Sustainable Use of Sewage Sludge for Marigold (Tagetes erecta L.) Cultivation: Experimental and Predictive Modeling Studies on Heavy Metal Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection
2.2. Experimental Design
2.3. Chemical Analyses
2.4. Plant and Biochemical Assays
2.5. Data Analysis and Software
3. Results and Discussion
3.1. Impact of Sewage Sludge on Soil Physicochemical Properties
3.2. Impact of Sewage Sludge on Growth and Yield of Marigold
3.3. Impact of Sewage Sludge on Biochemical Characteristics of Marigold
3.4. Impact of Sewage Sludge on Heavy Metal Accumulation in Marigold
3.5. Prediction Models for Heavy Metal Uptake by Marigold
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mateo-Sagasta, J.; Raschid-Sally, L.; Thebo, A. Global Wastewater and Sludge Production, Treatment and Use. In Wastewater: Economic Asset in an Urbanizing World; Springer: Dordrecht, The Netherlands, 2015; pp. 15–38. [Google Scholar] [CrossRef]
- Shanmugam, K.; Gadhamshetty, V.; Tysklind, M.; Bhattacharyya, D.; Upadhyayula, V.K.K. A Sustainable Performance Assessment Framework for Circular Management of Municipal Wastewater Treatment Plants. J. Clean. Prod. 2022, 339, 130657. [Google Scholar] [CrossRef]
- Page, S.; Renner, R.; Science, E.; Technology, V.I.; Mcgrath, S. Sewage Sludge, Pros & Cons. Environ. Sci. Technol. 2000, 34, 430A–435A. [Google Scholar]
- Manzoor, J.; Sharma, M. Impact of Biomedical Waste on Environment and Human Health. Environ. Claims J. 2019, 31, 311–334. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; He, W.; Xu, F.; Tong, Y.; Xu, F. Ecological Risk Assessment of Toxic Metal(Loid)s for Land Application of Sewage Sludge in China. Sci. Total Environ. 2022, 836, 155549. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Y.; Zhen, G.; Lu, X.; Xu, S.; Zhang, J.; Gu, L.; Wen, H.; Liu, H.; Zhang, X.; et al. Effective Multipurpose Sewage Sludge and Food Waste Reduction Strategies: A Focus on Recent Advances and Future Perspectives. Chemosphere 2023, 311, 136670. [Google Scholar] [CrossRef]
- Bin Khawer, M.U.; Naqvi, S.R.; Ali, I.; Arshad, M.; Juchelková, D.; Anjum, M.W.; Naqvi, M. Anaerobic Digestion of Sewage Sludge for Biogas & Biohydrogen Production: State-of-the-Art Trends and Prospects. Fuel 2022, 329, 125416. [Google Scholar] [CrossRef]
- Ragoobur, D.; Huerta-Lwanga, E.; Somaroo, G.D. Reduction of Microplastics in Sewage Sludge by Vermicomposting. Chem. Eng. J. 2022, 450, 138231. [Google Scholar] [CrossRef]
- Dregulo, A.M.; Bobylev, N.G. Integrated Assessment of Groundwater Pollution from the Landfill of Sewage Sludge. J. Ecol. Eng. 2020, 22, 68–75. [Google Scholar] [CrossRef]
- Jamil Khan, M.; Qasim, M.; Umar, M. Utilization of Sewage Sludge as Organic Fertiliser in Sustainable Agriculture. J. Appl. Sci. 2006, 6, 531–535. [Google Scholar] [CrossRef]
- Pascual, I.; Azcona, I.; Aguirreolea, J.; Morales, F.; Corpas, F.J.; Palma, J.M.; Rellán-Álvarez, R.; Sánchez-Díaz, M. Growth, Yield, and Fruit Quality of Pepper Plants Amended with Two Sanitized Sewage Sludges. J. Agric. Food Chem. 2010, 58, 6951–6959. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Hussain, A.A.; Taher, M.A.; Galal, T.M.; Shaltout, K.H.; Sewelam, N. Sewage Sludge Application Enhances the Growth of Corchorus olitorius Plants and Provides a Sustainable Practice for Nutrient Recirculation in Agricultural Soils. J. Soil Sci. Plant Nutr. 2020, 20, 149–159. [Google Scholar] [CrossRef]
- Kirchmann, H.; Börjesson, G.; Kätterer, T.; Cohen, Y. From Agricultural Use of Sewage Sludge to Nutrient Extraction: A Soil Science Outlook. Ambio 2017, 46, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Council of the European Communities. Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC); The Council of the European Communities: Brussels, Belgium, 1986; Volume L. [Google Scholar]
- Solanki, P.; Kalavagadda, B.; Akula, B.; Sharma, S.H.K.; Reddy, D.J. Effect of Sewage Sludge on Marigold (Tagetes erecta). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 825–831. [Google Scholar] [CrossRef] [Green Version]
- Ahmadpour, P.; Nawi, A.M.; Abdu, A.; Abdul-Hamid, H.; Singh, D.K.; Hassan, A.; Majid, N.M.; Jusop, S. Uptake of Heavy Metals by Jatropha Curcas L. Planted in Soils Containing Sewage Sludge. Am. J. Appl. Sci. 2010, 7, 1291–1299. [Google Scholar] [CrossRef] [Green Version]
- Ghademian Sorboni, A.; Bahmanyar, M.; GHajar, M. Effect of Different Periods of Application of Sewage Sludge and Municipal Solid Wastes Compost on the Amount of Cadmium and Nickel Content of Soil and Borage (Borago officinadis). J. Water Wastewater 2013, 24, 80–89. [Google Scholar]
- Fijalkowski, K.; Rosikon, K.; Grobelak, A.; Hutchison, D.; Kacprzak, M.J. Modification of Properties of Energy Crops under Polish Condition as an Effect of Sewage Sludge Application onto Degraded Soil. J. Environ. Manag. 2018, 217, 509–519. [Google Scholar] [CrossRef]
- Kumari, S.; Kothari, R.; Kumar, V.; Kumar, P.; Tyagi, V.V. Kinetic Assessment of Aerobic Composting of Flower Waste Generated from Temple in Jammu, India: A Lab-Scale Experimental Study. Environ. Sustain. 2021, 4, 393–400. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, J.; Singh, B. Importance and Prospects of Marigold. Just Agric. 2021, 2, 1–5. [Google Scholar]
- Greinert, A.; Drab, M.; Węclewski, S. Phytotoxic Effects of Sewage Sludges on Decorative Plants. Pol. J. Environ. Stud. 2009, 6, 41–48. [Google Scholar]
- Greinert, A. Die Schlammverwertung Als Dünger Für Die Rabatte-Zierpflanzen (The Sewage Sludge Utilization as a Fertilizer for the Ornamental Bedding Plants). In Proceedings of the Studies and Materials: Ecology of the Borderland: VI Polish-German Scientific Conference, IBEN, Gorzów Wielkopolski, Poland, 23 November 2001; pp. 18–19, 211–216. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Chromý, V.; Vinklárková, B.; Šprongl, L.; Bittová, M. The Kjeldahl Method as a Primary Reference Procedure for Total Protein in Certified Reference Materials Used in Clinical Chemistry. I. A Review of Kjeldahl Methods Adopted by Laboratory Medicine. Crit. Rev. Anal. Chem. 2015, 45, 106–111. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Adelodun, B.; Bedeković, D.; Kos, I.; Širić, I.; Alamri, S.A.M.; Alrumman, S.A.; Eid, E.M.; Abou Fayssal, S.; et al. Sustainable Use of Sewage Sludge as a Casing Material for Button Mushroom (Agaricus bisporus) Cultivation: Experimental and Prediction Modeling Studies for Uptake of Metal Elements. J. Fungi 2022, 8, 112. [Google Scholar] [CrossRef]
- Širić, I.; Eid, E.M.; Taher, M.A.; El-Morsy, M.H.E.; Osman, H.E.M.; Kumar, P.; Adelodun, B.; Abou Fayssal, S.; Mioč, B.; Andabaka, Ž.; et al. Combined Use of Spent Mushroom Substrate Biochar and PGPR Improves Growth, Yield, and Biochemical Response of Cauliflower (Brassica oleracea var. botrytis): A Preliminary Study on Greenhouse Cultivation. Horticulturae 2022, 8, 830. [Google Scholar] [CrossRef]
- Latimer, G.W. Official Methods of Analysis of AOAC INTERNATIONAL, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Shah, S.H.; Houborg, R.; McCabe, M.F. Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.). Agronomy 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Poovaiah, B.W. Hydrogen Peroxide Homeostasis: Activation of Plant Catalase by Calcium/Calmodulin. Proc. Natl. Acad. Sci. USA 2002, 99, 4097–4102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y. Effect of Drought Stress and Subsequent Recovery on Protein, Carbohydrate Contents, Catalase and Peroxidase Activities in Three Chickpea (Cicer arietinum) Cultivars. Aust. J. Crop Sci. 2011, 5, 1255–1260. [Google Scholar]
- de Carvalho, L.M.J.; Gomes, P.B.; de Oliveira Godoy, R.L.; Pacheco, S.; do Monte, P.H.F.; de Carvalho, J.L.V.; Nutti, M.R.; Neves, A.C.L.; Vieira, A.C.R.A.; Ramos, S.R.R. Total Carotenoid Content, α-Carotene and β-Carotene, of Landrace Pumpkins (Cucurbita moschata Duch): A Preliminary Study. Food Res. Int. 2012, 47, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Kumar, P.; Singh, J.; Kumar, P. Kinetics of Nutrients Remediation from Sugar Industry Effluent-Treated Substrate Using Agaricus bisporus: Mushroom Yield and Biochemical Potentials. 3 Biotech 2021, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Šivel, M.; Kráčmar, S.; Fišera, M.; Klejdus, B.; Kubáň, V. Lutein Content in Marigold Flower (Tagetes erecta L.) Concentrates Used for Production of Food Supplements. Czech J. Food Sci. 2014, 32, 521–525. [Google Scholar] [CrossRef] [Green Version]
- Al-Huqail, A.A.; Kumar, P.; Eid, E.M.; Singh, J.; Arya, A.K.; Goala, M.; Adelodun, B.; Fayssal, S.A.; Kumar, V.; Širić, I. Risk Assessment of Heavy Metals Contamination in Soil and Two Rice (Oryza sativa L.) Varieties Irrigated with Paper Mill Effluent. Agriculture 2022, 12, 1864. [Google Scholar] [CrossRef]
- Eid, E.M.; Hussain, A.A.; Alamri, S.A.M.; Alrumman, S.A.; Shaltout, K.H.; Sewelam, N.; Shaltout, S.K.; El-Bebany, A.F.; Ahmed, M.T.; Al-Bakre, D.A.; et al. Prediction Models Based on Soil Characteristics for Evaluation of the Accumulation Capacity of Nine Metals by Forage Sorghum Grown in Agricultural Soils Treated with Varying Amounts of Poultry Manure. Bull. Environ. Contam. Toxicol. 2023, 110, 40. [Google Scholar] [CrossRef]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The Influence of PH and Organic Matter Content in Paddy Soil on Heavy Metal Availability and Their Uptake by Rice Plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Yavitt, J.B.; Pipes, G.T.; Olmos, E.C.; Zhang, J.; Shapleigh, J.P. Soil Organic Matter, Soil Structure, and Bacterial Community Structure in a Post-Agricultural Landscape. Front. Earth Sci. 2021, 9, 590103. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, H.Y.H.; Ruan, H. Global Negative Effects of Nitrogen Deposition on Soil Microbes. ISME J. 2018, 12, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, P.; Xu, M.; Ahamad, L.; Chaudhary, A.; Kumar, G.; Adeleke, B.S.; Verma, K.K.; Hu, D.-M.; Širić, I.; Kumar, P.; et al. Application of Synthetic Consortia for Improvement of Soil Fertility, Pollution Remediation, and Agricultural Productivity: A Review. Agronomy 2023, 13, 643. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic Life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antolín, M.C.; Muro, I.; Sánchez-Díaz, M. Application of Sewage Sludge Improves Growth, Photosynthesis and Antioxidant Activities of Nodulated Alfalfa Plants under Drought Conditions. Environ. Exp. Bot. 2010, 68, 75–82. [Google Scholar] [CrossRef]
- Iticescu, C.; Georgescu, P.-L.; Arseni, M.; Rosu, A.; Timofti, M.; Carp, G.; Cioca, L.-I. Optimal Solutions for the Use of Sewage Sludge on Agricultural Lands. Water 2021, 13, 585. [Google Scholar] [CrossRef]
- Bai, J.; Sun, X.; Xu, C.; Ma, X.; Huang, Y.; Fan, Z.; Cao, X. Effects of Sewage Sludge Application on Plant Growth and Soil Characteristics at a Pinus sylvestris var. Mongolica Plantation in Horqin Sandy Land. Forests 2022, 13, 984. [Google Scholar] [CrossRef]
- Bi, G.; Evans, W.B.; Spiers, J.M.; Witcher, A.L. Effects of Organic and Inorganic Fertilizers on Marigold Growth and Flowering. HortScience 2010, 45, 1373–1377. [Google Scholar] [CrossRef]
- Erwin, J. Factors Affecting Flowering in Ornamental Plants. In Flower Breeding and Genetics: Issues, Challenges and Opportunities for the 21st Century; Springer: Dordrecht, The Netherlands, 2006; pp. 7–48. [Google Scholar] [CrossRef]
- Grigatti, M.; Giorgioni, M.; Ciavatta, C. Compost-Based Growing Media: Influence on Growth and Nutrient Use of Bedding Plants. Bioresour. Technol. 2007, 98, 3526–3534. [Google Scholar] [CrossRef] [PubMed]
- James, E.C.; Van Iersel, M.W. Fertilizer Concentration Affects Growth and Flowering of Subirrigated Petunias and Begonias. HortScience 2001, 36, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Alzamel, N.M.; Taha, E.M.M.; Bakr, A.A.A.; Loutfy, N. Effect of Organic and Inorganic Fertilizers on Soil Properties, Growth Yield, and Physiochemical Properties of Sunflower Seeds and Oils. Sustainability 2022, 14, 12928. [Google Scholar] [CrossRef]
- Ming, X.; Tao, Y.-B.; Fu, Q.; Tang, M.; He, H.; Chen, M.-S.; Pan, B.-Z.; Xu, Z.-F. Flower-Specific Overproduction of Cytokinins Altered Flower Development and Sex Expression in the Perennial Woody Plant Jatropha curcas L. Int. J. Mol. Sci. 2020, 21, 640. [Google Scholar] [CrossRef] [Green Version]
- War, A.R.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Role of Salicylic Acid in Induction of Plant Defense System in Chickpea (Cicer arietinum L.). Plant Signal. Behav. 2011, 6, 1787–1792. [Google Scholar] [CrossRef] [Green Version]
- Zahid, A.; Yike, G.; Kubik, S.; Fozia; Ramzan, M.; Sardar, H.; Akram, M.T.; Khatana, M.A.; Shabbir, S.; Alharbi, S.A.; et al. Plant Growth Regulators Modulate the Growth, Physiology, and Flower Quality in Rose (Rosa hybirda). J. King Saud. Univ. Sci. 2021, 33, 101526. [Google Scholar] [CrossRef]
- Peralta-Sánchez, M.G.; Gómez-Merino, F.C.; Tejeda-Sartorius, O.; Trejo-Téllez, L.I. Nitrogen Nutrition Differentially Affects Concentrations of Photosynthetic Pigments and Antioxidant Compounds in Mexican Marigold (Tagetes erecta L.). Agriculture 2023, 13, 517. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, F.; Zhang, W.; Liu, C.; Zhao, X. Antioxidant Mechanism and Lipid Peroxidation Patterns in Leaves and Petals of Marigold in Response to Drought Stress. Hortic. Environ. Biotechnol. 2012, 53, 183–192. [Google Scholar] [CrossRef]
- Ohmiya, A.; Hirashima, M.; Yagi, M.; Tanase, K.; Yamamizo, C. Identification of Genes Associated with Chlorophyll Accumulation in Flower Petals. PLoS ONE 2014, 9, e113738. [Google Scholar] [CrossRef]
- Ghadyeh Zarrinabadi, I.; Razmjoo, J.; Abdali Mashhadi, A.; Karim Mojeni, H.; Boroomand, A. Physiological Response and Productivity of Pot Marigold (Calendula officinalis) Genotypes under Water Deficit. Ind. Crops Prod. 2019, 139, 111488. [Google Scholar] [CrossRef]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant Carotenoids: Recent Advances and Future Perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef]
- Johari, M.A.; Khong, H.Y. Total Phenolic Content and Antioxidant and Antibacterial Activities of Pereskia Bleo. Adv. Pharmacol. Sci. 2019, 2019, 7428593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chkhikvishvili, I.; Sanikidze, T.; Gogia, N.; Enukidze, M.; Machavariani, M.; Kipiani, N.; Vinokur, Y.; Rodov, V. Constituents of French Marigold (Tagetes patula L.) Flowers Protect Jurkat T-Cells against Oxidative Stress. Oxid. Med. Cell. Longev. 2016, 2016, 4216285. [Google Scholar] [CrossRef] [Green Version]
- Smirnoff, N.; Wheeler, G.L. Ascorbic Acid in Plants: Biosynthesis and Function. CRC Crit. Rev. Plant Sci. 2000, 19, 267–290. [Google Scholar] [CrossRef]
- Krzymińska, A.; Frąszczak, B.; Gąsecka, M.; Magdziak, Z.; Kleiber, T. The Content of Phenolic Compounds and Organic Acids in Two Tagetes patula Cultivars Flowers and Its Dependence on Light Colour and Substrate. Molecules 2022, 27, 527. [Google Scholar] [CrossRef]
- Alotaibi, H.N.; Anderson, A.K.; Sidhu, J.S. Influence of Lutein Content of Marigold Flowers on Functional Properties of Baked Pan Bread. Ann. Agric. Sci. 2021, 66, 162–168. [Google Scholar] [CrossRef]
- Gansukh, E.; Mya, K.K.; Jung, M.; Keum, Y.S.; Kim, D.H.; Saini, R.K. Lutein Derived from Marigold (Tagetes erecta) Petals Triggers ROS Generation and Activates Bax and Caspase-3 Mediated Apoptosis of Human Cervical carcinoma (HeLa) Cells. Food Chem. Toxicol. 2019, 127, 11–18. [Google Scholar] [CrossRef]
- Ricachenevsky, F.K.; de Araújo Junior, A.T.; Fett, J.P.; Sperotto, R.A. You Shall Not Pass: Root Vacuoles as a Symplastic Checkpoint for Metal Translocation to Shoots and Possible Application to Grain Nutritional Quality. Front. Plant Sci. 2018, 9, 00412. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 00359. [Google Scholar] [CrossRef]
- Biswal, B.; Singh, S.K.; Patra, A.; Mohapatra, K.K. Evaluation of Phytoremediation Capability of French Marigold (Tagetes patula) and African Marigold (Tagetes erecta) under Heavy Metals Contaminated Soils. Int. J. Phytoremediat. 2022, 24, 945–954. [Google Scholar] [CrossRef]
- Madanan, M.T.; Shah, I.K.; Varghese, G.K.; Kaushal, R.K. Application of Aztec Marigold (Tagetes erecta L.) for Phytoremediation of Heavy Metal Polluted Lateritic Soil. Environ. Chem. Ecotoxicol. 2021, 3, 17–22. [Google Scholar] [CrossRef]
- Zhou, Y.; Jia, Z.; Wang, J.; Chen, L.; Zou, M.; Li, Y.; Zhou, S. Heavy Metal Distribution, Relationship and Prediction in a Wheat-Rice Rotation System. Geoderma 2019, 354, 113886. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Z.; Lynn, A.; Cai, J.; Huangfu, Y.; Geng, Y.; Tang, J.; Zeng, X. Heavy Metals in Wheat Grown in Sewage Irrigation: A Distribution and Prediction Model. Pol. J. Environ. Stud. 2016, 25, 413–418. [Google Scholar] [CrossRef]
Properties | Arable Soil | Sewage Sludge | Experimental Treatments | |
---|---|---|---|---|
5% | 10% | |||
pH | 6.74 ± 0.04 d | 5.98 ± 0.07 a | 6.43 ± 0.07 c | 6.24 ± 0.05 b |
Electrical conductivity (EC: dS/m) | 2.40 ± 0.03 a | 6.30 ± 0.12 d | 2.70 ± 0.06 b | 3.14 ± 0.08 c |
Organic matter (OM: g/kg) | 1.39 ± 0.04 a | 25.04 ± 2.80 c | 2.51 ± 0.11 b | 3.85 ± 0.14 bc |
Total nitrogen (TN: g/kg) | 1.70 ± 0.02 a | 20.99 ± 1.58 d | 2.81 ± 0.03 b | 3.72 ± 0.07 c |
Total phosphorus (TP: g/kg) | 1.26 ± 0.05 a | 14.75 ± 0.94 d | 2.10 ± 0.05 b | 2.64 ± 0.10 c |
Total potassium (TK: g/kg) | 0.10 ± 0.02 a | 5.09 ± 0.17 d | 0.32 ± 0.04 b | 0.69 ± 0.09 c |
Cadmium (Cd: mg/kg) | 0.27 ± 0.05 a | 1.98 ± 0.10 c | 0.38 ± 0.06 a | 0.45 ± 0.04 b |
Chromium (Cr: mg/kg) | 3.64 ± 0.20 a | 14.62 ± 3.02 c | 4.26 ± 0.41 a | 5.38 ± 0.27 b |
Copper (Cu: mg/kg) | 4.10 ± 0.28 a | 49.32 ± 5.90 d | 6.50 ± 0.24 b | 9.23 ± 0.56 c |
Iron (Fe: mg/kg) | 17.40 ± 2.46 a | 41.60 ± 4.08 b | 19.42 ± 1.87 a | 21.60 ± 2.01 a |
Manganese (Mn: mg/kg) | 9.06 ± 0.54 a | 32.03 ± 5.62 d | 10.56 ± 0.34 b | 12.31 ± 1.14 c |
Zinc (Zn: mg/kg) | 3.80 ± 0.40 a | 84.20 ± 8.28 d | 8.07 ± 0.16 b | 11.20 ± 0.48 c |
Properties | Arable Soil | Sewage Sludge Treatment | |
---|---|---|---|
5% | 10% | ||
Plant height (cm) | 39.08 ± 2.72 a | 48.11 ± 1.24 b | 52.40 ± 3.57 b |
Number of branches (no.) | 7.13 ± 0.47 a | 10.41 ± 0.37 b | 11.06 ± 1.02 b |
Root length (cm) | 17.30 ± 1.13 a | 20.09 ± 0.95 b | 21.48 ± 0.69 b |
First bud formation (days) | 130.25 ± 4.75 c | 119.80 ± 2.20 b | 110.38 ± 3.72 a |
Flowering period (days) | 45.50 ± 2.50 a | 57.20 ± 1.80 b | 62.46 ± 2.54 c |
Flower stack (cm) | 8.03 ± 0.04 a | 8.93 ± 0.10 b | 9.15 ± 0.15 c |
Flower diameter (cm) | 5.51 ± 0.09 a | 6.02 ± 0.05 b | 6.16 ± 0.07 c |
Flower yield (no. per plant) | 24.08 ± 0.10 a | 26.59 ± 0.24 b | 26.35 ± 0.20 b |
Flower yield (g per plant) | 255.28 ± 5.15 a | 306.90 ± 1.86 b | 318.42 ± 3.09 c |
Average weight of flower (g) | 10.60 ± 0.10 a | 11.54 ± 0.09 b | 12.08 ± 0.16 c |
Properties | Plant Part | Arable Soil | Sewage Sludge Treatments | |
---|---|---|---|---|
5% | 10% | |||
Total chlorophyll (mg/g) | Leaves | 2.30 ± 0.05 a | 2.47 ± 0.02 b | 2.52 ± 0.06 b |
Flowers | na | na | na | |
Catalase (U/mL) | Leaves | 2.90 ± 0.10 a | 2.75 ± 0.07 a | 2.15 ± 0.03b |
Flowers | na | na | na | |
Peroxidase (μmol/mg) | Leaves | 3.10 ± 0.06 a | 4.87 ± 0.05 b | 6.20 ± 0.18 c |
Flowers | na | na | na | |
β-carotene (µg/g) | Leaves | 15.93 ± 0.30 a | 17.36 ± 1.02 a | 19.09 ± 0.95 b |
Flowers | 10.08 ± 0.07 a | 10.51 ± 0.10 b | 11.56 ± 0.09 c | |
Total phenols (mg/g) | Leaves | 12.10 ± 0.12 a | 15.44 ± 0.28 b | 17.07 ± 0.50 c |
Flowers | 33.48 ± 2.09 a | 48.30 ± 4.58 b | 51.03 ± 3.75 b | |
Ascorbic acid (mg/g) | Leaves | 1.60 ± 0.05 a | 1.73 ± 0.04 b | 1.96 ± 0.11 bc |
Flowers | 0.52 ± 0.02 a | 0.67 ± 0.05 b | 0.74 ± 0.08 b | |
Flavonoids (mg/g) | Leaves | 55.40 ± 3.84 a | 62.90 ± 1.90 b | 64.11 ± 2.75 b |
Flowers | 36.27 ± 1.51 a | 41.02 ± 3.02 b | 45.20 ± 2.48 b | |
Lutein (mg/g) | Leaves | 47.10 ± 2.07 a | 51.75 ± 2.72 b | 53.92 ± 1.01 b |
Flowers | 70.49 ± 1.43 a | 78.38 ± 2.54 b | 84.66 ± 3.13 c |
Heavy Metal | Plant Part | Arable Soil | Sewage Sludge Treatments | |
---|---|---|---|---|
5% | 10% | |||
Cd | Root | 0.21 ± 0.02 a | 0.48 ± 0.05 b | 0.72 ± 0.07 c |
Shoot | 0.12 ± 0.03 a | 0.16 ± 0.02 a | 0.19 ± 0.05 b | |
Flowers | 0.01 ± 0.00 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | |
Cr | Root | 0.90 ± 0.07 a | 1.37 ± 0.10 b | 1.52 ± 0.19 bc |
Shoot | 0.74 ± 0.05 a | 0.83 ± 0.04 a | 1.10 ± 0.08 b | |
Flowers | 0.16 ± 0.02 a | 0.19 ± 0.03 ab | 0.22 ± 0.02 b | |
Cu | Root | 3.50 ± 0.09 a | 6.94 ± 0.25 b | 8.40 ± 0.71 c |
Shoot | 2.17 ± 0.04 a | 4.63 ± 0.16 b | 5.73 ± 0.32 c | |
Flowers | 1.88 ± 0.11 a | 2.10 ± 0.08 b | 2.50 ± 0.29 c | |
Fe | Root | 12.40 ± 1.82 a | 26.62 ± 3.01 b | 34.02 ± 4.35 c |
Shoot | 17.37 ± 0.60 a | 20.10 ± 1.25 ab | 22.30 ± 0.94 b | |
Flowers | 3.53 ± 0.20 a | 4.86 ± 0.52 b | 5.10 ± 0.17 c | |
Mn | Root | 5.71 ± 0.19 a | 12.18 ± 2.40 b | 14.09 ± 1.64 bc |
Shoot | 4.02 ± 0.08a | 8.49 ± 0.65 b | 10.67 ± 1.28 bc | |
Flowers | 1.06 ± 0.04a | 1.34 ± 0.07 b | 1.40 ± 0.05 c | |
Zn | Root | 7.62 ± 0.30a | 9.91 ± 0.55 b | 11.83 ± 1.02 bc |
Shoot | 5.27 ± 0.12a | 8.02 ± 0.19 b | 9.35 ± 0.24 c | |
Flowers | 2.50 ± 0.09a | 3.98 ± 0.07 b | 4.21 ± 0.11 bc |
Heavy Metals | Plant Parts | Model Equation | ymin | ymax | R2 | ANOVA | ME | RMSE | |
---|---|---|---|---|---|---|---|---|---|
F-Value | p-Value | ||||||||
Cd | Root | y = 0.40 − 0.08 pHsoil + 0.13 OMsoil + 0.73 Cdsoil | 0.17 | 0.76 | 0.99 | 297.64 | <0.01 | 0.98 | 0.04 |
Shoot | y = − 0.76 + 0.10 pHsoil + 0.01 OMsoil + 0.46 Cdsoil | 0.09 | 0.21 | 0.88 | 12.55 | <0.01 | 0.75 | 0.12 | |
Flowers | y = − 0.09 + 0.01 pHsoil − 0.01 OMsoil + 0.12 Cdsoil | 0.01 | 0.03 | 0.73 | 4.66 | 0.06 | 0.49 | 0.01 | |
Cr | Root | y = 13.62 − 2.18 pHsoil − 0.80 OMsoil + 0.87 Crsoil | 0.89 | 1.58 | 0.84 | 9.04 | 0.04 | 0.98 | 0.06 |
Shoot | y = − 9.04 + 1.47 pHsoil + 0.66 OMsoil − 0.30 Crsoil | 0.71 | 1.18 | 0.99 | 236.72 | <0.01 | 0.88 | 0.08 | |
Flowers | y = 1.59 − 0.27 pHsoil − 0.14 OMsoil + 0.16 Crsoil | 0.14 | 0.23 | 0.95 | 36.95 | <0.01 | 0.72 | 0.01 | |
Cu | Root | y = 39.40 − 6.00 pHsoil − 5.65 OMsoil + 2.07 Cusoil | 3.27 | 9.20 | 0.96 | 46.87 | <0.01 | 0.94 | 0.80 |
Shoot | y = 29.48 − 4.45 pHsoil − 3.06 OMsoil + 1.73 Cusoil | 2.10 | 6.16 | 0.06 | 53.32 | <0.01 | 0.97 | 0.43 | |
Flowers | y = − 5.22 + 0.86 pHsoil − 0.69 OMsoil + 0.53 Cusoil | 1.71 | 2.74 | 0.98 | 112.21 | <0.01 | 0.55 | 0.24 | |
Fe | Root | y = 177.89 − 29.78 pHsoil − 0.87 OMsoil + 2.12 Fesoil | 8.93 | 37.27 | 0.96 | 53.08 | <0.01 | 0.90 | 3.25 |
Shoot | y = 16.93 − 1.17 pHsoil + 1.08 OMsoil + 0.39 Fesoil | 16.50 | 23.31 | 0.97 | 71.26 | <0.01 | 0.85 | 1.01 | |
Flowers | y = 27.93 − 4.14 pHsoil − 0.64 OMsoil + 0.26 Fesoil | 3.16 | 5.40 | 0.88 | 13.06 | <0.01 | 0.81 | 0.30 | |
Mn | Root | y = 37.16 − 7.13 pHsoil − 0.72 OMsoil + 2.02 Mnsoil | 5.61 | 16.60 | 0.85 | 0.68 | <0.01 | 0.82 | 2.51 |
Shoot | y = 48.54 − 8.50 pHsoil − 1.16 OMsoil + 1.61 Mnsoil | 3.76 | 12.16 | 0.96 | 43.56 | <0.01 | 0.89 | 1.49 | |
Flowers | y = 3.96 − 0.54 pHsoil − 0.10 OMsoil − 0.10 Mnsoil | 1.05 | 1.49 | 0.86 | 11.08 | <0.01 | 0.85 | 0.09 | |
Zn | Root | y = − 34.96 + 5.77 pHsoil + 0.27 OMsoil + 0.86 Znsoil | 7.04 | 12.60 | 0.98 | 147.54 | <0.01 | 0.89 | 0.77 |
Shoot | y = 5.57 − 0.32 pHsoil − 0.99 OMsoil + 0.86 Znsoil | 5.00 | 9.63 | 0.99 | 301.78 | <0.01 | 0.98 | 0.28 | |
Flowers | y = 3.21 − 0.19 pHsoil − 1.42 OMsoil + 0.69 Znsoil | 2.52 | 4.35 | 0.98 | 120.04 | <0.01 | 0.98 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Huqail, A.A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Širić, I.; Goala, M.; Choi, K.S.; Taher, M.A.; El-Kholy, A.S.; Eid, E.M. Sustainable Use of Sewage Sludge for Marigold (Tagetes erecta L.) Cultivation: Experimental and Predictive Modeling Studies on Heavy Metal Accumulation. Horticulturae 2023, 9, 447. https://doi.org/10.3390/horticulturae9040447
AL-Huqail AA, Kumar P, Abou Fayssal S, Adelodun B, Širić I, Goala M, Choi KS, Taher MA, El-Kholy AS, Eid EM. Sustainable Use of Sewage Sludge for Marigold (Tagetes erecta L.) Cultivation: Experimental and Predictive Modeling Studies on Heavy Metal Accumulation. Horticulturae. 2023; 9(4):447. https://doi.org/10.3390/horticulturae9040447
Chicago/Turabian StyleAL-Huqail, Arwa A., Pankaj Kumar, Sami Abou Fayssal, Bashir Adelodun, Ivan Širić, Madhumita Goala, Kyung Sook Choi, Mostafa A. Taher, Aziza S. El-Kholy, and Ebrahem M. Eid. 2023. "Sustainable Use of Sewage Sludge for Marigold (Tagetes erecta L.) Cultivation: Experimental and Predictive Modeling Studies on Heavy Metal Accumulation" Horticulturae 9, no. 4: 447. https://doi.org/10.3390/horticulturae9040447