The Effect of Light Intensity and Photoperiod on the Yield and Antioxidant Activity of Beet Microgreens Produced in an Indoor System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Physical Evaluations
2.2.1. Yield
2.2.2. Dry Matter Percentage
2.2.3. Height
2.2.4. Cotyledon Area
2.2.5. Color
2.3. Chemical Evaluations
2.3.1. Total Phenolic Content
2.3.2. Total Betalains Content
2.3.3. Antioxidant Capacity
Antioxidant Capacity by FRAP Method
Antioxidant Capacity by DPPH Method
2.4. Microbiological Counts
2.5. Resource Analysis
2.5.1. Energy Use Efficiency (EUE)
2.5.2. Water Use Efficiency (WUE)
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Physical Evaluations
3.1.1. Yield
3.1.2. Dry Matter Percentage (DM)
3.1.3. Height
3.1.4. Cotyledon Area (CA)
3.1.5. Color
Lightness
Chroma (C*)
Hue (h)
3.2. Chemical Evaluations
3.2.1. Total Phenolic Content
3.2.2. Total Betalains
Betaxanthins
Betacyanins
3.2.3. Antioxidant Capacity
3.3. Microbiological Counts
3.3.1. Mesophiles
3.3.2. Psychrophiles
3.3.3. Enterobacteriaceae Counts
3.4. Resource
3.4.1. Energy Use Efficiency (EUE)
3.4.2. Water Use Efficiency (WUE)
4. Discussion
4.1. Environmental Conditions
4.2. Effect of Intensity and Photoperiod on Physical Evaluations
4.3. Effect of Intensity and Photoperiod on Chemical Evaluations
4.4. Effect of Intensity and Photoperiod on Microbiological Counts
4.5. Effect of Intensity and Photoperiod on Resources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- OECD. OECD Health Statistics 2018. Available online: https://www.oecd.org/health/obesity-update.htm (accessed on 4 January 2023).
- WHO/FAO. Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series; WHO: Geneva, Switzerland, 2002; p. 916. [Google Scholar]
- MINSAL. National Food Consumption Survey 2016–2017. Available online: https://www.minsal.cl/wp-content/uploads/2017/11/ENS-2016-17_PRIMEROS-RESULTADOS.pdf (accessed on 6 January 2023).
- Verlinden, S. Microgreens. Definitions, product types, and production practices. In Horticultural Reviews, 1st ed.; Warrington, I., Ed.; John Wiley & Sons. Inc.: Hoboken, NJ, USA, 2020; Volume 47, pp. 85–124. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Luo, Y.; Lester, F.E.; Kou, L.; Yang, T.; Wang, Q. Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT-Food Sci. Technol. 2014, 55, 551–558. [Google Scholar] [CrossRef]
- Toscano, S.; Cavallaro, V.; Ferrante, A.; Romano, D.; Patané, C. Effects of different light spectra on final biomass production and nutritional quality of two microgreens. Plants 2021, 10, 1584. [Google Scholar] [CrossRef] [PubMed]
- Acharya, J.; Gautam, S.; Neupane, P.; Niroula, A. Pigments, ascorbic acid, and total polyphenols content and antioxidant capacities of beet (Beta vulgaris) microgreens during growth. Int. J. Food Prop. 2021, 24, 1175–1186. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Sakalauskiene, S.; Samuolienė, G.; Jankauskiene, J.; Viršile, A.; Novickovas, A.; Sirtautas, R.; Miliauskiene, J.; Vaštakaite, V.; Dabašinskas, L.; et al. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem. 2015, 173, 600–606. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Z.; Lin, L.; Lester, G.E.; Wang, Q.; Harnly, J.M.; Chen, P. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMS. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef] [Green Version]
- Truzzi, F.; Whittaker, A.; Roncuzzi, C.; Saltari, A.; Levesque, M.P.; Dinelli, G. Microgreens: Functional food with antiproliferative cancer properties influenced by light. Foods 2021, 10, 1690. [Google Scholar] [CrossRef]
- Kyriacou, M.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Rocchetti, G.; Tomas, M.; Zhang, L.; Zengin, G.; Lucini, L.; Capanoglu, E. Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal digestion on the untargeted metabolomic profile. Food Chem. 2020, 332, 127415. [Google Scholar] [CrossRef]
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. Betalains: Natural plant pigments with potential application in functional foods. Food Sci. Technol. 2015, 64, 645–649. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Nat. Prod. Commun. 2022, 17, 1. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2002; p. 690. ISBN 0878938230. [Google Scholar]
- Kozai, T.; Ohyama, K.; Afreen, F.; Zobayed, S.; Kubota, C.; Hoshi, T.; Chun, C. Transplant production in closed systems with artificial lighting for solving global issues on environment conservation, food, resource and energy. In Proceedings of the ACESYS III Conference, New Brunswick, NJ, USA, 23 July 1999; Volume 8, pp. 31–45. [Google Scholar]
- Zobayed, S.M.; Afreen, F.; Kozai, T. Necessity and production of medicinal plants under controlled environments. Environ. Control Biol. 2005, 43, 243–252. [Google Scholar] [CrossRef]
- Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes. Environ. Exp. Bot. 2018, 153, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Ilieva, I.; Ivanova, T.; Naydenov, Y.; Dandolov, I.; Stefanov, D. Plant experiments with light-emitting diode module in Svet space greenhouse. Adv. Space Res. 2010, 46, 840–845. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Yuan, X.; Chen, X.; Lu, C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Appolloni, E.; Pennisi, G.; Zauli, I.; Carotti, L.; Paucek, I.; Quaini, S.; Orsinia, F.; Gianquinto, G. Beyond vegetables: Effects of indoor LED light on specialized metabolite biosynthesis in medicinal and aromatic plants, edible flowers, and microgreens. J. Sci. Food Agric. 2021, 102, 472–487. [Google Scholar] [CrossRef]
- Ali, M.B.; Khandaker, L.; Oba, S. Comparative study on functional components, antioxidant activity and color parameters of selected colored leafy vegetables as affected by photoperiods. J. Food Agric. Environ. 2009, 7, 392–398. [Google Scholar]
- Liu, K.; Gao, M.; Jiang, H.; Ou, S.; Li, X.; He, R.; Li, Y.; Liu, H. Light intensity and photoperiod affect growth and nutritional quality of Brassica microgreens. Molecules 2022, 27, 883. [Google Scholar] [CrossRef]
- Filatov, D.; Vetchinnikov, A. The photoperiod/light intensity ratio affects the yield of microgreens within one daylight integral. Mod. Concep. Dev. Agrono. 2022, 11, 000760. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Vaštakaitė, V.; Jankauskienė, J.; Viršilė, A.; Samuolienė, G.; Miliauskienė, J.; Duchovskis, P. The impact of photoperiod on the growth and internal quality of mustard microgreens. In Proceedings of the 2nd International Conference on the Scientific Actualities and Innovations in Horticulture “Development and technology”, Kaunas, Lithuania, 4–6 June 2018; pp. 129–130. [Google Scholar]
- Meas, S.; Luengwilai, K.; Thongket, T. Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Sci. Hortic. 2020, 265, 109–204. [Google Scholar] [CrossRef]
- Vetchinnikov, A.; Filatov, D.A.; Olonina, S.I.; Kazakov, A.V.; Olonin, I.Y. Influence of the radiation intensity of LED light sources of the red-blue spectrum on the yield and energy consumption of microgreens. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 32–46. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Li, S.; Chen, X.; Lu, C. Comparative analysis of phenolic compound profiles, antioxidant capacities, and expressions of phenolic biosynthesis-related genes in soybean microgreens grown under different light spectra. J. Agric. Food Chem. 2019, 67, 13577–13588. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.; Langton, F. Photoperiod and plant growth: A review. J. Hortic. Sci. Biotechnol. 2005, 80, 2–10. [Google Scholar] [CrossRef]
- Vaštakaitė, V.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Samuolienė, G.; Novičkovas, A.; Sirtautas, R.; Bagdonavičienė, A.; Lekstutytė, B.; Duchovskis, P. The effect of light-emitting diodes (LEDs) photoperiod on nutritional quality of Brassicaceae microgreens. In Proceedings of the 10th Baltic Conference on Food Science and Technology “Future Food: Innovations, Science and Technology”, Kaunas, Lithuania, 21–22 May 2015; p. 19. [Google Scholar]
- Dou, H.; Niu, G.; Gu, M.; Masabni, J.G. Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae 2017, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Field, D.L.; Ahmed, S.M.; Hasan, M.T.; Basher, M.K.; Alameh, K. LED illumination for high-quality high-yield crop growth in protected cropping environments. Plants 2021, 10, 2470. [Google Scholar] [CrossRef] [PubMed]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energ. Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.; Yu-Xin, T.; Qi-Chang, Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. S. Afr. J. Bot. 2019, 130, 75–89. [Google Scholar] [CrossRef]
- Lara, O.A.; Amoros, A.; Tapia, M.L.; Escalona, V.H. Effect of a photoselective filter on the yield and postharvest quality of ‘Viroflay’ baby spinach (Spinacia oleracea L.) leaves cultivated in a hydroponic system. Sci. Hortic. 2021, 277, 109804. [Google Scholar] [CrossRef]
- Singleton, S.; Rossi, A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic and reagents. Am. J. Enol. Vitic. 1965, 16, 144–157. [Google Scholar] [CrossRef]
- Zin, M.; Márki, E.; Bánvölgyi, S. Conventional extraction of betalain compounds from beetroot peels with aqueous ethanol solvent. Acta Aliment. 2020, 49, 163–169. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-B radiation. Funct. Ecol. 1996, 2, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhang, Y.; Liu, H.; Li, Y.; Liu, Y.; Hao, Y.; Lei, B. Supplemental blue light increases growth and quality of greenhouse pak choi depending on cultivar and supplemental light intensity. J. Integr. Agric. 2018, 17, 2245–2256. [Google Scholar] [CrossRef] [Green Version]
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- González-Tejedor, G.A.; Martínez-Hernández, G.B.; Garre, A.; Egea, J.A.; Fernández, P.S.; Artés-Hernández, F. Quality changes and shelf-life prediction of a fresh fruit and vegetable purple smoothie. Food Bioprocess Technol. 2017, 10, 1892–1904. [Google Scholar] [CrossRef]
- Salazar, R.; Rojano, A.; López, I. La eficiencia en el uso del agua en la agricultura controlada. Tecnol. Cienc. Agua 2014, 5, 177–183. [Google Scholar]
- Youssef, R.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sustain. Energ. Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Gao, M.; He, R.; Shi, R.; Zhang, Y.; Song, S.; Su, W.; Liu, H. Differential effects of low light intensity on broccoli microgreens growth and phytochemicals. Agronomy 2021, 11, 537. [Google Scholar] [CrossRef]
- Gerovac, J.; Craver, J.; Boldt, J.; Lopez, R. Light intensity and quality from sole source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience 2016, 5, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Jones-Baumgardt, C.; Llewellyn, D.; Qinglu, Y.; Zheng, Y. Intensity of sole source light-emitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience 2019, 54, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Harakotr, B.; Srijunteuk, S.; Rithichai, P.; Tabunhan, S. Effects of light-emitting diode light irradiance levels on yield, antioxidants and antioxidant capacities of indigenous vegetable microgreens. Sci. Technol. Asia 2019, 24, 59–66. [Google Scholar]
- Dou, H.; Niu, G. Plant responses to light. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press Ltd.: Cambridge, MA, USA, 2020; pp. 153–166. [Google Scholar]
- Xu, W.; Lu, N.; Kikuchi, M.; Takagaki, M. Continuous lighting and high daily light integral enhance yield and quality of mass-produced Nasturtium (Tropaeolum majus L.) in plant factories. Plants 2021, 10, 1203. [Google Scholar] [CrossRef]
- Sutulienė, R.; Laužikė, K.; Pukas, T.; Samuolienė, G. Effect of light intensity on the growth and antioxidant activity of sweet basil and lettuce. Plants 2022, 11, 1709. [Google Scholar] [CrossRef]
- Elkins, C.; van Iersel, M. Longer photoperiods with the same daily light integral increase daily electron transport through photosystem II in lettuce. Plants 2020, 9, 1172. [Google Scholar] [CrossRef] [PubMed]
- Shibaeva, T.G.; Sherudilo, E.G.; Rubaeva, A.A.; Titov, A.F. Continuous LED lighting enhances yield and nutritional value of four genotypes of Brassicaceae microgreens. Plants 2022, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Yanga, Q.C.; Liu, W.K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. J. Sci. Food Agric. 2014, 95, 869–877. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Fang, Y.; Huang, M.; Chen, X.; Zhang, Y.; Zhao, H. The effects of photoperiod and nutrition on duckweed (Landoltia punctata) growth and starch accumulation. Ind. Crops Prod. 2018, 115, 243–249. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Landolfo, M.; Pistillo, A.; Crepaldi, A.; Nicola, S.; Fernández, J.A.; Marcelis, L.F.M.; Gianquinto, G. Optimal photoperiod for indoor cultivation of leafy vegetables and herbs. Eur. J. Hortic. Sci. 2020, 85, 329–338. [Google Scholar] [CrossRef]
- Runkle, E. Technically Speaking: The Shade-Avoidance Response. Available online: https://gpnmag.com/article/technically-speaking-the-shade-avoidance-response/ (accessed on 14 February 2023).
- Wang, H.; Shang, Q. The combined effects of light intensity, temperature, and water potential on wall deposition in regulating hypocotyl elongation of Brassica rapa. PeerJ 2020, 8, e9106. [Google Scholar] [CrossRef]
- Hernández-Adasme, C.; Silva, H.; Escalona, V.H. In-door germination and seedling growth of green and red lettuce under LED-light spectrum and subsequent effect on baby leaf lettuce. Ital. J. Agron. 2022, 17, 1982. [Google Scholar] [CrossRef]
- Ying, Q.; Kong, Y.; Zheng, Y. Applying blue light alone, or in combination with far-red light, during nighttime increases elongation without compromising yield and quality of indoor-grown microgreens. HortScience 2020, 55, 876–881. [Google Scholar] [CrossRef]
- Miguel, M.G. Betalains in some species of the Amaranthaceae family: A review. Antioxidants 2018, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, S.; do Nascimento, H.; Sampaio, K.; de Souza, E. A review on bioactive compounds of beet (Beta vulgaris L. subsp. vulgaris) with special emphasis on their beneficial effects on gut microbiota and gastrointestinal health. Crit. Rev. Food Sci. Nutr. 2020, 61, 2022–2033. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Kugler, F.; Carle, R. Betalain pigments and color quality. In Color Quality of Fresh and Processed Foods; Culver, C.A., Wrolstad, R.E., Eds.; American Chemical Society: Washington, DC, USA, 2008; pp. 82–101. [Google Scholar] [CrossRef]
- Vogt, T.; Ibdah, M.; Schmidt, J.; Wray, V.; Nimtz, M.; Strack, D. Light-induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochemistry 1999, 52, 583–592. [Google Scholar] [CrossRef]
- Ibdah, M.; Krins, A.; Seidlitz, H.K.; Heller, W.; Strack, D.; Vogts, T. Spectral dependence of flavonol and betacyanins accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ. 2002, 25, 1145–1154. [Google Scholar] [CrossRef]
- El-Ashry, A.E.; Mohamed, E.-B.; Ahmed, G. Effect of light quality on betalain content of red beet (Beta vulgaris L.) cultured in vitro. Egypt. Pharm. J. 2020, 19, 143–148. [Google Scholar] [CrossRef]
- Girod, P.A.; Zryd, J.P. Clonal variability and light induction of betalain synthesis in red beet cell cultures. Plant Cell Rep. 1987, 6, 27–30. [Google Scholar] [CrossRef]
- Zhao, S.Z.; Sun, H.Z.; Chen, M.; Wang, B.S. Light-regulated betacyanin accumulation in euhalophyte Suaeda salsa calli. Plant. Cell Tiss. Organ Cult. 2010, 102, 99–107. [Google Scholar] [CrossRef]
- Imamura, T.; Takagi, H.; Miyazato, A.; Ohki, S.; Mizukoshi, H.; Mori, M. Isolation and characterization of the betalain biosynthesis gene involved in hypocotyl pigmentation of the allotetraploid Chenopodium quinoa. Biochem. Biophys. Res. Commun. 2018, 496, 280–286. [Google Scholar] [CrossRef]
- Tossi, V.E.; Martínez, L.; Pitta Álvarez, S.I.; Causin, H.F. Casting light on the pathway to betalain biosynthesis: A review. Environ. Exp. Bot. 2021, 186, 104464. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In Antioxidants; Shalaby, E., Ed.; IntechOpen Ltd.: London, UK, 2019; pp. 1–28. [Google Scholar]
- Samuolienė, G.; Brazaitytė, A.; Jankauskiene, J.; Virsilė, A.; Sirtautas, R.; Novikovas, A.; Sakalauskien, S.; Sakalauskait, J.; Duchovskis, P. LED irradiance level affects growth and nutritional quality of Brassica microgreens. Cent. Eur. J. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Flores, M.; Urrestarazu, M.; Amorós, A.; Escalona, V. High intensity and red enriched LED lights increased growth of lettuce and endive. Ital. J. Agron. 2022, 17, 1915. [Google Scholar] [CrossRef]
- Priti, S.S.; Kukreja, B.; Mishra, G.P.; Dikshit, H.K.; Singh, A.; Aski1, M.; Kumar, A.; Taak, Y.; Stobdan, T.; Das, S.; et al. Yield optimization, microbial load analysis, and sensory evaluation of mungbean (Vigna radiata L.), lentil (Lens culinaris subsp. culinaris), and Indian mustard (Brassica juncea L.) microgreens grown under greenhouse conditions. PLoS ONE 2022, 17, e0268085. [Google Scholar] [CrossRef]
- D’Souza, C.; Yuk, H.G.; Khoo, G.H.; Zhou, W. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Compr. Rev. Food Sci. Food Saf. 2015, 14, 719–740. [Google Scholar] [CrossRef]
- Reglamento Sanitario de los Alimentos (RSA). Available online: https://www.minsal.cl/sites/default/files/files/DECRETO_977_96%20actualizado%20a%20Enero%202015(1).pdf (accessed on 15 January 2023).
- Chandra, D.; Kim, J.; Kim, Y. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic. Environ. Biotechnol. 2012, 53, 32–40. [Google Scholar] [CrossRef]
- Fernandez, M.; Jagus, R.; Agüero, M. Evaluation and characterization of nutritional, microbiological and sensory properties of beet greens. Act. Sci. Nutr. Health 2017, 1, 37–45. [Google Scholar]
- Kowalska, B.; Szczech, M. Differences in microbiological quality of leafy green vegetables. Ann Agric. Environ. Med. 2022, 29, 238–245. [Google Scholar] [CrossRef]
- Kroupitski, Y.; Golberg, D.; Belausov, E.; Pinto, R.; Swartzberg, D.; Granot, D.; Sela, S. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl. Environ. Microbiol. 2009, 75, 6076–6086. [Google Scholar] [CrossRef] [Green Version]
- Kozai, T.; Niu, G. Role of the plant factory with artificial lighting (PFAL) in urban areas. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Kozai, T., Niu, N., Takagaki, M., Eds.; Academic Press Ltd.: Cambridge, MA, USA, 2020; pp. 7–34. ISBN 9780128166918. [Google Scholar]
- Cui, J.; Song, S.; Yu, J.; Liu, H. Effect of daily light integral on cucumber plug seedlings in artificial light plant factory. Horticulturae 2021, 7, 139. [Google Scholar] [CrossRef]
- Lanoue, J.; St. Louis, S.; Little, C.; Hao, X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. Front. Plant Sci. 2022, 13, 983222. [Google Scholar] [CrossRef]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F.M. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
Light Treatment | Intensity | Photoperiod | DLI |
---|---|---|---|
µmol m−2 s−1 | h | mol m−2 d−1 | |
1 L12 | 120 | 12 | 5.2 |
L16 | 120 | 16 | 6.9 |
M12 | 160 | 12 | 6.9 |
M16 | 160 | 16 | 9.2 |
H12 | 220 | 12 | 9.5 |
H16 | 220 | 16 | 12.7 |
Factor | Yield | Dry Matter | Height | Cotyledon Area | Color | ||
---|---|---|---|---|---|---|---|
g m−2 | % | cm | cm2 | L* | C* | h | |
Intensity (I) | * | ns 1 | ns | ns | * | ns | ns |
Low (L) | 459.74 a 2 | 8.00 | 3.98 | 0.52 | 37.17 a | 25.98 | 83.25 |
Medium (M) | 460.50 a | 8.94 | 3.84 | 0.51 | 33.76 ab | 24.28 | 74.40 |
High (H) | 358.41 b | 8.96 | 3.67 | 0.49 | 30.21 b | 26.34 | 88.53 |
Photoperiod (P) | * | * | * | ns | ns | ns | ns |
12 | 482.73 a | 6.71 b | 4.33 a | 0.53 | 36.54 | 27.31 | 84.45 |
16 | 369.70 b | 10.55 a | 3.33 b | 0.49 | 30.88 | 23.76 | 79.67 |
Interaction (IxP) | ns | ns | ns | ns | ns | ns | * |
3 L12 | 471.24 | 7.36 | 4.16 | 0.53 | 37.12 | 26.65 | 87.89 a |
L16 | 414.72 | 9.28 | 3.66 | 0.51 | 34.03 | 24.87 | 78.60 ab |
M12 | 471.62 | 7.83 | 4.09 | 0.52 | 35.15 | 25.80 | 87.83 a |
M16 | 415.10 | 9.75 | 3.59 | 0.50 | 32.32 | 24.02 | 60.96 b |
H12 | 420.57 | 7.84 | 4.00 | 0.51 | 33.38 | 26.83 | 77.61 ab |
H16 | 364.10 | 9.76 | 3.50 | 0.49 | 30.55 | 25.05 | 99.44 a |
Total Phenolic Content | Total Betalains | Betacyanins | Betaxantins | FRAP | DPPH | |
---|---|---|---|---|---|---|
Factor | mg GAE g−1 FW | mg g−1 FW | mg g−1 FW | mg g−1 FW | mg TE g−1 FW | % |
Intensity (I) | ns 1 | * | * | ns | ns | ns |
Low (L) | 10.16 | 0.53 a 2 | 0.12 a | 0.41 | 35.07 | 35.13 |
Medium (M) | 11.27 | 0.50 ab | 0.11 ab | 0.39 | 38.58 | 34.05 |
High (H) | 11.80 | 0.34 b | 0.08 b | 0.27 | 39.96 | 36.94 |
Photoperiod (P) | * | * | * | * | * | ns |
12 | 8.99 b | 0.31 b | 0.07 b | 0.24 b | 32.37 b | 37.13 |
16 | 13.16 a | 0.61 a | 0.13 a | 0.48 a | 43.37 a | 33.61 |
Interaction (IxP) | ns | ns | ns | ns | ns | ns |
3 L12 | 9.58 | 0.42 | 0.10 | 0.33 | 33.72 | 36.13 |
L16 | 11.66 | 0.57 | 0.13 | 0.45 | 39.22 | 34.37 |
M12 | 10.13 | 0.41 | 0.09 | 0.32 | 35.48 | 35.59 |
M16 | 12.22 | 0.56 | 0.12 | 0.44 | 40.98 | 33.83 |
H12 | 10.40 | 0.33 | 0.08 | 0.26 | 36.17 | 37.04 |
H16 | 12.48 | 0.48 | 0.11 | 0.38 | 41.67 | 35.28 |
Mesophiles | Psychrophiles | Enterobacteriaceae | |
---|---|---|---|
Factor | log CFU g−1 | log CFU g−1 | log CFU g−1 |
Intensity (I) | * | ns 1 | * |
Low (L) | 3.67 b 2 | 1.45 | 5.45 a |
Medium (M) | 4.92 a | <1 | 4.53 b |
High (H) | 5.07 a | <1 | 5.08 a |
Photoperiod (P) | ns | ns | ns |
12 | 4.41 | <1 | 4.69 |
16 | 4.69 | 2.02 | 5.35 |
Interaction (IxP) | ns | ns | * |
3 L12 | 4.04 | <1 | 5.52 a |
L16 | 4.18 | 2.90 | 5.38 ac |
M12 | 4.67 | <1 | 3.94 b |
M16 | 4.81 | 1.35 | 5.12 ac |
H12 | 4.74 | <1 | 4.62 bc |
H16 | 4.88 | 1.81 | 5.54 a |
EUE | WUE | |
---|---|---|
Factor | g FW kW−1 m−2 | g FW L−1 m−2 |
Intensity (I) | ns 1 | * |
Low (L) | 4.56 | 33.56 a 2 |
Medium (M) | 4.56 | 33.59 a |
High (H) | 4.04 | 29.72 b |
Photoperiod (P) | * | * |
12 | 4.97 | 36.60 a |
16 | 3.80 | 28.00 b |
Interaction (IxP) | ns | ns |
3 L12 | 4.85 | 35.70 |
L16 | 4.27 | 31.42 |
M12 | 4.85 | 35.73 |
M16 | 4.27 | 31.45 |
H12 | 4.33 | 31.86 |
H16 | 3.75 | 27.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Adasme, C.; Palma-Dias, R.; Escalona, V.H. The Effect of Light Intensity and Photoperiod on the Yield and Antioxidant Activity of Beet Microgreens Produced in an Indoor System. Horticulturae 2023, 9, 493. https://doi.org/10.3390/horticulturae9040493
Hernández-Adasme C, Palma-Dias R, Escalona VH. The Effect of Light Intensity and Photoperiod on the Yield and Antioxidant Activity of Beet Microgreens Produced in an Indoor System. Horticulturae. 2023; 9(4):493. https://doi.org/10.3390/horticulturae9040493
Chicago/Turabian StyleHernández-Adasme, Cristian, Rayen Palma-Dias, and Víctor Hugo Escalona. 2023. "The Effect of Light Intensity and Photoperiod on the Yield and Antioxidant Activity of Beet Microgreens Produced in an Indoor System" Horticulturae 9, no. 4: 493. https://doi.org/10.3390/horticulturae9040493
APA StyleHernández-Adasme, C., Palma-Dias, R., & Escalona, V. H. (2023). The Effect of Light Intensity and Photoperiod on the Yield and Antioxidant Activity of Beet Microgreens Produced in an Indoor System. Horticulturae, 9(4), 493. https://doi.org/10.3390/horticulturae9040493