Genome-Wide Analysis of MIKCC-Type MADS-Box Genes Reveals Their Involvement in Flower Development in Malus Lineage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Resources
2.2. Classification
2.3. Phylogenetic Analysis of MIKCC-Type MADS-Box Genes
2.4. Analysis of Whole-Genome Duplication and Collinearity
2.5. Analysis of Tandem Duplication in Malus Lineage
2.6. Expression Analysis of MIKCC-Type MADS-Box Transcription Factor Genes in M. domestica
3. Results
3.1. Identification and Distribution of MIKCC-Type MADS-Box Genes in 13 Genome-Released Species
3.2. Phylogeny of MIKCC-Type MADS-Box Genes among Different Species
3.3. Comparative Analysis of MIKCC-type MADS-Box Genes in A. thaliana and Malus Species
3.4. Analysis of WGD Events for MIKCC-Type MADS-Box Genes in Malus Lineage
3.5. Analysis of TD Events for MIKCC-Type MADS-Box Genes in Malus Lineage
3.6. Expression Analysis of MIKCC-Type MADS-Box Genes in M. domestica
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WGD | whole-genome duplication |
TF | tandem duplication |
HMM | Hidden Markov model |
ML | maximum likelihood |
References
- Theißen, G.; Gramzow, L. Structure and evolution of plant MADS domain transcription factors. In Plant Transcription Factors: Evolutionary, Structural and Functional Aspects; Gonzalez, D.H., Ed.; Elsevier: Philadelphia, PA, USA, 2016; pp. 127–138. [Google Scholar]
- Zhu, P.; Dong, T.; Xu, T.; Kang, H. Identification, characterisation and expression analysis of MADS-box genes in sweetpotato wild relative Ipomoea trifida. Acta Physiol. Plant. 2020, 42, 163. [Google Scholar] [CrossRef]
- Medard, N.; Martin, F.Y. Function and evolution of the plant MADS-box gene family. Nat. Rev. Genet. 2001, 2, 186–195. [Google Scholar]
- Ghorbani, M.; Bagheri, H.; Gholami, M. Genome-wide study of flowering-related MADS-box genes family in Cardamine hirsuta. 3 Biotech. 2020, 10, 518. [Google Scholar] [CrossRef] [PubMed]
- Smaczniak, C.; Immink, R.G.H.; Angenent, G.C.; Kaufmann, K. Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies. Development 2012, 139, 3081–3098. [Google Scholar] [CrossRef] [Green Version]
- Parenicova, L.; de Folter, S.; Kieffer, M.; Horner, D.S.; Favalli, C.; Busscher, J.; Cook, H.E.; Ingram, R.M.; Kater, M.M.; Davies, B.; et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell 2003, 15, 1538–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honma, T.; Goto, K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 2001, 409, 525–529. [Google Scholar] [CrossRef]
- Riechmann, J.L.; Krizek, B.A.; Meyerowitz, E.M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 1996, 93, 4793–4798. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, Q.; Sun, L.; Du, D.; Cheng, T.; Pan, H.; Yang, W.; Wang, J. Genome-wide identification, characterization and expression analysis of the MADS-box gene family in Prunus mume. Mol. Genet. Genom. 2014, 289, 903–920. [Google Scholar] [CrossRef]
- Henschel, K.; Kofuji, R.; Hasebe, M.; Saedler, H.; Munster, T.; Theissen, G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 2002, 19, 801–814. [Google Scholar] [CrossRef]
- Kwantes, M.; Liebsch, D.; Verelst, W. How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes. Mol. Biol. Evol. 2012, 29, 293–302. [Google Scholar] [CrossRef]
- Aceto, S.; Gaudio, L. The MADS and the beauty: Genes involved in the development of Orchid flowers. Curr. Genom. 2011, 12, 342–356. [Google Scholar] [CrossRef] [Green Version]
- Coen, E.S.; Meyerowitz, E.M. The war of the whorls: Genetic interactions controlling flower development. Nature 1991, 353, 31–37. [Google Scholar] [CrossRef]
- Theißen, G. Development of floral organ identity: Stories from the MADS house. Curr. Opin. Plant Biol. 2001, 4, 75–85. [Google Scholar] [CrossRef]
- Kaufmann, K.; Melzer, R.; Theißen, G. MIKC-type MADS-domain proteins: Structural modularity, protein interactions and network evolution in land plants. Gene 2005, 347, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Ditta, G.; Pinyopich, A.; Robles, P.; Pelaz, S.; Yanofsky, M.F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 2004, 14, 1935–1940. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, K.V.; Bahadur, B. Genetics of flower development. In Plant Biology and Biotechnology; Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K., Eds.; Springer: New Delhi, India, 2015; pp. 385–407. [Google Scholar]
- Grimplet, J.; Martinez-Zapater, J.M.; Carmona, M.J. Structural and functional annotation of the MADS-box transcription factor family in grapevine. BMC Genom. 2016, 17, 80. [Google Scholar] [CrossRef] [Green Version]
- Theißen, G.; Rumpler, F.; Gramzow, L. Array of MADS-box genes: Facilitator for rapid adaptation? Trends Plant Sci. 2018, 23, 563–576. [Google Scholar] [CrossRef]
- Won, S.Y.; Jung, J.A.; Kim, J.S. Genome-wide analysis of the MADS-Box gene family in Chrysanthemum. Comput. Biol. Chem. 2021, 90, 107424. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, S.; Kimizu, M.; Sugita, M.; Miyao, A.; Hirochika, H.; Uchida, E.; Nagato, Y.; Yoshida, H. MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 2009, 21, 3008–3025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, B.E.; Bartling, L.; Whipple, C.; Hall, D.H.; Sakai, H.; Schmidt, R.; Hake, S. Bearded-ear encodes a MADS box transcription factor critical for maize floral development. Plant Cell 2009, 21, 2578–2590. [Google Scholar] [CrossRef] [Green Version]
- Rijpkema, A.S.; Zethof, J.; Gerats, T.; Vandenbussche, M. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J. 2009, 60, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, K.; Wellmer, F.; Muino, J.M.; Ferrier, T.; Wuest, S.E.; Kumar, V.; Serrano-Mislata, A.; Madueno, F.; Krajewski, P.; Meyerowitz, E.M. Orchestration of floral initiation by APETALA1. Science 2010, 328, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.E.; Singh, M.B.; Bhalla, P.L. Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean. BMC Plant Biol. 2013, 13, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acri-Nunes-Miranda, R.; Mondragon-Palomino, M. Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front. Plant Sci. 2014, 5, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Jin, Z.; Feng, C.; Liu, M.; Wang, J.; Hu, Y. Genome-wide identification, characterization of the MADS-box gene family in Chinese jujube and their involvement in flower development. Sci. Rep. 2017, 7, 1025. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Dong, Q.; Ji, Z.; Chi, F.; Cong, P.; Zhou, Z. Genome-wide identification and analysis of the MADS-box gene family in apple. Gene 2014, 555, 277–290. [Google Scholar] [CrossRef]
- Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanaraman, A.; Fontana, P.; Bhatnagar, S.K.; Troggio, M.; Pruss, D.; et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat. Genet. 2010, 42, 833–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant Genom. Nucleic Acids Res. 2012, D1, D1178–D1186. [Google Scholar] [CrossRef]
- Cheng, C.; Krishnakumar, V.; Chan, A.; Thibaud-Nissen, F.; Schobel, S.; Town, C.D. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017, 89, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Sara, E.G.; Jaina, M.; Alex, B.; Eddy, S.R.; Aurélien, L.; Potter, S.C.; Matloob, Q.; Richardson, L.J.; Salazar, G.A.; Alfredo, S. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar]
- Leinonen, R.; Sugawara, H.; Shumway, M. The sequence read archive. Nucleic Acids Res. 2010, 39, D19–D21. [Google Scholar] [CrossRef] [Green Version]
- Potter, S.C.; Aurélien, L.; Eddy, S.R.; Youngmi, P.; Rodrigo, L.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; Mcgettigan, P.A.; Mcwilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philip, J.; David, B.; Chang, H.; Matthew, F.; Li, W.; Craig, M.; Hamish, M.; John, M.; Alex, M.; Gift, N. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for 16 bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Tae-ho, L.; Jin, H.; Barry, M.; Guo, H. CScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Ke, T.; Tehrim, S.; Sun, F.; Liao, B.; Hua, W. PTGBase: An integrated database to study tandem duplicated genes in plants. Database 2015, 2015, bav017. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Dobin, A.; Gingeras, T.R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Kaul, S.; Koo, H.L.; Jenkins, J.; Rizzo, M.; Rooney, T.; Tallon, L.J. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, C. Evolution of Arabidopsis microRNA families through duplication events. Genome Res. 2006, 16, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Shang, Q.; Liang, L.; Dong, C. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta 2012, 236, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Bi, C.; He, B.; Ye, N.; Yin, T.; Xu, L. Genome-wide identification and characterization of the MADS-box gene family in Salix suchowensis. Peer J. 2019, 7, e8019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramzow, L.; Ritz, M.S.; Theißen, G. On the origin of MADS-domain transcription factors. Trends Genet. 2010, 26, 149–153. [Google Scholar] [CrossRef]
- Arora, R.; Agarwal, P.; Ray, S.; Singh, A.K.; Singh, V.P.; Tyagi, A.K.; Kapoor, S. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom. 2007, 8, 242. [Google Scholar] [CrossRef] [Green Version]
- Irish, V.F.; Litt, A. Flower development and evolution: Gene duplication, diversification and redeployment. Curr. Opin. Genet. Dev. 2005, 15, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, X.; Dong, Y.; Lu, J.; Ren, M.; Zhou, N.; Wang, C. MIKCC-type MADS-box genes in Rosa chinensis: The remarkable expansion of ABCDE model genes and their roles in floral organogenesis. Hortic. Res. 2018, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, L.; Sun, H.; Dai, S.; Feng, S.; Qiao, K.; Wang, J.; Gong, S.; Zhou, A. Identification and characterization of MIKCc-type MADS-Box genes in the flower organs of Adonis amurensis. Int. J. Mol. Sci. 2021, 22, 9362. [Google Scholar] [CrossRef] [PubMed]
- Kuijer, H.N.J.; Shirley, N.J.; Khor, S.F.; Shi, J.; Schwerdt, J.; Zhang, D.; Li, G.; Burton, R.A. Transcript profiling of MIKCc MADS-Box genes reveals conserved and novel roles in barley inflorescence development. Front. Plant Sci. 2021, 12, 705286. [Google Scholar] [CrossRef] [PubMed]
Phylum | Species Name | Version | Total Gene Number | MIKCC-Type MADS-Box Genes | Percentage (%) | |
---|---|---|---|---|---|---|
Chlorophyta | Chlamydomonas reinhardtii | v5.6 | 17,741 | 0 | 0 | |
Bryophyta | Physcomitrella patens | v3.3 | 32,926 | 6 | 0.018 | |
Lycopodiophyta | Selaginella moellendorffii | v1.0 | 22,285 | 3 | 0.013 | |
Magnoliophyta | Basal | Amborella trichopoda | v1.0 | 26,846 | 15 | 0.056 |
Dicot | Arabidopsis thaliana | Araport11 | 27,655 | 37 | 0.134 | |
Citrus sinensis | v1.1 | 25,379 | 19 | 0.075 | ||
Fragaria vesca | v2.0.a2 | 33,538 | 32 | 0.095 | ||
Gossypium raimondii | v2.1 | 37,505 | 48 | 0.128 | ||
Malus baccata | v1.0 | 45,931 | 36 | 0.078 | ||
Malus x domestica | v1.1 | 45,116 | 50 | 0.111 | ||
Prunus persica | v2.1 | 26,873 | 32 | 0.119 | ||
Vitis vinifera | v2.1 | 31,845 | 28 | 0.088 | ||
Monocot | Oryza sativa | v7.0 | 55,801 | 35 | 0.063 |
Gene Type of ABC Model | A. thaliana Araport11 | M. domestica v1.1 | M. baccata v1.0 |
---|---|---|---|
A-class | AT1G69120 (AP1) | MD16G1058500 | MABA030923 |
AT1G26310 (CAL1, AGL10, and CAL) | MD13G1059200 | MABA021281 | |
B-class | AT5G20240 (PI) | None | MABA007549 |
AT3G54340 (AP3) | MD08G1021300 | MABA021927 | |
MD15G1250200 | MABA021712 | ||
MD02G1136500 | MABA015091 | ||
C-class | AT4G18960 (AG) | MD10G1271000 | MABA013718 |
MD05G1293700 | MABA035866 |
Plant Species | Gene Model | Cluster Name | Gene Numbers | Gene Lists |
---|---|---|---|---|
M. domestica | MD01G1193500 | Cluster_1012 | 2 | MD01G1193500 MD01G1193600 |
MD01G1193600 | Cluster_1012 | 2 | MD01G1193500 MD01G1193600 | |
MD06G1204100 | Cluster_236 | 3 | MD06G1204100 MD06G1204300 MD06G1204400 | |
MD06G1204300 | Cluster_236 | 3 | MD06G1204100 MD06G1204300 MD06G1204400 | |
MD06G1204400 | Cluster_236 | 3 | MD06G1204100 MD06G1204300 MD06G1204400 | |
MD13G1059200 | Cluster_1260 | 2 | MD13G1059200 MD13G1059300 | |
MD13G1059300 | Cluster_1260 | 2 | MD13G1059200 MD13G1059300 | |
MD14G1215600 | Cluster_727 | 2 | MD14G1215600 MD14G1215700 | |
MD14G1215700 | Cluster_727 | 2 | MD14G1215600 MD14G1215700 | |
MD15G1384500 | Cluster_2045 | 2 | MD15G1384500 MD15G1384600 | |
MD15G1384600 | Cluster_2045 | 2 | MD15G1384500 MD15G1384600 | |
MD16G1058500 | Cluster_1901 | 2 | MD16G1058500 MD16G1058600 | |
MD16G1058600 | Cluster_1901 | 2 | MD16G1058500 MD16G1058600 | |
MD17G1065400 | Cluster_2341 | 2 | MD17G1065400 MD17G1065500 | |
MD17G1065500 | Cluster_2341 | 2 | MD17G1065400 MD17G1065500 | |
M. baccata | MABA007513 | Cluster_914 | 2 | MABA007513 MABA007514 |
MABA007514 | Cluster_914 | 2 | MABA007513 MABA007514 | |
MABA021280 | Cluster_2010 | 2 | MABA021280 MABA021281 | |
MABA021281 | Cluster_2010 | 2 | MABA021280 MABA021281 | |
MABA030922 | Cluster_1256 | 2 | MABA030922 MABA030923 | |
MABA030923 | Cluster_1256 | 2 | MABA030922 MABA030923 | |
MABA032884 | Cluster_1978 | 2 | MABA032884 MABA032885 | |
MABA032885 | Cluster_1978 | 2 | MABA032884 MABA032885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, K.; Zhang, W.; Zhang, D.; El-Kassaby, Y.A.; Zhou, T. Genome-Wide Analysis of MIKCC-Type MADS-Box Genes Reveals Their Involvement in Flower Development in Malus Lineage. Horticulturae 2023, 9, 373. https://doi.org/10.3390/horticulturae9030373
Ning K, Zhang W, Zhang D, El-Kassaby YA, Zhou T. Genome-Wide Analysis of MIKCC-Type MADS-Box Genes Reveals Their Involvement in Flower Development in Malus Lineage. Horticulturae. 2023; 9(3):373. https://doi.org/10.3390/horticulturae9030373
Chicago/Turabian StyleNing, Kun, Wangxiang Zhang, Donglin Zhang, Yousry A. El-Kassaby, and Ting Zhou. 2023. "Genome-Wide Analysis of MIKCC-Type MADS-Box Genes Reveals Their Involvement in Flower Development in Malus Lineage" Horticulturae 9, no. 3: 373. https://doi.org/10.3390/horticulturae9030373
APA StyleNing, K., Zhang, W., Zhang, D., El-Kassaby, Y. A., & Zhou, T. (2023). Genome-Wide Analysis of MIKCC-Type MADS-Box Genes Reveals Their Involvement in Flower Development in Malus Lineage. Horticulturae, 9(3), 373. https://doi.org/10.3390/horticulturae9030373