2109. [Google Scholar] [CrossRef]
- Subedi, D.P.; Tyata, R.; Khadgi, A.; Wong, C. Treatment of Water by Dielectric Barrier Discharge. J. Sci. Technol. Trop. 2009, 5, 117–123. [Google Scholar]
- Bhatta, R.; Kayastha, R.; Subedi, D.P.; Joshi, R. Treatment of wastewater by ozone produced in dielectric barrier discharge. J. Chem. 2015, 2015, 648162 . [Google Scholar] [CrossRef]
Treatment Unit | Cold Plasma | Ozone |
---|---|---|
O3 mg/L | 0.43 | 0.57 |
Water flow rate (L·min−1) | 18.93 | 7.60 |
mg O3 per min | 8.12 | 4.33 |
Fe Chelates | Soluble Mn (%) | Chelated Fe (%) | Soluble Fe (%) | pH ‘Pre’ | pH ‘Post’ |
---|---|---|---|---|---|
EDTA | 57 ± 6.4 a | 79 ± 3.2 a | 91 ± 2.6 a | 5.72 ± 0.05 a | 5.65 ± 0.05 a |
DTPA | 45 ± 6.9 ab | 52 ± 7.1 b | 85 ± 2.2 ab | 5.57 ± 0.06 a | 5.53 ± 0.07 a |
EDDHA | 31 ± 4.3 ab | 18 ± 3.7 c | 83 ± 1.1 ab | 5.27 ± 0.06 b | 5.23 ± 0.05 b |
HBED | 27 ± 6.6 b | 30 ± 8.7 bc | 78 ± 1.6 b | 5.25 ± 0.03 b | 5.18 ± 0.07 b |
Summary of ANOVA | |||||
Iron chelate | * | *** | * | *** | *** |
Water treatment | NS | NS | NS | NS | NS |
Water treatment × iron chelate | NS | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakulla, D.; Fisher, P.R. Effects of Cold Plasma and Ozone Water Treatment on Micronutrient Solubility. Horticulturae 2023, 9, 568. https://doi.org/10.3390/horticulturae9050568
Thakulla D, Fisher PR. Effects of Cold Plasma and Ozone Water Treatment on Micronutrient Solubility. Horticulturae. 2023; 9(5):568. https://doi.org/10.3390/horticulturae9050568
Chicago/Turabian StyleThakulla, Dharti, and Paul R. Fisher. 2023. "Effects of Cold Plasma and Ozone Water Treatment on Micronutrient Solubility" Horticulturae 9, no. 5: 568. https://doi.org/10.3390/horticulturae9050568
APA StyleThakulla, D., & Fisher, P. R. (2023). Effects of Cold Plasma and Ozone Water Treatment on Micronutrient Solubility. Horticulturae, 9(5), 568. https://doi.org/10.3390/horticulturae9050568