Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment #1: Evaluation of Tissue Macronutrients for Hydroponic Arugula and Basil
2.2. Experiment #2: Hydroponic Replenishment Solution Effects with Arugula and Basil
3. Results and Discussion
3.1. Experiment #1: Evaluation of Tissue Macronutrients for Hydroponic Arugula and Basil
3.2. Experiment #2: Hydroponic Replenishment Solution Effects with Arugula and Basil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bugbee, B. Nutrient management in recirculating hydroponic culture. Acta Hortic. 2004, 648, 99–112. [Google Scholar] [CrossRef]
- Houston, L.L.; Dickson, R.W.; Machesney, L.M. Fine-Tuning Nutrient Replenishment in Hydroponics. eGRO Edible Alert. 2021. Available online: https://www.e-gro.org/pdf/E611.pdf (accessed on 24 March 2023).
- Singh, H.; Bruce, D. Electrical conductivity and pH guide for hydroponics. In Oklahoma Cooperative Extension Fact Sheets, HLA-6722; Oklahoma State University, Division of Agricultural Sciences and Natural Resources: Stillwater, OK, USA, 2016; Volume 5. [Google Scholar]
- Langenfeld, N.J.; Pinto, D.F.; Faust, J.E.; Heins, R.; Bugbee, B. Principles of nutrient and water management for indoor agriculture. Sustainability 2022, 14, 10204. [Google Scholar] [CrossRef]
- Pardossi, A.; Carmassi, C.; Incrocci, L.; Maggina, R.; Massa, D. Fertigation and Substrate Management in Closed Soilless Culture; Dipartimento di Biologia delle Piante Agrarie, Università di Pisa: Pisa, Italy, 2011. [Google Scholar]
- Solis-Toapanta, E.; Fisher, P.R.; Gómez, C. Growth rate and nutrient uptake of basil in small-scale hydroponics. HortScience 2020, 55, 507–514. [Google Scholar] [CrossRef]
- Solis-Toapanta, E.; Fisher, P.R.; Gómez, C. Effects of Nutrient Solution Management and Environment on Tomato in Small-scale Hydroponics. HortTechnology 2020, 30, 697–705. [Google Scholar] [CrossRef]
- Houston, L.L. Nutrient Uptake and Management Strategies in Recirculating Hydroponic Systems. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2022. [Google Scholar]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Walters, K.J.; Behe, B.K.; Currey, C.J.; Lopez, R.G. Historical, current, and future perspectives for controlled environment hydroponic food crop production in the United States. HortScience 2020, 55, 758–767. [Google Scholar] [CrossRef]
- Domingues, D.S.; Takahashi, H.W.; Camara, C.A.; Nixdorf, S.L. Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Comput. Electron. Agric. 2012, 84, 53–61. [Google Scholar] [CrossRef]
- Miller, A.; Adhikari, R.; Nemali, K. Recycling Nutrient Solution Can Reduce Growth Due to Nutrient Deficiencies in Hydroponic Production. Front. Plant Sci. 2020, 11, 607–643. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production, a Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 6th ed.; Woodbridge Press Publishing: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Walters, K.J.; Currey, C.J. Effects of nutrient solution concentration and daily light integral on growth and nutrient concentration of several basil species in hydroponic production. HortScience 2018, 53, 1319–1325. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Son, J.E.; Kim, H.J.; Ahn, T.I. Hydroponic systems. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 213–221. [Google Scholar]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B.; Barker, A.V. Plant Analysis Handbook IV; Micro-Macro Publishing: Athens, Greece, 2014. [Google Scholar]
- Stapleton, S.C.; Hochmuth, R.C. Greenhouse production of several fresh-cut herbs in vertical hydroponic systems in north central Florida. In Proceedings of the Annual Meeting of the Florida State Horticultural Society, Stuart, FL, USA, 10–12 June 2001. [Google Scholar]
- Bates, J. Crop-Specific Sensitivity to Nutrient Availability in Low-pH Hydroponic Nutrient Solution. Doctoral Dissertation, The Ohio State University, Columbus, OH, USA, 2022. [Google Scholar]
- Yang, T.; Samarakoon, U.; Altland, J.; Ling, P. Photosynthesis, biomass production, nutritional quality, and flavor-related phytochemical properties of hydroponic-grown arugula (Eruca sativa Mill.) ‘standard’ under different electrical conductivities of nutrient solution. Agronomy 2021, 11, 1340. [Google Scholar] [CrossRef]
- Walters, K.J.; Currey, C.J. Hydroponic greenhouse basil production: Comparing systems and cultivars. HortTechnology 2015, 25, 645–650. [Google Scholar] [CrossRef]
- Doty, S.; Dickson, R.W.; Evans, M. Evaluation of a novel shallow aggregate Ebb-and-flood culture system and transplant size effects on hydroponic basil yield. HortTechnology 2020, 30, 585–592. [Google Scholar] [CrossRef]
- Hall, M.K.D.; Jobling, J.J.; Rogers, G.S. Some perspectives on rocket as a vegetable crop: A review. Veg. Crops Res. Bull. 2012, 76, 21–41. [Google Scholar] [CrossRef]
- Bonasia, A.; Lazzizera, C.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant. Sci. 2017, 8, 300. [Google Scholar] [CrossRef]
- Bell, L.; Methven, L.; Signore, A.; Oruna-Concha, M.J.; Wagstaff, C. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chem. 2016, 218, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, P.; Elia, A.; Serio, F. Effect of solution nitrogen concentration on yield, leaf element content, and water and nitrogen use efficiency of three hydroponically-grown rocket salad genotypes. J. Plant Nutr. 2006, 25, 245–258. [Google Scholar] [CrossRef]
- Dickson, R.W.; Fisher, P.R. Quantifying the acidic and basic effects of vegetable and herb species in peat-based substrate and hydroponics. HortScience 2019, 54, 1093–1100. [Google Scholar] [CrossRef]
- Mattson, N.; Merrill, T. Symptoms of Common Nutrient Deficiencies in Hydroponic Arugula. eGRO Research Updates. 2017. Available online: http://e-gro.org/pdf/2017-2.pdf (accessed on 28 June 2021).
- Mattson, N. Magnesium Deficiency of Hydroponic and Container Grown Basil. eGRO Edible Alert. 2018. Available online: https://www.e-gro.org/pdf/E303.pdf (accessed on 24 March 2023).
- Dickson, R.W. Magnesium or Micronutrient Deficiency in Basil? Don’t Be Fooled! eGRO Edible Alert. 2019. Available online: https://www.e-gro.org/pdf/E401.pdf (accessed on 24 March 2023).
- Mattson, N.S.; Peters, C. A recipe for hydroponic success. Inside Grow. 2014, 1, 16–19. [Google Scholar]
- Purcell, L.C.; King, C.A. Total nitrogen determination in plant material by persulfate digestion. Agron. J. 1996, 88, 111–113. [Google Scholar] [CrossRef]
- Bailey, D.A. Alkalinity, pH and acidification. In Water, Media, and Nutrition for Greenhouse Crops; Reed, D.W., Ed.; Ball Publishing: Batavia, IL, USA, 1996; pp. 69–91. [Google Scholar]
- Carmassi, G.; Incrocci, L.; Maggini, R.; Malorig, F.; Tognoni, F.; Pardossi, A. Modeling salinity build-up in recirculating nutrient solution culture. J. Plant Nutri. 2005, 28, 431–445. [Google Scholar] [CrossRef]
- Hosseini, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; van de Vlasakker, P.C.; Farhangi, M. Nutrient use in vertical farming: Optimal electrical conductivity of nutrient solution for growth of lettuce and basil in hydroponic cultivation. Horticulturae 2021, 7, 283. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Ho, L.C. Blossom-end rot in relation to growth rate and calcium content in fruits of sweet pepper (Capsicum annuum L.). J. Experi. Bot. 1999, 50, 357–363. [Google Scholar] [CrossRef]
- Dickson, R.W.; Fisher, P.R.; Argo, W.R.; Jacques, D.J.; Sartain, J.B.; Trenholm, L.E.; Yeager, T.H. Solution ammonium:nitrate ratio and cation/anion uptake affect acidity or basicity with floriculture species in hydroponics. Sci. Hortic. 2016, 200, 36–44. [Google Scholar] [CrossRef]
N | P | K | Ca | Mg | S | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arugula | Basil | Arugula | Basil | Arugula | Basil | Arugula | Basil | Arugula | Basil | Arugula | Basil | |
Harvest Day | % | |||||||||||
14 | 5.57 a | 3.72 d | 0.69 a | 0.76 c | 5.69 a | 5.90 c | 2.90 a | 2.13 b | 0.51 b | 0.50 ab | 1.02 ab | 0.28 b |
18 | 5.13 a | 4.86 b | 0.61 ab | 1.18 a | 4.62 a | 5.89 c | 2.81 a | 2.54 a | 0.54 ab | 0.54 ab | 0.84 c | 0.37 a |
21 | 5.11 a | 5.31 a | 0.65 ab | 1.09 ab | 4.70 a | 6.62 b | 2.97 a | 2.32 ab | 0.62 ab | 0.55 a | 0.94 abc | 0.34 ab |
28 | 5.83 a | 5.68 a | 0.75 a | 1.19 a | 5.75 a | 7.10 a | 3.06 a | 2.20 b | 0.65 a | 0.52 ab | 1.12 a | 0.40 a |
42 | 3.14 b | 4.34 c | 0.47 b | 0.88 bc | 3.28 b | 6.50 b | 2.11 b | 1.64 c | 0.57 ab | 0.47 b | 0.95 abc | 0.37 a |
Std. Error | ±0.59 | ±0.10 | ±0.06 | ±0.10 | ±0.55 | ±0.11 | ±0.21 | ±0.08 | ±0.03 | ±0.01 | ±0.04 | ±0.02 |
Arugula | 4.95 a | 0.64 b | 4.81 b | 2.77 a | 0.57 a | 0.98 a | ||||||
Basil | 4.78 a | 1.02 a | 6.40 a | 2.16 b | 0.51 b | 0.35 b | ||||||
Std. Error | ±0.12 | ±0.07 | ±0.31 | ±0.11 | ±0.01 | ±0.13 | ||||||
Species | NS | *** | *** | *** | *** | *** | ||||||
Harvest Day | *** | *** | *** | *** | ** | ** | ||||||
Species*Day | *** | ** | *** | ** | * | ** |
Replenishment Solution | EC (mS∙cm−1) | Total N | NO3-N | NH4-N | P | K | Ca | Mg | SO4-S |
---|---|---|---|---|---|---|---|---|---|
Standard x | 1.54 | 150 | 141 | 9 | 38 | 157 | 140 | 46 | 54 |
Arugula y | 0.86 | 150 | 146 | 4 | 19 | 141 | 67 | 16 | 35 |
Basil | 1.00 | 150 | 146 | 4 | 31 | 194 | 67 | 17 | 35 |
Nutrient ratios in replenishment solution | N:P | N:K | N:Ca | N:Mg | N:S | ||||
Standard | 3.9 | 1.0 | 1.1 | 3.3 | 2.8 | ||||
Arugula | 7.8 | 1.1 | 2.2 | 9.4 | 4.3 | ||||
Basil | 4.8 | 0.8 | 2.2 | 8.7 | 4.3 | ||||
Nutrient ratios in plant tissues z | N:P | N:K | N:Ca | N:Mg | N:S | ||||
Arugula | 7.8 | 1.0 | 1.8 | 8.6 | 5.1 | ||||
Basil | 4.7 | 0.7 | 2.2 | 9.4 | 13.6 |
Replenishment Solution | Replenished Solution (L) | Macronutrients Supplied in Replenishment Solution Per Plant (in mg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Total N | NO3-N | NH4-N | P | K | Ca | Mg | SO4-S | ||
Arugula | |||||||||
Standard | 7.0 | 913 a | 859 a | 54 a | 232 a | 956 a | 851 a | 279 a | 326 a |
Species-specific | 7.7 | 1004 a | 977 a | 28 b | 129 b | 944 a | 451 b | 107 b | 237 b |
NS | NS | NS | ** | *** | NS | *** | *** | *** | |
Std. Error | ±0.2 | ±34 | ±36 | ±4 | ±18 | ±12 | ±28 | ±17 | ±11 |
Basil | |||||||||
Standard | 5.5 | 717 a | 676 a | 42 a | 183 a | 751 a | 669 a | 220 a | 256 a |
Species-specific | 4.5 | 587 a | 570 a | 17 b | 122 b | 761 a | 264 b | 68 b | 138 b |
NS | NS | NS | ** | * | NS | *** | *** | *** | |
Std. Error | ±0.2 | ±30 | ±28 | ±4 | ±11 | ±8 | ±26 | ±16 | ±15 |
Replenishment Solution | EC (mS∙cm−1) | NO3-N | P | K | Ca | Mg | SO4-S |
---|---|---|---|---|---|---|---|
Arugula | |||||||
Standard | 2.75 a | 1.9 | 41.2 a | 10.4 a | 258.3 a | 219.3 a | 98.7 a |
Species-specific | 0.69 b | N/A | 41.9 a | 52.2 a | 31.0 b | 38.3 b | 4.5 b |
*** | NS | NS | *** | *** | *** | ||
Std. Error | ±0.28 | ±4.1 | ±39.3 | ±6.2 | ±5.4 | ±0.8 | |
Basil | |||||||
Standard | 2.71 a | 105.5 a | 27.7 a | 1.4 a | 426.7 a | 144.3 a | 202.3 a |
Species-specific | 1.19 b | 58.5 b | 16.7 a | 49.9 a | 97.8 b | 19.7 b | 42.1 b |
*** | * | NS | NS | *** | *** | *** | |
Std. Error | ±0.18 | ±6.6 | ±2.8 | ±41.9 | ±17.0 | ±3.2 | ±4.9 |
Replenishment Solution | EC (mS∙cm−1) | Total N | NO3-N | NH4-N | P | K | Ca | Mg | SO4-S |
---|---|---|---|---|---|---|---|---|---|
Arugula | |||||||||
Standard | 1.21 | −148.1 | −139.1 | −9.0 | 3.2 | −146.6 | 118.3 | 173.3 | 44.7 |
*** | *** | *** | *** | NS | * | *** | *** | *** | |
Std. Error | ±0.14 | ±1.0 | ±4.5 | ±0.01 | ±2.4 | ±35.5 | ±6.9 | ±18.2 | ±4.2 |
Species-specific | −0.85 | −150.0 | −141.0 | −9.0 | 3.9 | −104.8 | −109.0 | −7.7 | −49.5 |
** | *** | *** | *** | NS | * | *** | NS | *** | |
Std. Error | ±0.12 | ±1.2 | ±2.9 | ±0.01 | ±2.2 | ±42.6 | ±12.1 | ±6.8 | ±5.2 |
Basil | |||||||||
Standard | 1.17 | −44.5 | −35.5 | −9.0 | −10.3 | −155.6 | 286.7 | 98.3 | 148.3 |
*** | * | * | *** | * | ** | *** | *** | *** | |
Std. Error | ±0.14 | ±17.0 | ±8.9 | ±0.01 | ±2.2 | ±34.1 | ±25.2 | ±58.9 | ±13.0 |
Species-specific | −0.35 | −91.5 | −82.5 | −9.0 | −21.3 | −107.1 | −42.2 | −26.3 | −11.9 |
NS | *** | *** | *** | ** | * | * | ** | NS | |
Std. Error | ±0.15 | ±10.1 | ±8.6 | ±0.02 | ±4.1 | ±31.2 | ±15.3 | ±7.5 | ±5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houston, L.L.; Dickson, R.W.; Bertucci, M.B.; Roberts, T.L. Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.). Horticulturae 2023, 9, 486. https://doi.org/10.3390/horticulturae9040486
Houston LL, Dickson RW, Bertucci MB, Roberts TL. Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.). Horticulturae. 2023; 9(4):486. https://doi.org/10.3390/horticulturae9040486
Chicago/Turabian StyleHouston, Lauren L., Ryan W. Dickson, Matthew B. Bertucci, and Trenton L. Roberts. 2023. "Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.)" Horticulturae 9, no. 4: 486. https://doi.org/10.3390/horticulturae9040486
APA StyleHouston, L. L., Dickson, R. W., Bertucci, M. B., & Roberts, T. L. (2023). Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.). Horticulturae, 9(4), 486. https://doi.org/10.3390/horticulturae9040486