Fruit Quality of Satsuma Mandarins from Neretva Valley and Their Flavonoid and Carotenoid Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Physicochemical Properties
2.4. Preparation of Dry Pulp Residue and Dry Peel Extracts of Mandarin Fruit
2.5. Determination of Total Polyphenolic Content, Total Flavonoids, Total Carotenoids and Antioxidant Activity
2.6. Total Carotenoids
2.7. HPLC Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Bioactive Compounds and Antioxidant Activity
3.3. Individual Flavonoid Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations); FAOSTAT. FAOSTAT Statistical Database. 2021. Available online: http://www.fao.org/faostat (accessed on 24 February 2023).
- Goldenberg, L.; Yaniv, Y.; Porat, R.; Carmi, N. Mandarin fruit quality: A review. J. Sci. Food Agric. 2018, 98, 18–26. [Google Scholar] [CrossRef]
- Usman, M.; Fatima, B. Mandarin (Citrus reticulata Blanco) Breeding. In Advances in Plant Breeding Strategies: Fruits, 1st ed.; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2018; pp. 465–533. [Google Scholar]
- Kato, M. Citrus and health. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 495–511. [Google Scholar]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.S. Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef]
- Bureš, M.S.; Maslov Bandić, L.; Vlahoviček-Kahlina, K. Determination of Bioactive Components in Mandarin Fruits: A Review. Crit. Rev. Anal. Chem. 2022, 1–26. [Google Scholar] [CrossRef]
- Jemrić, T.; Romic, M.; Romic, D.; Ondrasek, G. Fruit quality of Satsuma mandarin in Croatia-problems and perspectives Reduction of greenhouse gas emissions through urban and agricultural waste utilization in plant production. Contemp. Agric. 2012, 61, 230–236. [Google Scholar]
- Won, M.Y.; Min, S.C. Coating Satsuma mandarin using grapefruit seed extract–incorporated carnauba wax for its preservation. Food Sci. Biotechnol. 2018, 27, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Jatoi, M.A.; Jurić, S.; Vidrih, R.; Vinceković, M.; Vuković, M.; Jemrić, T. The effects of postharvest application of lecithin to improve storage potential and quality of fresh goji (Lycium barbarum L.) berries. Food Chem. 2017, 230, 241–249. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chuang, Y.C.; Hsu, H.W. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 2008, 106, 277–284. [Google Scholar] [CrossRef]
- Stuetz, W.; Prapamontol, T.; Hongsibsong, S.; Biesalski, H.K. Polymethoxylated flavones, flavanone glycosides, carotenoids, and antioxidants in different cultivation types of tangerines (Citrus reticulata blanco cv. sainampueng) from Northern Thailand. J. Agric. Food Chem. 2010, 58, 6069–6074. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Ivanova, V.; Stefova, M.; Chinnici, F. Determination of the polyphenol contents in Macedonian grapes and wines by standardized spectrophotometric methods. J. Serb. Chem. Soc. 2010, 75, 45–59. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S. Characterization of Carotenoids in Juice of Red Navel Orange (Cara Cara). J. Agric. Food Chem. 2001, 49, 2563–2568. [Google Scholar] [CrossRef]
- Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem. Toxicol. 2008, 46, 2742–2747. [Google Scholar] [CrossRef]
- Radulović, M.; Đukić, M.; Radulović, D. Influence of variety and location on unshiu citrus fruit weight (Citrus unshiu March.). Agric. For. 2014, 60, 291–298. [Google Scholar]
- Özkaya, O.; Yabaci Karaoğlan, S.; İncesu, M.; Yeşiloğlu, T. The general and volatile properties and the quality of two newly selected satsuma clones (11/1 İzmir and 30/İzmir) grown under mediterranean ecological conditions. Food Sci. Technol. 2019, 39, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, N.; Takahara, T.; Ogata, T.; Kojima, K. Changes in rind firmness and cell wall polysaccharides during citrus fruit development and maturation. HortScience. 1999, 34, 79–81. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jin, R.; Yang, Z.; Wang, X.; You, G.; Guo, J.; Zhang, Y.; Liu, F.; Pan, S. Comparative study on physicochemical, nutritional and enzymatic properties of two Satsuma mandarin (Citrus unshiu Marc.) varieties from different regions. J. Food Compos. Anal. 2021, 95, 103614. [Google Scholar] [CrossRef]
- Lado, J.; Rodrigo, M.J.; Zacarias, L. Maturity indicators and citrus quality. Stewart Postharvest Rev. 2014, 2, 1–6. [Google Scholar]
- Haisman, D.R.; Clarke, M.W. The interfacial factor in the heat-induced conversion of chlorophyll to pheophytin in green leaves. J. Sci. Food Agric. 1975, 26, 1111–1126. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Identification of phenolic compositions and the antioxidant capacity of mandarin juices and wines. J. Food Sci. Technol. 2014, 51, 1094–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyo, Y.H.; Jin, Y.J.; Hwang, J.Y. Comparison of the effects of blending and juicing on the phytochemical contents and antioxidant capacity of typical Korean kernel fruit juices. Prev. Nutr. Food Sci. 2014, 19, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anticona, M.; Fayos, M.C.; Esteve, M.J.; Frigola, A.; Blesa, J.; Lopez-Malo, D. Differentiation of juice of mandarin-like hybrids based on physicochemical characteristics, bioactive compounds, and antioxidant capacity. Eur. Food Res. Technol. 2022, 248, 2253–2262. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, Y.; Sun, Y.; Shen, Y.; Ye, X.; Zhou, Z. Phenolic composition of Chinese wild mandarin (Citrus reticulata Balnco.) pulps and their antioxidant properties. Ind. Crops Prod. 2014, 52, 466–474. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.F.; Zhou, Z.Q. Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. J. Integr. Agric. 2018, 17, 256–263. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Xi, W.; Shen, Y.; Qiao, L.; Zhong, L.; Ye, X.; Zhou, Z. Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chem. 2014, 145, 674–680. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Melendez-Martinez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.X.; Jia, M.; Gui, Y.; Ma, Y. Comparison of the effects of novel processing technologies and conventional thermal pasteurisation on the nutritional quality and aroma of Mandarin (Citrus unshiu) juice. Innov. Food Sci. Emerg. Technol. 2020, 64, 102425. [Google Scholar] [CrossRef]
- Panda, D.; Ghosh, D.C.; Kar, M. Effect of Salt Stress on the Pigment Content and Yield of Different Rice (Oryza sativa L.) Genotypes. Int. J. Bio-Resour. Stress Manag. 2013, 4, 431–434. [Google Scholar]
- Yarsi, G.; Sivaci, A.; Yildiz Dasgan, H.; Altuntas, O.; Binzet, R.; Akhoundnejad, Y. Effects of salinity stress on chlorophyll and carotenoid contents and stomata size of grafted and ungrafted galia c8 melon cultivar. Pak. J. Bot. 2017, 49, 421–426. [Google Scholar]
- Akcin, A.; Yalcin, E. Effect of salinity stress on chlorophyll, carotenoid content, and proline in Salicornia prostrata Pall. and Suaeda prostrata Pall. subsp prostrata (Amaranthaceae). Rev. Bras. Bot. 2016, 39, 101–106. [Google Scholar] [CrossRef]
- Costanzo, G.; Vitale, E.; Iesce, M.R.; Naviglio, D.; Amoresano, A.; Fontanarosa, C.; Spinelli, M.; Ciaravolo, M.; Arena, C. Antioxidant Properties of Pulp, Peel and Seeds of Phlegrean Mandarin (Citrus reticulata Blanco) at Different Stages of Fruit Ripening. Antioxidants 2022, 11, 187. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L.; Cronje, P.J.R.; Landahl, S.; Ortiz, J.O.; Terry, L.A. Rapid methods for extracting and quantifying phenolic compounds in citrus rinds. Food Sci. Nutr. 2016, 4, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.J.; Dwyer, J.T.; Beecher, G.R.; Bhagwat, S.A.; Gebhardt, S.E.; Haytowitz, D.B.; Holden, J.M. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. 2006, 19, S66–S73. [Google Scholar] [CrossRef]
- Graca Miguel, M.; Duarte, A.; Nunes, S.; Sustelo, V.; Martins, D.; Anahi Dandlen, S. Ascorbic acid and flavanone glycosides in citrus: Relationship with antioxidant activity. J. Food Agric. Environ. 2009, 7, 222–227. [Google Scholar]
- Levaj, B.; Dargović-Uzelac, V.; Kovačević, D.B.; Krasnići, N. Determination of flavonoids in pulp and peel of mandarin fruits. Agric. Conspec. Sci. 2009, 74, 221–225. [Google Scholar]
- Sung, J.; Suh, J.H.; Wang, Y. Effects of heat treatment of mandarin peel on flavonoid profiles and lipid accumulation in 3T3-L1 adipocytes. J. Food Drug Anal. 2019, 27, 729–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, T.T.; Zhao, X.J.; Zhang, Y.D.; Li, Y.F. Fast separation and sensitive quantitation of polymethoxylated flavonoids in the peels of Citrus using UPLC-Q-TOF-MS. J. Agric. Food Chem. 2017, 65, 2615–2627. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, G.; Jiang, D.; Zhou, Z. International Journal of Food Sciences and Nutrition Phenolic compositions and antioxidant activities of grapefruit (Citrus paradisi Macfadyen) varieties cultivated in China Phenolic compositions and antioxidant activities of grapefruit (Citrus paradisi Macfadyen) varieties cultivated in China. Int. J. Food Sci. Nutr. 2015, 66, 858. [Google Scholar]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef] [PubMed]
Variety | Mass (g) | Firmness (kg cm−2) | TSS (%) | TA (%) | TSS/TA | pH |
---|---|---|---|---|---|---|
‘Zorica’ | 84.93 ± 18.14 c | 3.98 ± 0.82 a | 13.02 ± 1.39 a | 2.38 ± 0.50 a | 5.62 ± 0.94 d | 3.11 ± 0.03 c |
‘Chahara’ | 98.89 ± 19.15 bc | 4.28 ± 0.58 a | 12.43 ± 1.06 b | 2.06 ± 0.45 b | 6.25 ± 1.32 d | 3.14 ± 0.07 c |
‘Kawano Wase’ | 112.68 ± 13.45 ab | 2.09 ± 1.09 c | 11.68 ± 0.70 c | 1.30 ± 0.23 c | 9.20 ± 1.42 c | 3.52 ± 0.12 b |
‘Owari’ | 124.49 ± 34.69 a | 2.02 ± 0.34 c | 11.76 ± 0.76 c | 1.04 ±0.23 d | 11.47 ± 1.38 b | 3.58 ± 0.18 b |
‘Saigon’ | 116.47 ± 42.54 ab | 2.78 ± 0.46 b | 10.95 ± 1.57 d | 0.74 ± 0.18 e | 15.73 ± 4.63 a | 3.77 ± 0.44 a |
Variety | L * | a * | b * | C * | H * | CN * | CCI * |
---|---|---|---|---|---|---|---|
‘Zorica’ | 65.43 ± 2.91 | 19.83 ± 3.49 | 63.04 ± 3.32 | 66.18 ± 3.32 | 72.54 ± 3.08 | 50.68 ± 1.49 | 4.85 ± 1.03 |
‘Chahara’ | 67.58 ± 2.36 | 14.95 ± 4.40 | 63.40 ± 3.76 | 65.28 ± 3.85 | 76.77 ± 3.82 | 48.58 ± 1.79 | 3.52 ± 1.13 |
‘Kawano Wase’ | 65.71 ± 2.04 | 21.01 ± 3.04 | 61.07 ± 3.14 | 64.66 ± 3.16 | 71.02 ± 2.71 | 50.85 ± 1.35 | 5.27 ± 0.91 |
‘Owari’ | 62.48 ± 8.86 | 21.59 ± 3.65 | 59.36 ± 7.44 | 63.27 ± 7.36 | 69.84 ± 3.66 | 51.59 ± 2.13 | 6.49 ± 4.41 |
‘Saigon’ | 64.70 ± 2.15 | 24.66 ± 1.38 | 59.02 ± 3.75 | 64.00 ± 3.31 | 67,25 ± 1.98 | 52.25 ± 0.75 | 6.51 ± 0.77 |
F test | ** | *** | ** | ˂0.1185 ns *** | *** | *** |
Bioactive Compounds | Antioxidant Capacity | ||||
---|---|---|---|---|---|
Variety | TPC (mg GAE/L) | TF (mg QE/L) | TC (μg β-carotene/L) | DPPH (mmol TE/L) | ABTS (mmol TE/L) |
‘Zorica’ | 1110.67 ± 59.14 a | 846.68 ± 17.69 a | 200.57 ± 3.69 a | 2.77 ± 0.07 a | 3.80 ± 0.21 a |
‘Chahara’ | 901.41 ± 57.88 b | 737.74 ± 34.76 b | 200.57 ± 13.30 a | 2.71 ± 0.06 a | 3.77 ± 0.14 a |
‘Kawano Wase’ | 844.00 ± 42.07 bc | 686.93 ± 29.67 bc | 93.64 ± 3.69 b | 2.15 ± 0.02 b | 3.50 ± 0.08 ab |
‘Owari’ | 703.26 ± 26.96 d | 575.54 ± 19.55 d | 72.77 ± 6.39 b | 2.14 ± 0.07 b | 3.40 ± 0.08 b |
‘Saigon’ | 775.48 ± 51.88 cd | 627.98 ± 32.15 cd | 104.07 ± 6.39 b | 2.04 ± 0.08 b | 3.38 ± 0.24 ab |
Variety | Hesperidin | Narirutin | Naringin |
---|---|---|---|
‘Zorica’ | 98.51 ± 2.59 a | 278.74 ± 28.01 a | 6.53 ± 0.09 a |
‘Chahara’ | 107.81 ± 4.96 a | 248.77 ± 19.36 ab | 6.32 ± 0.04 a |
‘Kawano Wase’ | 86.87 ± 3.78 b | 218.06 ± 11.09 b | 6.66 ± 0.11 a |
‘Owari’ | 67.89 ± 16.11 bc | 117.13 ± 19.55 c | 4.56 ± 0.29 b |
‘Saigon’ | 91.36 ± 17.09 ac | 165.91 ± 24.1 c | 5.28 ± 0.14 b |
Variety | Narirutin | Hesperidin |
---|---|---|
‘Zorica’ | 6.00 ± 0.38 a | 16.74 ± 1.03 a |
‘Chahara’ | 7.38 ± 0.01 b | 16.56 ± 0.36 a |
‘Kawano Wase’ | 7.10 ± 0.02 c | 24.76 ± 0.18 b |
‘Owari’ | 4.89 ± 0.07 d | 15.89 ± 0.21 a |
‘Saigon’ | 9.18 ± 0.09 e | 22.80 ± 0.20 c |
Compound (mg/g) | ‘Zorica’ | ‘Chahara’ | ‘Kawano Wase’ | ‘Owari’ | ‘Saigon’ |
---|---|---|---|---|---|
Narirutin | 19.849± 0.090 a | 15.010 ± 0.001 b | 12.581 ± 0.008 c | 8.094 ± 0.009 d | 11.922 ± 0.030 e |
Hesperidin | 73.809 ± 0.549 a | 50.012 ± 0.001 b | 62.028 ± 0.667 c | 50.018 ± 0.270 b | 51.942 ± 0.091 d |
Naringin | 0.346 ± 0.003 a | 0.349 ± 0.000 b | 0.339 ± 0.001 a | 0.405 ± 0.007 c | 0.387 ± 0.002 d |
Quercetin | n.d.* | n.d.* | n.d.* | 0.017 ± 0.008 a | n.d.* |
Sinensetin | 0.091 ± 0.091 a | n.d.* | 0.246 ± 0.008 b | 0.232 ± 0.003 bc | 0.353 ± 0.008 c |
Nobiletin | 0.276 ± 0.001 a | 0.204 ± 0.000 b | 0.455 ± 0.002 c | 0.419 ± 0.006 d | 0.608 ± 0.001 e |
Tangeretin | 0.162 ± 0.001 a | 0.133 ± 0.000 b | 0.235 ± 0.000 c | 0.200 ± 0.002 d | 0.251 ± 0.000 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslov Bandić, L.; Vlahoviček-Kahlina, K.; Sigurnjak Bureš, M.; Sopko Stracenski, K.; Jalšenjak, N.; Fruk, G.; Antolković, A.M.; Jurić, S. Fruit Quality of Satsuma Mandarins from Neretva Valley and Their Flavonoid and Carotenoid Content. Horticulturae 2023, 9, 383. https://doi.org/10.3390/horticulturae9030383
Maslov Bandić L, Vlahoviček-Kahlina K, Sigurnjak Bureš M, Sopko Stracenski K, Jalšenjak N, Fruk G, Antolković AM, Jurić S. Fruit Quality of Satsuma Mandarins from Neretva Valley and Their Flavonoid and Carotenoid Content. Horticulturae. 2023; 9(3):383. https://doi.org/10.3390/horticulturae9030383
Chicago/Turabian StyleMaslov Bandić, Luna, Kristina Vlahoviček-Kahlina, Marija Sigurnjak Bureš, Katarina Sopko Stracenski, Nenad Jalšenjak, Goran Fruk, Ana Marija Antolković, and Slaven Jurić. 2023. "Fruit Quality of Satsuma Mandarins from Neretva Valley and Their Flavonoid and Carotenoid Content" Horticulturae 9, no. 3: 383. https://doi.org/10.3390/horticulturae9030383