Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment #1: Evaluation of Tissue Macronutrients for Hydroponic Arugula and Basil
2.2. Experiment #2: Hydroponic Replenishment Solution Effects with Arugula and Basil
3. Results and Discussion
3.1. Experiment #1: Evaluation of Tissue Macronutrients for Hydroponic Arugula and Basil
3.2. Experiment #2: Hydroponic Replenishment Solution Effects with Arugula and Basil
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bugbee, B. Nutrient management in recirculating hydroponic culture. Acta Hortic. 2004, 648, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Houston, L.L.; Dickson, R.W.; Machesney, L.M. Fine-Tuning Nutrient Replenishment in Hydroponics. eGRO Edible Alert. 2021. Available online: https://www.e-gro.org/pdf/E611.pdf (accessed on 24 March 2023).
- Singh, H.; Bruce, D. Electrical conductivity and pH guide for hydroponics. In Oklahoma Cooperative Extension Fact Sheets, HLA-6722; Oklahoma State University, Division of Agricultural Sciences and Natural Resources: Stillwater, OK, USA, 2016; Volume 5. [Google Scholar]
- Langenfeld, N.J.; Pinto, D.F.; Faust, J.E.; Heins, R.; Bugbee, B. Principles of nutrient and water management for indoor agriculture. Sustainability 2022, 14, 10204. [Google Scholar] [CrossRef]
- Pardossi, A.; Carmassi, C.; Incrocci, L.; Maggina, R.; Massa, D. Fertigation and Substrate Management in Closed Soilless Culture; Dipartimento di Biologia delle Piante Agrarie, Università di Pisa: Pisa, Italy, 2011. [Google Scholar]
- Solis-Toapanta, E.; Fisher, P.R.; Gómez, C. Growth rate and nutrient uptake of basil in small-scale hydroponics. HortScience 2020, 55, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Solis-Toapanta, E.; Fisher, P.R.; Gómez, C. Effects of Nutrient Solution Management and Environment on Tomato in Small-scale Hydroponics. HortTechnology 2020, 30, 697–705. [Google Scholar] [CrossRef]
- Houston, L.L. Nutrient Uptake and Management Strategies in Recirculating Hydroponic Systems. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2022. [Google Scholar]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Walters, K.J.; Behe, B.K.; Currey, C.J.; Lopez, R.G. Historical, current, and future perspectives for controlled environment hydroponic food crop production in the United States. HortScience 2020, 55, 758–767. [Google Scholar] [CrossRef]
- Domingues, D.S.; Takahashi, H.W.; Camara, C.A.; Nixdorf, S.L. Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Comput. Electron. Agric. 2012, 84, 53–61. [Google Scholar] [CrossRef]
- Miller, A.; Adhikari, R.; Nemali, K. Recycling Nutrient Solution Can Reduce Growth Due to Nutrient Deficiencies in Hydroponic Production. Front. Plant Sci. 2020, 11, 607–643. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production, a Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 6th ed.; Woodbridge Press Publishing: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Walters, K.J.; Currey, C.J. Effects of nutrient solution concentration and daily light integral on growth and nutrient concentration of several basil species in hydroponic production. HortScience 2018, 53, 1319–1325. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Son, J.E.; Kim, H.J.; Ahn, T.I. Hydroponic systems. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 213–221. [Google Scholar]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B.; Barker, A.V. Plant Analysis Handbook IV; Micro-Macro Publishing: Athens, Greece, 2014. [Google Scholar]
- Stapleton, S.C.; Hochmuth, R.C. Greenhouse production of several fresh-cut herbs in vertical hydroponic systems in north central Florida. In Proceedings of the Annual Meeting of the Florida State Horticultural Society, Stuart, FL, USA, 10–12 June 2001. [Google Scholar]
- Bates, J. Crop-Specific Sensitivity to Nutrient Availability in Low-pH Hydroponic Nutrient Solution. Doctoral Dissertation, The Ohio State University, Columbus, OH, USA, 2022. [Google Scholar]
- Yang, T.; Samarakoon, U.; Altland, J.; Ling, P. Photosynthesis, biomass production, nutritional quality, and flavor-related phytochemical properties of hydroponic-grown arugula (Eruca sativa Mill.) ‘standard’ under different electrical conductivities of nutrient solution. Agronomy 2021, 11, 1340. [Google Scholar] [CrossRef]
- Walters, K.J.; Currey, C.J. Hydroponic greenhouse basil production: Comparing systems and cultivars. HortTechnology 2015, 25, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Doty, S.; Dickson, R.W.; Evans, M. Evaluation of a novel shallow aggregate Ebb-and-flood culture system and transplant size effects on hydroponic basil yield. HortTechnology 2020, 30, 585–592. [Google Scholar] [CrossRef]
- Hall, M.K.D.; Jobling, J.J.; Rogers, G.S. Some perspectives on rocket as a vegetable crop: A review. Veg. Crops Res. Bull. 2012, 76, 21–41. [Google Scholar] [CrossRef]
- Bonasia, A.; Lazzizera, C.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant. Sci. 2017, 8, 300. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.; Methven, L.; Signore, A.; Oruna-Concha, M.J.; Wagstaff, C. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chem. 2016, 218, 181–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamaria, P.; Elia, A.; Serio, F. Effect of solution nitrogen concentration on yield, leaf element content, and water and nitrogen use efficiency of three hydroponically-grown rocket salad genotypes. J. Plant Nutr. 2006, 25, 245–258. [Google Scholar] [CrossRef]
- Dickson, R.W.; Fisher, P.R. Quantifying the acidic and basic effects of vegetable and herb species in peat-based substrate and hydroponics. HortScience 2019, 54, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Mattson, N.; Merrill, T. Symptoms of Common Nutrient Deficiencies in Hydroponic Arugula. eGRO Research Updates. 2017. Available online: http://e-gro.org/pdf/2017-2.pdf (accessed on 28 June 2021).
- Mattson, N. Magnesium Deficiency of Hydroponic and Container Grown Basil. eGRO Edible Alert. 2018. Available online: https://www.e-gro.org/pdf/E303.pdf (accessed on 24 March 2023).
- Dickson, R.W. Magnesium or Micronutrient Deficiency in Basil? Don’t Be Fooled! eGRO Edible Alert. 2019. Available online: https://www.e-gro.org/pdf/E401.pdf (accessed on 24 March 2023).
- Mattson, N.S.; Peters, C. A recipe for hydroponic success. Inside Grow. 2014, 1, 16–19. [Google Scholar]
- Purcell, L.C.; King, C.A. Total nitrogen determination in plant material by persulfate digestion. Agron. J. 1996, 88, 111–113. [Google Scholar] [CrossRef]
- Bailey, D.A. Alkalinity, pH and acidification. In Water, Media, and Nutrition for Greenhouse Crops; Reed, D.W., Ed.; Ball Publishing: Batavia, IL, USA, 1996; pp. 69–91. [Google Scholar]
- Carmassi, G.; Incrocci, L.; Maggini, R.; Malorig, F.; Tognoni, F.; Pardossi, A. Modeling salinity build-up in recirculating nutrient solution culture. J. Plant Nutri. 2005, 28, 431–445. [Google Scholar] [CrossRef]
- Hosseini, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; van de Vlasakker, P.C.; Farhangi, M. Nutrient use in vertical farming: Optimal electrical conductivity of nutrient solution for growth of lettuce and basil in hydroponic cultivation. Horticulturae 2021, 7, 283. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Ho, L.C. Blossom-end rot in relation to growth rate and calcium content in fruits of sweet pepper (Capsicum annuum L.). J. Experi. Bot. 1999, 50, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Dickson, R.W.; Fisher, P.R.; Argo, W.R.; Jacques, D.J.; Sartain, J.B.; Trenholm, L.E.; Yeager, T.H. Solution ammonium:nitrate ratio and cation/anion uptake affect acidity or basicity with floriculture species in hydroponics. Sci. Hortic. 2016, 200, 36–44. [Google Scholar] [CrossRef] [Green Version]
N | P | K | Ca | Mg | S | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arugula | Basil | Arugula | Basil | Arugula | Basil | Arugula | Basil | Arugula | Basil | Arugula | Basil | |
Harvest Day | % | |||||||||||
14 | 5.57 a | 3.72 d | 0.69 a | 0.76 c | 5.69 a | 5.90 c | 2.90 a | 2.13 b | 0.51 b | 0.50 ab | 1.02 ab | 0.28 b |
18 | 5.13 a | 4.86 b | 0.61 ab | 1.18 a | 4.62 a | 5.89 c | 2.81 a | 2.54 a | 0.54 ab | 0.54 ab | 0.84 c | 0.37 a |
21 | 5.11 a | 5.31 a | 0.65 ab | 1.09 ab | 4.70 a | 6.62 b | 2.97 a | 2.32 ab | 0.62 ab | 0.55 a | 0.94 abc | 0.34 ab |
28 | 5.83 a | 5.68 a | 0.75 a | 1.19 a | 5.75 a | 7.10 a | 3.06 a | 2.20 b | 0.65 a | 0.52 ab | 1.12 a | 0.40 a |
42 | 3.14 b | 4.34 c | 0.47 b | 0.88 bc | 3.28 b | 6.50 b | 2.11 b | 1.64 c | 0.57 ab | 0.47 b | 0.95 abc | 0.37 a |
Std. Error | ±0.59 | ±0.10 | ±0.06 | ±0.10 | ±0.55 | ±0.11 | ±0.21 | ±0.08 | ±0.03 | ±0.01 | ±0.04 | ±0.02 |
Arugula | 4.95 a | 0.64 b | 4.81 b | 2.77 a | 0.57 a | 0.98 a | ||||||
Basil | 4.78 a | 1.02 a | 6.40 a | 2.16 b | 0.51 b | 0.35 b | ||||||
Std. Error | ±0.12 | ±0.07 | ±0.31 | ±0.11 | ±0.01 | ±0.13 | ||||||
Species | NS | *** | *** | *** | *** | *** | ||||||
Harvest Day | *** | *** | *** | *** | ** | ** | ||||||
Species*Day | *** | ** | *** | ** | * | ** |
Replenishment Solution | EC (mS∙cm−1) | Total N | NO3-N | NH4-N | P | K | Ca | Mg | SO4-S |
---|---|---|---|---|---|---|---|---|---|
Standard x | 1.54 | 150 | 141 | 9 | 38 | 157 | 140 | 46 | 54 |
Arugula y | 0.86 | 150 | 146 | 4 | 19 | 141 | 67 | 16 | 35 |
Basil | 1.00 | 150 | 146 | 4 | 31 | 194 | 67 | 17 | 35 |
Nutrient ratios in replenishment solution | N:P | N:K | N:Ca | N:Mg | N:S | ||||
Standard | 3.9 | 1.0 | 1.1 | 3.3 | 2.8 | ||||
Arugula | 7.8 | 1.1 | 2.2 | 9.4 | 4.3 | ||||
Basil | 4.8 | 0.8 | 2.2 | 8.7 | 4.3 | ||||
Nutrient ratios in plant tissues z | N:P | N:K | N:Ca | N:Mg | N:S | ||||
Arugula | 7.8 | 1.0 | 1.8 | 8.6 | 5.1 | ||||
Basil | 4.7 | 0.7 | 2.2 | 9.4 | 13.6 |
Replenishment Solution | Replenished Solution (L) | Macronutrients Supplied in Replenishment Solution Per Plant (in mg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Total N | NO3-N | NH4-N | P | K | Ca | Mg | SO4-S | ||
Arugula | |||||||||
Standard | 7.0 | 913 a | 859 a | 54 a | 232 a | 956 a | 851 a | 279 a | 326 a |
Species-specific | 7.7 | 1004 a | 977 a | 28 b | 129 b | 944 a | 451 b | 107 b | 237 b |
NS | NS | NS | ** | *** | NS | *** | *** | *** | |
Std. Error | ±0.2 | ±34 | ±36 | ±4 | ±18 | ±12 | ±28 | ±17 | ±11 |
Basil | |||||||||
Standard | 5.5 | 717 a | 676 a | 42 a | 183 a | 751 a | 669 a | 220 a | 256 a |
Species-specific | 4.5 | 587 a | 570 a | 17 b | 122 b | 761 a | 264 b | 68 b | 138 b |
NS | NS | NS | ** | * | NS | *** | *** | *** | |
Std. Error | ±0.2 | ±30 | ±28 | ±4 | ±11 | ±8 | ±26 | ±16 | ±15 |
Replenishment Solution | EC (mS∙cm−1) | NO3-N | P | K | Ca | Mg | SO4-S |
---|---|---|---|---|---|---|---|
Arugula | |||||||
Standard | 2.75 a | 1.9 | 41.2 a | 10.4 a | 258.3 a | 219.3 a | 98.7 a |
Species-specific | 0.69 b | N/A | 41.9 a | 52.2 a | 31.0 b | 38.3 b | 4.5 b |
*** | NS | NS | *** | *** | *** | ||
Std. Error | ±0.28 | ±4.1 | ±39.3 | ±6.2 | ±5.4 | ±0.8 | |
Basil | |||||||
Standard | 2.71 a | 105.5 a | 27.7 a | 1.4 a | 426.7 a | 144.3 a | 202.3 a |
Species-specific | 1.19 b | 58.5 b | 16.7 a | 49.9 a | 97.8 b | 19.7 b | 42.1 b |
*** | * | NS | NS | *** | *** | *** | |
Std. Error | ±0.18 | ±6.6 | ±2.8 | ±41.9 | ±17.0 | ±3.2 | ±4.9 |
Replenishment Solution | EC (mS∙cm−1) | Total N | NO3-N | NH4-N | P | K | Ca | Mg | SO4-S |
---|---|---|---|---|---|---|---|---|---|
Arugula | |||||||||
Standard | 1.21 | −148.1 | −139.1 | −9.0 | 3.2 | −146.6 | 118.3 | 173.3 | 44.7 |
*** | *** | *** | *** | NS | * | *** | *** | *** | |
Std. Error | ±0.14 | ±1.0 | ±4.5 | ±0.01 | ±2.4 | ±35.5 | ±6.9 | ±18.2 | ±4.2 |
Species-specific | −0.85 | −150.0 | −141.0 | −9.0 | 3.9 | −104.8 | −109.0 | −7.7 | −49.5 |
** | *** | *** | *** | NS | * | *** | NS | *** | |
Std. Error | ±0.12 | ±1.2 | ±2.9 | ±0.01 | ±2.2 | ±42.6 | ±12.1 | ±6.8 | ±5.2 |
Basil | |||||||||
Standard | 1.17 | −44.5 | −35.5 | −9.0 | −10.3 | −155.6 | 286.7 | 98.3 | 148.3 |
*** | * | * | *** | * | ** | *** | *** | *** | |
Std. Error | ±0.14 | ±17.0 | ±8.9 | ±0.01 | ±2.2 | ±34.1 | ±25.2 | ±58.9 | ±13.0 |
Species-specific | −0.35 | −91.5 | −82.5 | −9.0 | −21.3 | −107.1 | −42.2 | −26.3 | −11.9 |
NS | *** | *** | *** | ** | * | * | ** | NS | |
Std. Error | ±0.15 | ±10.1 | ±8.6 | ±0.02 | ±4.1 | ±31.2 | ±15.3 | ±7.5 | ±5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houston, L.L.; Dickson, R.W.; Bertucci, M.B.; Roberts, T.L. Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.). Horticulturae 2023, 9, 486. https://doi.org/10.3390/horticulturae9040486
Houston LL, Dickson RW, Bertucci MB, Roberts TL. Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.). Horticulturae. 2023; 9(4):486. https://doi.org/10.3390/horticulturae9040486
Chicago/Turabian StyleHouston, Lauren L., Ryan W. Dickson, Matthew B. Bertucci, and Trenton L. Roberts. 2023. "Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.)" Horticulturae 9, no. 4: 486. https://doi.org/10.3390/horticulturae9040486
APA StyleHouston, L. L., Dickson, R. W., Bertucci, M. B., & Roberts, T. L. (2023). Evaluating Species-Specific Replenishment Solution Effects on Plant Growth and Root Zone Nutrients with Hydroponic Arugula (Eruca sativa L.) and Basil (Ocimum basilicum L.). Horticulturae, 9(4), 486. https://doi.org/10.3390/horticulturae9040486