The LibHLH22 and LibHLH63 from Lilium ‘Siberia’ Can Positively Regulate Volatile Terpenoid Biosynthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. RNA Extraction and Gene Cloning
2.3. Bioinformatics Analysis and Phylogenetic Analysis
2.4. Vector Construction
2.5. Subcellular Localization
2.6. Gene Expression Analysis
2.7. Transformation of Lilium ‘Siberia’
2.8. Volatile Compound Analysis
2.9. Statistical Analysis
3. Results
3.1. Analysis of LiDXR and LiTPS2 Promoters and Screening of LibHLH22 and LibHLH63 from Transcriptome Data
3.2. Cloning of LibHLH22 and LibHLH63
3.3. Bioinformatics Analysis of LibHLH22 and LibHLH63
3.4. Subcellular Localization of LibHLH22 and LibHLH63
3.5. Expression Patterns of LibHLH22 and LibHLH63 in Lilium ‘Siberia’
3.6. LibHLH22 and LibHLH63 Promote Volatile Terpenoids Accumulation in Lilium ‘Siberia’
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suchet, C.; Dormont, L.; Schatz, B.; Giurfa, M.; Simon, V.; Raynaud, C.; Chave, J. Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees. Behav. Ecol. Sociobiol. 2010, 65, 1015–1027. [Google Scholar] [CrossRef]
- Das, A.; Lee, S.H.; Hyun, T.K.; Kim, S.W.; Kim, J.Y. Plant volatiles as method of communication. Plant Biotechnol. Rep. 2012, 7, 9–26. [Google Scholar] [CrossRef]
- Caser, M.; Scariot, V. The contribution of volatile organic compounds (VOCs) emitted by petals and pollen to the scent of garden roses. Horticulturae 2022, 8, 1049. [Google Scholar] [CrossRef]
- Li, S.S.; Zhang, L.; Sun, M.; Lv, M.W.; Yang, Y.; Xu, W.Z.; Wang, L.S. Biogenesis of flavor-related linalool is diverged and genetically conserved in tree peony (Paeonia × suffruticosa). Hortic. Res. 2023, 10, 253. [Google Scholar] [CrossRef]
- Ramya, M.; Jang, S.; An, H.-R.; Lee, S.-Y.; Park, P.-M.; Park, P.H. Volatile organic compounds from Orchids: From synthesis and function to gene regulation. Int. J. Mol. Sci. 2020, 21, 1160. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.Z.; Lin, X.; Li, X.; Yang, N.; Chen, L. Molecular cloning and functional characterization of CpMYC2 and CpBHLH13 transcription factors from Wintersweet (Chimonanthus praecox L.). Plants 2020, 9, 785. [Google Scholar] [CrossRef]
- Weng, S.; Fu, X.; Gao, Y.; Liu, T.; Sun, Y.; Tang, D. Identification and evaluation of aromatic volatile compounds in 26 cultivars and 8 hybrids of Freesia hybrida. Molecules 2021, 26, 4482. [Google Scholar] [CrossRef]
- Wang, S.; Du, Z.; Yang, X.; Wang, L.; Xia, K.; Chen, Z. An integrated analysis of metabolomics and transcriptomics reveals significant differences in floral scents and related gene expression between two varieties of Dendrobium loddigesii. Appl. Sci. 2022, 12, 1262. [Google Scholar] [CrossRef]
- Liu, J.; Hu, H.; Shen, H.; Tian, Q.; Ding, W.; Yang, X.; Wang, L.; Yue, Y. Insights into the cytochrome P450 monooxygenase superfamily in Osmanthus fragrans and the role of OfCYP142 in linalool synthesis. Int. J. Mol. Sci. 2022, 23, 12150. [Google Scholar] [CrossRef]
- Yang, X.L.; Li, H.Y.; Yue, Y.Z.; Ding, W.J.; Xu, C.; Shi, T.T.; Chen, G.W.; Wang, L.G. Transcriptomic analysis of the candidate genes related to aroma formation in Osmanthus fragrans. Molecules 2018, 23, 1604. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.T.; Chen, H.C.; Chang, C. The Variation of oncidium rosy sunset Flower volatiles with daily rhythm, flowering period, and flower parts. Molecules 2017, 22, 1468. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Song, Z.Q.; Ti, Y.J.; Ma, K.F.; Li, Q.W. Comparative transcriptome analysis linked to key volatiles reveals molecular mechanisms of aroma compound biosynthesis in Prunus mume. BMC Plant Biol. 2022, 22, 395. [Google Scholar] [CrossRef]
- Li, T.; Zhao, X.; Cao, X. Volatile metabolome and aroma differences of six cultivars of Prunus mume blossoms. Plants 2023, 12, 308. [Google Scholar] [CrossRef]
- Abbas, F.; To, Y.G.; Zhou, Y.W.; Yu, R.C.; Imran, M.; Amanullah, S.; Rothenberg, D.O.; Wang, Q.; Wang, L.; Fan, Y.P. Functional characterization of Hedychium coronarium J. Koenig MYB132 confers the potential role in floral aroma synthesis. Plants 2021, 10, 2014. [Google Scholar] [CrossRef]
- Hu, Z.H.; Tang, B.; Wu, Q.; Zheng, J.; Leng, P.S.; Zhang, K.Z. Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium ‘Siberia’ and unscented Lilium ‘Novano’. Front. Plant Sci. 2017, 8, 1351. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Bai, J.; Lang, L.X.; Bao, F.; Dou, X.Y.; Wang, H.; Shang, H.Z. Variation in floral scent compositions of different lily hybrid groups. J. Am. Soc. Hortic. Sci. 2017, 142, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.J.; Wang, H.N.; Fu, Y.C.; Yan, W.X.; Hu, Z.H.; Leng, P.S. Cloning and functional analysis of LiCMK gene in Lilium ‘Siberia’. Biotechnol. Bull. 2023, 39, 1–10. [Google Scholar] [CrossRef]
- Yan, W.X.; Zhang, Q.; Li, S.J.; Leng, P.S.; Hu, Z.H. Cloning and expression analysis of LiHDS gene from Lilium ‘Siberia’. Plant Physiol. J. 2023, 59, 1–11. [Google Scholar] [CrossRef]
- Zhang, T.X.; Sun, M.; Guo, Y.H.; Shi, X.J.; Yang, Y.J.; Chen, J.T.; Zheng, T.C.; Han, Y.; Bao, F.; Ahmad, S. Overexpression of LiDXS and LiDXR from Lily (Lilium ‘Siberia’) enhances the terpenoid content in tobacco flowers. Front. Plant Sci. 2018, 9, 909. [Google Scholar] [CrossRef]
- Zhang, T.X.; Guo, Y.H.; Shi, X.J.; Yang, Y.J.; Chen, J.T.; Zhang, Q.X.; Sun, M. Overexpression of LiTPS2 from a cultivar of lily (Lilium ‘Siberia’) enhances the monoterpenoids content in tobacco flowers. Plant Physiol. Biochem. 2020, 151, 391–399. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.G.; Zhou, Y.W.; Ashraf, U.; Li, X.Y.; Yu, Y.Y.; Yue, Y.C.; Ahmad, K.W.; Yu, R.C.; Fan, Y.P. Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety ‘Siberia’. Phytochemistry 2020, 173, 112294. [Google Scholar] [CrossRef]
- Abbas, F.; Ke, Y.G.; Yu, R.C.; Fan, Y.P. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’. Planta 2019, 249, 71–93. [Google Scholar] [CrossRef]
- Li, J.X.; Fan, Y.Q.; Dai, S.T.; Qin, N.; Song, Y.H.; Zhu, C.C.; Wang, C.Y.; Weng, H.Y. Application progress of bHLH transcription factors in genetic engineering of plants against abiotic stress. Jiangsu Agric. Sci. 2022, 50, 1–9. [Google Scholar] [CrossRef]
- Li, T.T.; Yang, S.Y.; Kang, X.K.; Lei, W.; Qiao, K.; Zhang, D.W.; Lin, H.H. The bHLH transcription factor gene AtUPB1 regulates growth by mediating cell cycle progression in Arabidopsis. Biochem. Biophys. Res. Commun. 2019, 518, 565–572. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, C.P.; Han, X.; Tang, S.; Liu, S.; Xia, X.; Yin, W.L. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem. Biophys. Res. Commun. 2014, 450, 453–458. [Google Scholar] [CrossRef]
- Groszmann, M.; Bylstra, Y.; Lampugnani, E.R.; Smyth, D.R. Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. J. Exp. Bot. 2010, 61, 1495–1508. [Google Scholar] [CrossRef] [Green Version]
- Yao, P.F.; Sun, Z.X.; Li, C.L.; Zhao, X.R.; Li, M.F.; Deng, R.Y.; Huang, Y.J.; Zhao, H.X.; Chen, H.; Wu, Q. Overexpression of fagopyrum tataricum FtbHLH2 enhances tolerance to cold stress in transgenic Arabidopsis. Plant Physiol. Biochem. 2018, 125, 85–94. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Tian, Y.; Wang, Q.; Chen, S.; Li, H.; Ma, C.; Li, H. Functional characterization of a sugar beet BvbHLH93 transcription factor in salt stress tolerance. Int. J. Mol. Sci. 2021, 22, 3669. [Google Scholar] [CrossRef]
- Xu, W.R.; Zhang, N.B.; Jiao, Y.T.; Li, R.M.; Xiao, D.M.; Wang, Z.P. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Mol. Biol. Rep. 2014, 41, 5329–5342. [Google Scholar] [CrossRef]
- Waseem, M.; Rong, X.Y.; Li, Z.G. Dissecting the role of a basic Helix-Loop-Helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Front. Plant Sci. 2019, 10, 734. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.R.; Wang, Y.H.; Jia, M.; Zhang, R.R.; Liu, H.; Xu, Z.S.; Xiong, A.S. The phytochrome-interacting factor DcPIF3 of carrot plays a positive role in drought stress by increasing endogenous ABA level in Arabidopsis. Plant Sci. 2022, 322, 111367. [Google Scholar] [CrossRef]
- Li, J.L.; Wang, T.; Han, J.; Ren, Z.H. Genome-wide identification and characterization of cucumber bHLH family genes and the functional characterization of CsbHLH041 in NaCl and ABA tolerance in Arabidopsis and cucumber. BMC Plant Biol. 2020, 20, 272. [Google Scholar] [CrossRef]
- Li, P.H.; Chen, B.B.; Zhang, G.Y.; Chen, L.X.; Dong, Q.; Wen, J.Q.; Mysore, K.S.; Zhao, J. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol. 2016, 210, 905–921. [Google Scholar] [CrossRef]
- Zhu, J.H.; Xia, D.N.; Xu, J.; Guo, D.; Li, H.L.; Wang, Y.; Mei, W.L.; Peng, S.Q. Identification of the bHLH gene family in Dracaena cambodiana reveals candidate genes involved in flavonoid biosynthesis. Ind. Crops Prod. 2020, 150, 112407. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Xu, Q.S.; Zhao, S.Q.; Xia, X.B.; Yan, X.M.; An, Y.L.; Mi, X.Z.; Guo, L.X.; Samarina, L.; Wei, C.L. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis). Plant Sci. 2020, 290, 110306. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.Y.; Cheng, G.X.; Zhang, Z.; Sun, J.T.; Ali, M.; Jia, Q.L.; Luo, D.X.; Gong, Z.H.; Li, D.W. CaMYC, A Novel transcription factor, regulates anthocyanin biosynthesis in color-leaved pepper (Capsicum annuum L.). J. Plant Growth Regul. 2018, 38, 574–585. [Google Scholar] [CrossRef]
- Song, M.X.; Wang, H.M.; Wang, Z.; Huang, H.T.; Chen, S.; Ma, H.Q. Genome-wide characterization and analysis of bHLH transcription factors related to anthocyanin biosynthesis in Fig (Ficus carica L.). Front Plant Sci. 2021, 12, 730692. [Google Scholar] [CrossRef]
- Xu, J.S.; van Herwijnen, Z.O.; Drager, D.B.; Sui, C.; Haring, M.A.; Schuurink, R.C. SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular Cells. Plant Cell 2018, 30, 2988–3005. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.M.; Zhang, W.Y.; Li, J.R.; Wang, D.; Bai, H.T.; Li, H.; Shi, L. The transcription factor LaMYC4 from lavender regulates volatile terpenoid biosynthesis. BMC Plant Biol. 2022, 22, 289. [Google Scholar] [CrossRef]
- Mertens, J.; Pollier, J.; Vanden Bossche, R.; Lopez-Vidriero, I.; Franco-Zorrilla, J.M.; Goossens, A. The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in Medicago truncatula. Plant Physiol. 2016, 170, 194–210. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Li, X.; Zhan, Y.G.; Li, Y.; Qu, Z.Y.; Sun, L.; Wang, S.; Yang, J.; Xiao, J.L. Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch. BMC Plant Biol. 2017, 17, 214. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Y.; Ma, B.; Li, Y.Y.; Han, M.Z.; Wu, J.; Zhou, X.F.; Tian, J.; Wang, W.H.; Leng, P.S.; Hu, Z.H. Transcriptome analysis identifies key gene LiMYB305 involved in monoterpene biosynthesis in Lilium ‘Siberia’. Front Plant Sci. 2022, 13, 1021576. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Meng, Y.X.; Zhao, X.Y.; Wang, F.X.; Weng, Q.Y.; Zhao, Z.H.; Liu, Y.H.; Yuan, J.C. Identification and bioinformatics analysis of transcription factor family gene bHLH in Foxtail Millet. Seed 2021, 40, 45–55. [Google Scholar] [CrossRef]
- Zhang, H.X.; Leng, P.S.; Hu, Z.H.; Zhao, J.; Wang, W.H.; Xu, F. The floral scent emitted from Lilium ‘Siberia’ at different flowering stages and diurnal variation. Acta Hortic. Sin. 2013, 40, 693–702. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, M.F.; Xiao, W.; Cheng, X.Q.; Zhang, X.H.; Dong, R. Advances in research on genetic transformation and nanomagnetic beads of Lily. Mol. Plant Breed. 2020, 18, 4657–4664. [Google Scholar] [CrossRef]
- Qiu, N.; Tao, G.; Li, Q.K.; Qiu, Y.B.; Liu, Z.Y. Transient gene expression mediated by Agroinfiltration and its application. Mol. Plant Breed. 2009, 7, 1032–1039. [Google Scholar] [CrossRef]
- Tang, Y.; Li, L.F.; Wang, X.Q. Establishment of transient gene expression and virus-induced gene silencing (VIGS) system in Gerbera hybrida petals. Plant Physiol. J. 2017, 53, 505–512. [Google Scholar] [CrossRef]
- Xu, Y.; Han, Y.Q.; Yu, F.; Liu, Z.W.; Wang, Y.Y. Promoting the biosynthesis of catharanthine and vindoline in Catharanthus roseus by overexpressing JAR1. Biotechnol. Bull. 2017, 33, 62–68. [Google Scholar] [CrossRef]
- Huo, L.; Ji, X.Y.; Wang, Y.C. Transient expression conditions of tobacco transformation mediated by Agrobacterium. Mol. Plant Breed. 2016, 14, 80–85. [Google Scholar] [CrossRef]
- Shu, X.J.; Wen, T.J.; Xing, J.Y.; Lu, L.; Hu, Z.F. Isolation of protoplast and establishment of transient expression system in grapevine (Vitis vinifera L.). Acta Bot. Boreali-Occident. Sin. 2015, 35, 1262–1268. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Wang, Z. Optimizing transient genetic transformation method on Arabidopsis plant mediated by Agrob acterium tumefaciens. J. Northeast. For. Univ. 2016, 44, 41–44+83. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Liu, Y.; Yang, R.; Yin, X.; Ma, N.; Gao, J. Optimization of Agrobacterium-mediated transient gene expression system and its utilization in RNAi based gene silencing of rose (Rosa hybrida) petals. Chin. J. Agric. Biotechnol. 2014, 22, 133–140. [Google Scholar] [CrossRef]
Bioinformatics Analysis | Website |
---|---|
PlantCARE | https://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (accessed on 23 August 2022) |
CD-Search | https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi (accessed on 28 August 2022) |
GSDS | http://gsds.gao-lab.org/ (accessed on 23 August 2022) |
SOPMA | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa%20_sopma.html (accessed on 20 September 2022) |
ExpASy-ProtParam | https://web.expasy.org/protparam/ (accessed on 20 September 2022) |
Plant-mPLoc | http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/ (accessed on 20 September 2022) |
WoLF POST | https://wolfpsort.hgc.jp/ (accessed on 20 September 2022) |
Lianchuan Biologic Cloud platform | https://www.omicstudio.cn/tool (accessed on 28 August 2022) |
Primers | Primer Sequence (5′-3′) | Usage |
---|---|---|
LibHLH63-F LibHLH63-R | ATGAGTGAGAAGAGCTCTCGATCT TCAATTATCTATACCTTGGAACAACTG | Gene cloning of LibHLH63 |
pSuper1300-LibHLH63-GFP-F pSuper1300-LibHLH63-GFP-R | TCGACTCTAGTCTAGAATGAGTGAGAAGAGCTCTCGATC CCCTTGCTCACCATGGTACCATTATCTATACCTTGGAACA AC | Transient overexpression of LibHLH63 |
qLibHLH63-F qLibHLH63-R | AAGGACGAAATGGTGGAG GTGCTCTCACGTGGATATAG | qRT-PCR of LibHLH63 |
Lily Actin-F Lily Actin-R | TGTCTGCGACAATGGTACTG GGGCCTCATCACCAACATAA | Reference gene for qRT-PCR |
TRV2-LibHLH63-F TRV2-LibHLH63-R | TAAGGTTACCGAATTCCCGGAGAAGACAGACTATATCCA GCTCGGTACCGGATCCGAATTGGAGGTAAGATGGATCTC | VIGS of LibHLH63 |
LibHLH22-F | ATGGAGACAACGCCCAGCTC | Gene cloning of LibHLH22 |
LibHLH22-R | TCAGAGCTCCGTCTTTAACTGGTTC | |
pSuper1300-LibHLH22-GFP-F | TCGACTCTAGTCTAGAATGGAGACAACGCCC | Overexpression of LibHLH22 |
pSuper1300-LibHLH22-GFP-R | CCCTTGCTCACCATGGTACCGAGCTCCGTCTTTAACTGGTTCG | |
TRV2-LibHLH22-F | GAGGAGGCTACCGGTGG | VIGS of LibHLH22 |
TRV2-LibHLH22-R | CAGGAAGGGT GGCTCAAC | |
qLibHLH22-F | GCAACAAGATCTGCCATC | qRT-PCR of LibHLH22 |
qLibHLH22-R | TCAGAGCTCCGTCTTTAAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Guo, Z.; Zhong, J.; Liang, Y.; Zhang, P.; Sun, M. The LibHLH22 and LibHLH63 from Lilium ‘Siberia’ Can Positively Regulate Volatile Terpenoid Biosynthesis. Horticulturae 2023, 9, 459. https://doi.org/10.3390/horticulturae9040459
Feng Y, Guo Z, Zhong J, Liang Y, Zhang P, Sun M. The LibHLH22 and LibHLH63 from Lilium ‘Siberia’ Can Positively Regulate Volatile Terpenoid Biosynthesis. Horticulturae. 2023; 9(4):459. https://doi.org/10.3390/horticulturae9040459
Chicago/Turabian StyleFeng, Yuan, Ziyu Guo, Jian Zhong, Yilin Liang, Peng Zhang, and Ming Sun. 2023. "The LibHLH22 and LibHLH63 from Lilium ‘Siberia’ Can Positively Regulate Volatile Terpenoid Biosynthesis" Horticulturae 9, no. 4: 459. https://doi.org/10.3390/horticulturae9040459
APA StyleFeng, Y., Guo, Z., Zhong, J., Liang, Y., Zhang, P., & Sun, M. (2023). The LibHLH22 and LibHLH63 from Lilium ‘Siberia’ Can Positively Regulate Volatile Terpenoid Biosynthesis. Horticulturae, 9(4), 459. https://doi.org/10.3390/horticulturae9040459