Comparative Phytoremediation Potential of Eichhornia crassipes, Lemna minor, and Pistia stratiotes in Two Treatment Facilities in Cluj County, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Equipment
2.2. Location, Plant Material, and Growing Conditions
- For E. crassipes, 20 to 25 units of the plant were used for 50 L of wastewater and treated wastewater, with a determination after 48 h and 7 days of contact.
- For P. stratiotes, 30 units of the plant were used for 20 L of wastewater and treated wastewater, with a determination after 48 h and 7 days of contact.
- For L. minor, 1000 g of the plant was used for 10 L of wastewater and treated wastewater (10 g for 100 mL of water), with a determination after 48 h and 7 days of contact.
2.3. Determination of Ammoniacal Nitrogen, Nitrites, and Nitrates
2.4. Determination of Phosphorus
2.5. Determination of Metals: Iron and Chromium
3. Results
3.1. Phytoremediation of Ammonia, Nitrites, and Nitrates
3.2. Phytoremediation of Phosphorous
3.3. Phytoremediation of Iron and Chromium
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mustafa, H.M.; Hayder, G. Recent Studies on Applications of Aquatic Weed Plants in Phytoremediation of Wastewater: A Review Article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Victor, K.K.; Séka, Y.; Norbert, K.K.; Sanogo, T.A.; Celestin, A.B. Phytoremediation of Wastewater Toxicity Using Water Hyacinth (Eichhornia Crassipes) and Water Lettuce (Pistia Stratiotes). Int. J. Phytoremediat. 2016, 18, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Zhang, T.Y.; Dao, G.H.; Xu, X.Q.; Wang, X.X.; Hu, H.Y. Microalgae-Based Advanced Municipal Wastewater Treatment for Reuse in Water Bodies. Appl. Microbiol. Biotechnol. 2017, 101, 2659–2675. [Google Scholar] [CrossRef]
- Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Wahab, N.A. Application of Water Hyacinth (Eichhornia Crassipes) for Phytoremediation of Ammoniacal Nitrogen: A Review. J. Water Process Eng. 2018, 22, 239–249. [Google Scholar] [CrossRef]
- Hu, H.; Li, X.; Wu, S.; Yang, C. Sustainable Livestock Wastewater Treatment via Phytoremediation: Current Status and Future Perspectives. Bioresour. Technol. 2020, 315, 123809. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, H.; Cai, T.; Chen, K.; Lin, Y.; Xi, Y.; Chhuond, K. Effects of Phytoremediation on Industrial Wastewater. IOP Conf. Ser. Earth Environ. Sci. 2019, 371, 032011. [Google Scholar] [CrossRef]
- Kinidi, L.; Salleh, S. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System. Int. J. Chem. Eng. 2017, 2017, 1961205. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, J.; Feng, J.; Liu, Q.; Nan, F.; Xie, S. Treatment of Real Aquaculture Wastewater from a Fishery Utilizing Phytoremediation with Microalgae. J. Chem. Technol. Biotechnol. 2019, 94, 900–910. [Google Scholar] [CrossRef]
- Gomes, R.S.; de Lima, J.P.V.; Cavalli, R.O.; Correia, E.D.S. Acute Toxicity of Ammonia and Nitrite to Painted River Prawn, Macrobrachium Carcinus, Larvae. J. World Aquac. Soc. 2016, 47, 239–247. [Google Scholar] [CrossRef]
- Petrov, D.S.; Kuznecov, V.S.; Suprun, I.K.; Zhuravkova, M.A.; Solnyshkova, M.A. Phytoremediation Efficiency of Duckweed Communities for Mining Enterprises Wastewater Treatment from Nitrogen Compounds. J. Phys. Conf. Ser. 2019, 1399, 055044. [Google Scholar] [CrossRef]
- Ojoawo, S.O.; Udayakumar, G.; Naik, P. Phytoremediation of Phosphorus and Nitrogen with Canna x Generalis Reeds in Domestic Wastewater through NMAMIT Constructed Wetland. Aquat. Procedia 2015, 4, 349–356. [Google Scholar] [CrossRef]
- Kumar, S.; Deswal, S. Phytoremediation Capabilities of Salvinia Molesta, Water Hyacinth, Water Lettuce, and Duckweed to Reduce Phosphorus in Rice Mill Wastewater. Int. J. Phytoremediat. 2020, 22, 1731729. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Pandey, A.K.; Udayan, A.; Kumar, S. Role of Microbial Community and Metal-Binding Proteins in Phytoremediation of Heavy Metals from Industrial Wastewater. Bioresour. Technol. 2021, 326, 124750. [Google Scholar] [CrossRef]
- Raskin, I.; Smith, R.D.; Salt, D.E. Phytoremediation of Metals: Using Plants to Remove Pollutants from the Environment. Curr. Opin. Biotechnol. 1997, 8, 221–226. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, J.; Lombi, E. Phytoremediation of Metals, Metalloids, and Radionuclides. Adv. Agron. 2002, 75, 1–56. [Google Scholar] [CrossRef]
- Rezania, S.; Ponraj, M.; Talaiekhozani, A.; Mohamad, S.E.; Md Din, M.F.; Taib, S.M.; Sabbagh, F.; Sairan, F.M. Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater. J. Environ. Manag. 2015, 163, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Kruatrachue, M.; Pokethitiyook, P.; Homyok, K. Removal of Cadmium and Zinc by Water Hyacinth, Eichhornia Crassipes. Sci. Asia 2004, 30, 93. [Google Scholar] [CrossRef]
- Fox, L.J.; Struik, P.C.; Appleton, B.L.; Rule, J.H. Nitrogen Phytoremediation by Water Hyacinth (Eichhornia Crassipes (Mart.) Solms). Water. Air. Soil Pollut. 2008, 194, 199–207. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Yang, X.E.; Chang, H.Q.; Pu, P.M.; Ding, X.F.; Rengel, Z. Phytoremediation of Nitrogen-Polluted Water Using Water Hyacinth. J. Plant Nutr. 2007, 30, 1753–1765. [Google Scholar] [CrossRef]
- Jayaweera, M.W.; Kasturiarachchi, J.C. Removal of Nitrogen and Phosphorus from Industrial Wastewaters by Phytoremediation Using Water Hyacinth (Eichhornia Crassipes (Mart.) Solms). Water Sci. Technol. 2004, 50, 217–225. [Google Scholar] [CrossRef]
- Odjegba, V.J.; Fasidi, I.O. Phytoremediation of Heavy Metals by Eichhornia Crassipes. Environmentalist 2007, 27, 349–355. [Google Scholar] [CrossRef]
- Ebel, M.; Evangelou, M.W.H.; Schaeffer, A. Cyanide Phytoremediation by Water Hyacinths (Eichhornia Crassipes). Chemosphere 2007, 66, 816–823. [Google Scholar] [CrossRef]
- Ndimele, P.E.; Kumolu-Johnson, C.A.; Chukwuka, K.S.; Adaramoye, O.R. Phytoremediation of Iron (Fe) and Copper (Cu) by Water Hyacinth (Eichhornia Crassipes). Trends Appl. Sci. Res. 2013, 9, 485–493. [Google Scholar]
- Thapa, G.; Das, D.; Gunupuru, L.R.; Tang, B. Endurance Assessment of Eichhornia Crassipes (Mart.) Solms, in Heavy Metal Contaminated Site–A Case Study. Cogent Environ. Sci. 2016, 2, 1215280. [Google Scholar] [CrossRef]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of Common Duckweed (Lemna Minor) in Phytoremediation of Chemicals in the Environment: State and Future Perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, S.H.; Ahmad, I.; Mahmood-Ul-Hassan, M.; Mohammad, A. Phytoremediation Potential of Lemna Minor L. for Heavy Metals. Int. J. Phytoremediat. 2015, 18, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Banerjee, A.; Sarkar, S. Phytoremediation Potential of Duckweed (Lemna Minor L.) On Steel Wastewater. Int. J. Phytoremediat. 2015, 17, 589–596. [Google Scholar] [CrossRef]
- Ubuza, L.J.A.; Padero, P.C.S.; Nacalaban, C.M.N.; Tolentino, J.T.; Alcoran, D.C.; Tolentino, J.C.; Ido, A.L.; Mabayo, V.I.F.; Arazo, R.O. Assessment of the Potential of Duckweed (Lemna Minor L.) in Treating Lead-Contaminated Water through Phytoremediation in Stationary and Recirculated Set-Ups. Environ. Eng. Res. 2020, 25, 977–982. [Google Scholar] [CrossRef]
- Schwantes, D.; Gonçalves, A.C.; da Paz Schiller, A.; Manfrin, J.; Campagnolo, M.A.; Somavilla, E. Pistia Stratiotes in the Phytoremediation and Post-Treatment of Domestic Sewage. Int. J. Phytoremediat. 2019, 21, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Goswami, S.; Talukdar, A. Das A Study on Cadmium Phytoremediation Potential of Water Lettuce, Pistia Stratiotes L. Bull. Environ. Contam. Toxicol. 2014, 92, 169–174. [Google Scholar] [CrossRef]
- Odjegba, V.J.; Fasidi, I.O. Accumulation of Trace Elements by Pistia Stratiotes: Implications for Phytoremediation. Ecotoxicology 2004, 13, 637–646. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, J.; Saini, A.; Kumar, P. Phytoremediation of Copper, Iron and Mercury from Aqueous Solution by Water Lettuce (Pistia Stratiotes L.). Environ. Sustain. 2019, 2, 55–65. [Google Scholar] [CrossRef]
- Leblebici, Z.; Dalmiş, E.; Andeden, E.E. Determination of the Potential of Pistia Stratiotes L. in Removing Nickel from the Environment by Utilizing Its Rhizofiltration Capacity. Brazilian Arch. Biol. Technol. 2019, 62, 1–12. [Google Scholar] [CrossRef]
- ASRO SR ISO 5667; Standard—Quality of Water. Sampling—Part 10. ISO: Geneva, Switzerland, October 2021.
- ASRO SR ISO 5667; Standard—Quality of Water. Sampling—Part 3. ISO: Geneva, Switzerland, March 2018.
- ASRO SR ISO 7150-1; Standard—Quality of Water. Determination of Ammonia Content. Part 1. ISO: Geneva, Switzerland, 2001.
- ASRO SR EN 26777: 2002/C91; Standard—Quality of Water. Determination of Nitrite Content. ISO: Geneva, Switzerland, 2006.
- ASRO SR ISO 7890-1; Standard—Quality of Water. Determination of Nitrate Content. Part 1. ISO: Geneva, Switzerland, 1998.
- ASRO SR EN ISO 6878; Cap. 7 Standard—Quality of Water. Determination of Phosphorous. ISO: Geneva, Switzerland, 2005.
- ASRO SR 13315: 1996/C91; Standard—Quality of Water. Determination of Iron Content. ISO: Geneva, Switzerland, 2008.
- ASRO SR EN ISO 15586; Standard—Quality of Water. Determination of Traces of Elements. ISO: Geneva, Switzerland, 2004.
- Aziz, N.I.H.A.; Hanafiah, M.M.; Halim, N.H.; Fidri, P.A.S. Phytoremediation of TSS, NH3-N and COD from Sewage Wastewater by Lemna Minor L., Salvinia Minima, Ipomea Aquatica and Centella Asiatica. Appl. Sci. 2020, 10, 5397. [Google Scholar] [CrossRef]
- Ayu Hazmi, N.I.; Hanafiah, M. Phytoremediation of Livestock Wastewater Using Azolla Filiculoides and Lemna Minor. Environ. Ecosyst. Sci. 2018, 2, 13–16. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Noor, I.M.; Karim, H.I.A. Efficiency of Five Selected Aquatic Plants in Phytoremediation of Aquaculture Wastewater. Appl. Sci. 2020, 10, 2712. [Google Scholar] [CrossRef]
- Sundaralingam, T.; Gnanavelrajah, N. Phytoremediation Potential of Selected Plants for Nitrate and Phosphorus from Ground Water. Int. J. Phytoremediat. 2013, 16, 275–284. [Google Scholar] [CrossRef]
- Mook, W.T.; Chakrabarti, M.H.; Aroua, M.K.; Khan, G.M.A.; Ali, B.S.; Islam, M.S.; Abu Hassan, M.A. Removal of Total Ammonia Nitrogen (TAN), Nitrate and Total Organic Carbon (TOC) from Aquaculture Wastewater Using Electrochemical Technology: A Review. Desalination 2012, 285, 1–13. [Google Scholar] [CrossRef]
- Rubin, J.A.; Görres, J.H. Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality. Int. J. Environ. Res. Public Health 2020, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Ceschin, S.; Crescenzi, M.; Iannelli, M.A. Phytoremediation Potential of the Duckweeds Lemna Minuta and Lemna Minor to Remove Nutrients from Treated Waters. Environ. Sci. Pollut. Res. 2020, 27, 15806–15814. [Google Scholar] [CrossRef]
- Ntakiyiruta, P.; Briton, B.G.H.; Nsavyimana, G.; Adouby, K.; Nahimana, D.; Ntakimazi, G.; Reinert, L. Optimization of the Phytoremediation Conditions of Wastewater in Post-Treatment by Eichhornia Crassipes and Pistia Stratiotes: Kinetic Model for Pollutants Removal. Environ. Technol. 2020, 43, 1805–1818. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Priya, K.S. Phytoremediation Potential of Water Hyacinth in Heavy Metal Removal in Chromium and Lead Contaminated Water. Int. J. Environ. Anal. Chem. 2021. [Google Scholar] [CrossRef]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Li, R.; Bibi, S. Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China. Toxics 2022, 10, 231. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy Metals in Drinking Water: Occurrences, Implications, and Future Needs in Developing Countries. Sci. Total Environ. 2016, 569–570, 476–488. [Google Scholar] [CrossRef]
- Elahi, A.; Arooj, I.; Bukhari, D.A.; Rehman, A. Successive Use of Microorganisms to Remove Chromium from Wastewater. Appl. Microbiol. Biotechnol. 2020, 104, 3729–3743. [Google Scholar] [CrossRef]
- Owlad, M.; Aroua, M.K.; Daud, W.A.W.; Baroutian, S. Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review. Water. Air. Soil Pollut. 2009, 200, 59–77. [Google Scholar] [CrossRef]
- Yapoga, S.; Ossey, Y.B.; Kouamé, V. Phytoremediation of Zinc, Cadmium, Copper and Chrome from Industrial Wastewater by Eichhornia Crassipes. Int. J. Conserv. Sci. 2013, 4, 81–86. [Google Scholar]
- Mishra, V.K.; Tripathi, B.D. Accumulation of Chromium and Zinc from Aqueous Solutions Using Water Hyacinth (Eichhornia Crassipes). J. Hazard. Mater. 2009, 164, 1059–1063. [Google Scholar] [CrossRef]
- Tabinda, A.B.; Irfan, R.; Yasar, A.; Iqbal, A.; Mahmood, A. Phytoremediation Potential of Pistia Stratiotes and Eichhornia Crassipes to Remove Chromium and Copper. Environ. Technol. 2018, 41, 1514–1519. [Google Scholar] [CrossRef]
- Sasmaz, A.; Dogan, I.M.; Sasmaz, M. Removal of Cr, Ni and Co in the Water of Chromium Mining Areas by Using Lemna Gibba L. and Lemna Minor L. Water Environ. J. 2016, 30, 235–242. [Google Scholar] [CrossRef]
- Uysal, Y. Removal of Chromium Ions from Wastewater by Duckweed, Lemna Minor L. by Using a Pilot System with Continuous Flow. J. Hazard. Mater. 2013, 263, 486–492. [Google Scholar] [CrossRef]
- Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X. Uptake and Distribution of Metals by Water Lettuce (Pistia Stratiotes L.). Environ. Sci. Pollut. Res. 2011, 18, 978–986. [Google Scholar] [CrossRef]
- Teixeira, S.; Vieira, M.N.; Marques, J.E.; Pereira, R. Bioremediation of an Iron-Rich Mine Effluent by Lemna Minor. Int. J. Phytoremediat. 2014, 16, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.R.; Schröder, P. Implications of Metal Accumulation Mechanisms to Phytoremediation. Environ. Sci. Pollut. Res. 2009, 16, 162–175. [Google Scholar] [CrossRef]
- Jahangiri, F.M.; Moutushi, H.T.; Moniruzzaman, M.; Hoque, S.; Hossain, M.E. Removal of Lead from Aqueous Solutions and Wastewaters Using Water Hyacinth (Eichhornia Crassipes) Roots. Water Pract. Technol. 2021, 16, 404–419. [Google Scholar] [CrossRef]
- Hejna, M.; Onelli, E.; Moscatelli, A.; Bellotto, M.; Cristiani, C.; Stroppa, N.; Rossi, L. Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass. Int. J. Environ. Res. Public Health 2021, 18, 2239. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A Critical Review on the Phytoremediation of Heavy Metals from Environment: Performance and Challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
Location and Type of Wastewater | Initial | E. crassipes | L. minor | P. stratiotes | ||||
---|---|---|---|---|---|---|---|---|
2 Days | 7 Days | 2 Days | 7 Days | 2 Days | 7 Days | |||
CN F | En | 14.43 ± 4.05 | 10.33 ± 1.60 28% | 3.06 ± 2.08 79% | 0.23 ± 0.14 98% | 0.11 ± 0.02 99% | 8.83 ± 4.49 39% | 0.25 ± 0.12 98% |
Ev | 0.54 ± 0.10 | 0.03 ± 0.02 94% | 0.04 ± 0.01 93% | 0.05 ± 0.04 91% | 0.04 ± 0.01 92% | 0.08 ± 0.05 86% | 0.05 ± 0.01 90% | |
SP F | En | 27.61 ± 7.39 | 9.84 ± 0.64 64% | 0.55 ± 0.61 98% | 1.37 ± 1.17 95% | 0.33 ± 0.23 99% | 6.92 ± 2.29 75% | 0.92 ± 0.10 97% |
Ev | 14.09 ± 3.40 | 8.50 ± 1.91 40% | 0.05 ± 0.01 100% | 0.09 ± 0.05 99% | 0.11 ± 0.03 99% | 0.08 ± 0.04 99% | 0.07 ± 0.03 100% |
Location and Type of Wastewater | Initial | E. crassipes | L. minor | P. stratiotes | ||||
---|---|---|---|---|---|---|---|---|
2 Days | 7 Days | 2 Days | 7 Days | 2 Days | 7 Days | |||
CN F | En | 0.65 ± 0.17 | 0.07 ± 0.03 89% | 0.70 ± 1.09 0% | 0.05 ± 0.01 93% | 0.02 ± 0.01 97% | 0.07 ± 0.02 89% | 0.02 ± 0.01 96% |
Ev | 0.02 ± 0.00 | 0.03 ± 0.02 0% | 0.03 ± 0.02 0% | 0.01 ± 0.00 36% | 0.01 ± 0.00 48% | 0.01 ± 0.00 28% | 0.01 ± 0.00 51% | |
SP F | En | 0.34 ± 0.08 | 0.05 ± 0.02 84% | 6.29 ± 10.80 0% | 0.07 ± 0.01 78% | 0.03 ± 0.01 90% | 0.06 ± 0.02 82% | 0.04 ± 0.01 88% |
Ev | 0.04 ± 0.01 | 0.02 ± 0.01 49% | 0.25 ± 0.38 0% | 0.02 ± 0.00 44% | 0.02 ± 0.01 49% | 0.02 ± 0.00 46% | 0.02 ± 0.00 51% |
Location and Type of Wastewater | Initial | E. crassipes | L. minor | P. stratiotes | ||||
---|---|---|---|---|---|---|---|---|
2 Days | 7 Days | 2 Days | 7 Days | 2 Days | 7 Days | |||
CN F | En | 4.29 ± 1.00 | 0.97 ± 0.17 77% | 1.30 ± 0.87 70% | 1.65 ± 0.77 62% | 0.4 ± 0.43 91% | 1.23 ± 0.28 71% | 0.73 ± 0.18 83% |
Ev | 31.45 ± 3.53 | 18.99 ± 8.25 40% | 5.62 ± 2.59 82% | 1.06 ± 0.63 97% | 0.22 ± 0.27 99% | 9.45 ± 5.74 70% | 0.17 ± 0.07 99% | |
SP F | En | 1.61 ± 0.32 | 1.21 ± 0.26 25% | 3.43 ± 4.07 0% | 1.72 ± 0.68 0% | 0.56 ± 0.13 65% | 1.02 ± 0.03 36% | 0.92 ± 0.10 43% |
Ev | 2.28 ± 0.24 | 2.20 ± 0.18 4% | 8.15 ±10.84 0% | 1.94 ± 0.21 15% | 0.76 ± 0.13 67% | 1.79 ± 0.43 22% | 1.39 ± 0.45 39% |
Location and Type of Wastewater | Initial | E. crassipes | L. minor | P. stratiotes | ||||
---|---|---|---|---|---|---|---|---|
2 Days | 7 Days | 2 Days | 7 Days | 2 Days | 7 Days | |||
CN F | En | 1.38 ± 0.74 | 0.76 ± 0.23 45% | 0.51 ± 0.26 63% | 0.48 ± 0.38 65% | 0.11 ± 0.02 92% | 0.84 ± 0.27 39% | 0.15 ± 0.06 89% |
Ev | 0.64 ± 0.34 | 0.31 ± 0.18 52% | 0.16 ± 0.13 75% | 0.22 ± 0.32 66% | 0.03 ± 0.02 95% | 0.37 ± 0.13 43% | 0.03 ± 0.02 95% | |
SP F | En | 3.14 ± 3.15 | 1.15 ± 0.49 63% | 0.72 ± 0.41 77% | 1.56 ± 1.13 50% | 0.48 ± 0.19 85% | 2.42 ± 2.43 23% | 0.74 ± 0.28 76% |
Ev | 0.86 ± 0.25 | 0.48 ± 0.22 45% | 0.31 ± 0.24 64% | 0.30 ± 0.40 66% | 0.10 ± 0.04 89% | 0.33 ± 0.10 62% | 0.08 ± 0.05 91% |
Location and Type of Wastewater | Initial | E. crassipes | L. minor | P. stratiotes | ||||
---|---|---|---|---|---|---|---|---|
2 Days | 7 Days | 2 Days | 7 Days | 2 Days | 7 Days | |||
CN F | En | 0.91 ± 0.10 | 0.38 ± 0.17 58% | 0.07 ± 0.03 93% | 0.50 ± 0.03 45% | 0.04 ± 0.01 95% | 0.30 ± 0.07 67% | 0.08 ± 0.01 91% |
Ev | 0.42 ± 0.38 | 0.10 ± 0.12 76% | 0.04 ± 0.01 90% | 0.37 ± 0.12 13% | 0.03 ± 0.02 92% | 0.11 ± 0.06 73% | 0.05 ± 0.00 88% | |
SP F | En | 1.69 ± 0.51 | 0.72 ± 0.16 58% | 0.09 ± 0.05 95% | 0.70 ± 0.22 58% | 0.08 ± 0.02 96% | 0.41 ± 0.07 76% | 0.09 ± 0.01 95% |
Ev | 0.70 ± 0.31 | 0.55 ± 0.04 22% | 0.05 ± 0.00 93% | 0.45 ± 0.37 36% | 0.06 ± 0.00 91% | 0.16 ± 0.10 77% | 0.07 ± 0.00 90% |
Location and Type of Wastewater | Initial | E. crassipes | L. minor | P. stratiotes | ||||
---|---|---|---|---|---|---|---|---|
2 Days | 7 Days | 2 Days | 7 Days | 2 Days | 7 Days | |||
CN F | En | 2.14 ± 0.22 | 0.63 ± 0.06 71% | 0.20 ± 0.00 91% | 0.64 ± 0.00 70% | 0.14 ± 0.00 94% | 0.60 ± 0.01 72% | 0.13 ± 0.02 94% |
Ev | 0.61 ± 0.11 | 0.37 ± 0.05 39% | 0.19 ± 0.08 68% | 0.38 ± 0.02 38% | 0.06 ± 0.01 90% | 0.34 ± 0.07 45% | 0.09 ± 0.01 86% | |
SP F | En | 0.91 ± 0.01 | 0.27 ± 0.05 70% | 0.16 ± 0.03 82% | 0.71 ± 0.07 21% | 0.23 ± 0.04 75% | 0.63 ± 0.07 31% | 0.18 ± 0.01 80% |
Ev | 0.34 ± 0.00 | 0.18 ± 0.03 46% | 0.10 ± 0.00 70% | 0.22 ± 0.05 34% | 0.03 ± 0.01 92% | 0.19 ± 0.01 44% | 0.07 ± 0.00 80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buta, E.; Borșan, I.L.; Omotă, M.; Trif, E.B.; Bunea, C.I.; Mocan, A.; Bora, F.D.; Rózsa, S.; Nicolescu, A. Comparative Phytoremediation Potential of Eichhornia crassipes, Lemna minor, and Pistia stratiotes in Two Treatment Facilities in Cluj County, Romania. Horticulturae 2023, 9, 503. https://doi.org/10.3390/horticulturae9040503
Buta E, Borșan IL, Omotă M, Trif EB, Bunea CI, Mocan A, Bora FD, Rózsa S, Nicolescu A. Comparative Phytoremediation Potential of Eichhornia crassipes, Lemna minor, and Pistia stratiotes in Two Treatment Facilities in Cluj County, Romania. Horticulturae. 2023; 9(4):503. https://doi.org/10.3390/horticulturae9040503
Chicago/Turabian StyleButa, Erzsebet, Ionuț Lucian Borșan, Mariana Omotă, Emil Bogdan Trif, Claudiu Ioan Bunea, Andrei Mocan, Florin Dumitru Bora, Sándor Rózsa, and Alexandru Nicolescu. 2023. "Comparative Phytoremediation Potential of Eichhornia crassipes, Lemna minor, and Pistia stratiotes in Two Treatment Facilities in Cluj County, Romania" Horticulturae 9, no. 4: 503. https://doi.org/10.3390/horticulturae9040503
APA StyleButa, E., Borșan, I. L., Omotă, M., Trif, E. B., Bunea, C. I., Mocan, A., Bora, F. D., Rózsa, S., & Nicolescu, A. (2023). Comparative Phytoremediation Potential of Eichhornia crassipes, Lemna minor, and Pistia stratiotes in Two Treatment Facilities in Cluj County, Romania. Horticulturae, 9(4), 503. https://doi.org/10.3390/horticulturae9040503